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A microscale lubrication flow of a gas between eccentric circular cylinders is studied on
the basis of kinetic theory. The dimensionless curvature, defined by the mean clearance
divided by the radius of the inner cylinder, is small, and the rotation speed of the inner
cylinder is also small. The Knudsen number, defined by the mean free path divided
by the mean clearance, is arbitrary. The Boltzmann equation is studied analytically
using the slowly varying approximation following the method proposed in the author’s
previous study (Doi, Phys. Rev. Fluids, vol. 7, 2022, 034201). A macroscopic lubrication
equation, which is a microscale generalization of the Reynolds lubrication equation,
is derived. To assess this, a direct numerical analysis of the Boltzmann equation in
a bipolar coordinate system is conducted using the Bhatnagar–Gross–Krook–Welander
kinetic equation. It is demonstrated that the solution of the derived lubrication equation
approximates that of the Boltzmann equation over a wide range of the eccentricity and
the whole range of the Knudsen number. It is also demonstrated that another lubrication
equation derived by a formal application of the slowly varying approximation produces a
non-negligible error of the order of the square root of the dimensionless curvature for large
Knudsen numbers.

Key words: non-continuum effects, microfluidics, kinetic theory

1. Introduction

Lubrication is indispensable in all technologies involving bodies in a relative motion.
The basic equation of fluid film lubrication was derived by Reynolds (1886) from the
Navier–Stokes equations. When the size of the gap between two surfaces is so small
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enough to be comparable to the mean free path of a lubricating gas, lubrication theory
based on continuum fluid dynamics is inapplicable. Instead, analysis based on kinetic
theory is necessary (Karniadakis, Beskok & Aluru 2005; Cercignani 2006; Sone 2007).
The microscale behaviour of gas lubrication has been studied extensively on the basis
of kinetic theory, see e.g. Burgdorfer (1959), Gans (1988), Fukui & Kaneko (1988) and
Veijola, Kuisma & Lahdenperä (1998). In the 1980s, a generalized Reynolds equation
valid for an arbitrary Knudsen number was derived from the Boltzmann equation (Fukui
& Kaneko 1988), where the Knudsen number is defined by the mean free path divided by
the gap size. A more systematic derivation is given by Sone (2007). Some recent topics
can be found e.g. in Doi (2020, 2021).

Flows in a curved channel are important, for example, in the lubrication between a
journal and a bearing in micromachines. The effect of a small surface curvature on
lubrication was studied by Elrod (1960) using the Navier–Stokes equations. In our previous
paper (Doi 2022), the author studied microscale lubrication between coaxial circular
cylinders on the basis of kinetic theory. One of the interesting outcomes is that the effect
of small curvature is significant when the clearance is so narrow that the Knudsen number
is large. This phenomenon arises as follows. Let the radii of the cylinders be ra and rb
and let the dimensionless curvature c be defined by the clearance divided by the radius
of the inner cylinder, i.e. c = (rb − ra)/ra. For the infinite Knudsen number, the velocity
distribution function at an arbitrary point in the gas is composed of that of molecules
directly arriving from the boundaries without collisions. Because of the convex shape of
the inner cylinder, the range of the direction of the velocity of the molecules arriving
from this cylinder is smaller than that from the outer cylinder. The difference in the
range is proportional to the square root of c (this will be explained in detail in § 3.1).
This implies that there is a difference between the contributions to the flow from the
inner and outer cylinders due to the curvature; this effect of the curvature is thus not
of the order of c but of the square root of c, which is much larger than c. If one is not
aware of this and conducts a perturbation analysis, then an important term of curvature is
overlooked. As a result, the derived lubrication equation produces a non-negligible error of
the order of the square root of c for large Knudsen numbers. This fact was pointed out and
numerically demonstrated in Doi (2022). By overcoming the defect in the existing theory,
an improved lubrication theory was developed, and this was found to provide accurate
results over the whole range of the Knudsen number. In Doi (2022), the physical aspect
was focused on, and thus a simplified problem of a coaxial annulus was studied. However,
in practical micro-engineering, lubrication between eccentric cylinders is more important
and valuable.

In this paper, we study the microscale lubrication of a gas between eccentric circular
cylinders on the basis of kinetic theory. The dimensionless curvature is small, and
the circumferential speed of the inner cylinder is also small compared with the sound
speed. The eccentricity is finite, and the Knudsen number is arbitrary. The Boltzmann
equation is studied analytically using the slowly varying approximation (Sone 2007).
Two Reynolds-type equations are derived: one that takes the effect of curvature into
account following Doi (2022) (improved model), and the other derived by a straightforward
application of the slowly varying approximation. For an assessment of these lubrication
equations, a direct numerical analysis of the Boltzmann equation is also conducted using
the Bhatnagar–Gross–Krook–Welander (BGKW) kinetic model (Bhatnagar, Gross &
Krook 1954; Welander 1954). The goals of this paper are as follows. First, we demonstrate
that the solution of the improved model approximates that of the Boltzmann equation
over the whole range of the Knudsen number. Second, we also demonstrate that the other
model produces an error of the order of the square root of the dimensionless curvature
974 A13-2
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Generalized Reynolds equation for microscale lubrication
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Figure 1. Schematic of the system. (a) Schematic view of the annulus and (b) the bipolar coordinate system
(η, χ) in the dimensionless space.

for large Knudsen numbers, as found in the case of coaxial annulus. The present study is
an extension of the analysis for a coaxial annulus in Doi (2022) to that for an eccentric
annulus. The derivation of the lubrication model is a straightforward application of that
study. On the other hand, the development of the direct numerical analysis used in the
model assessment is a challenging problem because the use of a bipolar coordinate system
is indispensable. To the best of the author’s knowledge, this is the first attempt to solve the
Boltzmann equation using this coordinate system. Incidentally, a non-continuum effect of
lubrication between two spheres is studied in Sundararajakumar & Koch (1996) and Li
Sing How, Koch & Collins (2021).

This paper is organized as follows. The problem and the basic equations are given in
§ 2. The analysis deriving the lubrication equations is conducted in § 3. The method for
the direct numerical analysis is given in § 4. The results are presented and discussed in § 5.
Finally, conclusions are given in § 6.

2. Problem and basic equation

2.1. Problem
Consider a rarefied gas in the annulus between eccentric circular cylinders as shown in
figure 1(a). The radius of the inner cylinder is ra, that of the outer cylinder is rb, and the
distance between the two axes is ec. The inner cylinder rotates at a constant circumferential
speed vw, and the outer cylinder is at rest. The temperature of the cylinders is a constant T0.
The dimensionless curvature c is defined by c = (rb − ra)/ra. The rarefaction parameter
k is defined by k = (

√
π/2)�/(rb − ra), where � is the mean free path of the gas in the

equilibrium state at rest with the average density ρ0 of the gas and the temperature T0;
we call k the Knudsen number for simplicity. In the literature on lubrication, the Knudsen
number kn = (

√
π/2)�/(rb − ra − ec) based on the narrowest clearance rb − ra − ec is

also used. This kn is related to k here by kn = (1 − ε)−1k. Let c be small, and let the
circumferential speed vw of rotation also be small. The eccentricity ε = ec/(rb − ra) is
arbitrary, but it is not close to unity. To be specific

c � 1,
vw

(2RT0)1/2 = v̂w = cuw, 1 − ε = O(1), (2.1a–c)
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where R is the specific gas constant, i.e. the Boltzmann constant divided by the mass of a
molecule, and uw is a constant of the order of unity. Equation (2.1b) implies that the Mach
number based on the circumferential speed vw is of the same order as c. The Knudsen
number k is arbitrary. We study the time-independent and axially uniform behaviour of
the gas on the basis of the Boltzmann equation. We also assume that the gas molecules
undergo diffuse reflection on the surfaces of the cylinders.

2.2. Basic equation
We introduce the dimensionless variables

xi = Xi

rb − ra
, ζi = ξi

(2RT0)1/2 , (2.2a,b)

for the spatial rectangular coordinates Xi and the molecular velocity ξi. The dimensionless
molecular velocity ζi is also denoted by ζ .

In the following analysis, we use the bipolar coordinate system η, χ, ζη, ζχ , ζz, as shown
in figure 1(b), defined by

x1 = − a sinh η

cosh η − cos χ
, x2 = a sin χ

cosh η − cos χ
, (2.3a,b)

ζ = ζηeη + ζχeχ + ζzez, (2.4)

where

a = (cε)−1
[
(1 − ε2)

(
1 + c + 1 − ε2

4
c2
)]1/2

. (2.5)

The scale factor h defined by h = [(∂x1/∂η)2 + (∂x2/∂η)2]1/2 = [(∂x1/∂χ)2 +
(∂x2/∂χ)2]1/2 is given by

h = a
cosh η − cos χ

. (2.6)

The values of η and χ are in the ranges ηa ≤ η ≤ ηb, 0 ≤ χ < 2π, where ηa and ηb are
negative constants

ηa = −arcsinhca, ηb = −arcsinh
ca

1 + c
, ηa < ηb < 0. (2.7a,b)

The vectors eη and eχ are unit vectors in the x1 − x2 plane normal to the curves η = const
and χ = const, respectively, and ez = eη × eχ . Note that ca = ε−1(1 − ε2)1/2 + O(c)
from (2.5). The dimensionless variable f̂ for the velocity distribution function f is defined
by

f̂ = f
ρ0(2RT0)−3/2 . (2.8)

The dimensionless Boltzmann equation that governs f̂ (η, χ, ζη, ζχ , ζz) in the
time-independent state for the axially uniform case is written as (Kogan 1969)

ζη

h
∂ f̂
∂η

+ ζχ

h
∂ f̂
∂χ

+ 1
h2

(
ζχ

∂h
∂η

− ζη

∂h
∂χ

)(
ζχ

∂ f̂
∂ζη

− ζη

∂ f̂
∂ζχ

)
= 1

k
Ĵ( f̂ , f̂ ). (2.9)
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Generalized Reynolds equation for microscale lubrication

The Ĵ(·, ·) is the dimensionless collision integral defined by

Ĵ( f̂ , ĝ) = 1
2

∫∫ [
f̂ (ζ ′

∗)ĝ(ζ ′) + f̂ (ζ ′)ĝ(ζ ′
∗) − f̂ (ζ ∗)ĝ(ζ ) − f̂ (ζ )ĝ(ζ ∗)

]
B̂ dΩ(e) dζ ∗,

ζ ′ = ζ + [e · (ζ ∗ − ζ )]e, ζ ′
∗ = ζ ∗ − [e · (ζ ∗ − ζ )]e,

⎫⎬
⎭

(2.10)

where e is a unit vector, dΩ(e) is the solid-angle element in the direction of e and dζ ∗ =
dζχ∗ dζη∗ dζz∗. The factor B̂ is a function of |e · (ζ ∗ − ζ )|/|ζ ∗ − ζ | and |ζ ∗ − ζ |, and its
functional form is determined by the molecular model. In (2.10), the arguments of the
spatial variables η and χ are common and are omitted for simplicity. The integration in
(2.10) is carried out over the whole direction of e and the whole space of ζ . The range of
integration with respect to ζ is its whole space unless otherwise stated.

The diffuse-reflection boundary condition on the rotating inner cylinder is given by

f̂ = π−3/2σ̂a exp(−ζ 2
η − (ζχ − v̂w)2 − ζ 2

z ), ζη > 0, η = ηa,

σ̂a = −2
√

π

∫
ζη<0

ζη f̂ dζ , η = ηa.

⎫⎪⎬
⎪⎭ (2.11)

The boundary condition on the outer cylinder at rest is given by

f̂ = σ̂bE, ζη < 0, η = ηb,

σ̂b = 2
√

π

∫
ζη>0

ζη f̂ dζ , η = ηb,

⎫⎪⎬
⎪⎭ (2.12)

where E = π−3/2 exp(−ζ 2). The periodic condition with respect to χ is given by

f̂ (η, 0, ζη, ζχ , ζz) = f̂ (η, 2π, ζη, ζχ , ζz), ζχ > 0, (2.13)

f̂ (η, 2π, ζη, ζχ , ζz) = f̂ (η, 0, ζη, ζχ , ζz), ζχ < 0. (2.14)

Finally, the average gas density ρ0 is defined by
∫∫

dX1 dX2
∫

f dξ = π(r2
b − r2

a)ρ0, where
the spatial integration is conducted over the annulus region in figure 1(a). In terms of the
dimensionless quantities, this equation yields

∫ 2π

0
dχ

∫ ηb

ηa

dη h2
∫

f̂ dζ = 2π

c

(
1 + c

2

)
. (2.15)

The macroscopic variables of the gas, i.e. the density ρ, the flow velocity vi (i = η, χ),
the temperature T , the pressure p and the stress tensor pij (i = η, χ; j = η, χ) are defined
by the moments of the velocity distribution function f . The dimensionless variables ρ̂ =
ρ/ρ0, v̂i = vi/(2RT0)

1/2, T̂ = T/T0, p̂ = p/p0 (p0 = Rρ0T0) and p̂ij = pij/p0 are given by
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the moments of the dimensionless distribution function f̂ as

ρ̂ =
∫

f̂ dζ , (2.16a)

v̂i = 1
ρ̂

∫
ζi f̂ dζ , i = χ, η, (2.16b)

T̂ = 2
3ρ̂

∫ [
(ζη − v̂η)

2 + (ζχ − v̂χ )2 + ζ 2
z

]
f̂ dζ , (2.16c)

p̂ = ρ̂T̂, (2.16d)

p̂ij = 2
∫

(ζi − v̂i)(ζj − v̂j)f̂ dζ , i = η, χ; j = η, χ. (2.16e)

Integrating the Boltzmann equation (2.9) over the whole space of ζη, ζχ and ζz, we
obtain the equation of continuity

∂hρ̂v̂η

∂η
+ ∂hρ̂v̂χ

∂χ
= 0. (2.17)

The rectangular components (F1, F2) of the force and the torque N acting on the inner
cylinder per unit depth is given by

1
p0ra

(
F1
F2

)
= −

∫ 2π

0

(
p̂ηη cos θ − p̂χη sin θ

p̂ηη sin θ + p̂χη cos θ

)
ch dχ, η = ηa, (2.18)

N
p0r2

a
=
∫ 2π

0
p̂χηch dχ, η = ηa, (2.19)

where θ is the angle shown in figure 1(b) defined by

cos θ = cosh η cos χ − 1
cosh η − cos χ

, sin θ = − sinh η sin χ

cosh η − cos χ
. (2.20a,b)

The boundary-value problem given by (2.9)–(2.15) is characterized by the following
four dimensionless parameters:

c = rb − ra

ra
, ε = ec

rb − ra
, v̂w = cuw = vw

(2RT0)1/2 , k =
√

π

2
�

rb − ra
. (2.21a–d)

We study this problem under the condition (2.1a–c).

2.3. Some transformations
For convenience of the analysis, we introduce the change of independent variables from
η, ζη and ζχ to y, ζρ and θζ as follows (Sugimoto & Sone 1992):

η = ηa + (ηb − ηa)y, ζη = ζρ cos θζ , ζχ = ζρ sin θζ , (2.22a–c)
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Generalized Reynolds equation for microscale lubrication

where 0 ≤ y ≤ 1, 0 ≤ ζρ < ∞ and −π < θζ ≤ π. In terms of the new variables y, ζρ, θζ

and χ , the boundary-value problem (2.9)–(2.15) is rewritten as follows. The Boltzmann
equation is

ζρ cos θζ

γ H
∂ f̂
∂y

+ c
ζρ sin θζ

H
∂ f̂
∂χ

− cζρG
∂ f̂
∂θζ

= 1
k

Ĵ( f̂ , f̂ ), (2.23)

where

H = ch = − sinh ηa

cosh η − cos χ
, G = − sinh η sin θζ + sin χ cos θζ

− sinh ηa
, γ = ηb − ηa

c
.

(2.24a–c)

In (2.24a–c) and in what follows, η should be understood as η( y) by (2.22a). Note
that H, G and γ are of O(1). The boundary conditions (2.11)–(2.14) and the subsidiary
condition (2.15) are transformed into

f̂ = π−3/2σ̂a exp(−ζ 2
ρ + 2cuwζρ sin θζ − c2u2

w − ζ 2
z ), cos θζ > 0, y = 0, (2.25)

f̂ = σ̂bE, cos θζ < 0, y = 1, (2.26)

σ̂a = −2
√

π

∫∫∫
cos θζ <0

ζ 2
ρ cos θζ f̂ dζρ dθζ dζz, y = 0,

σ̂b = 2
√

π

∫∫∫
cos θζ >0

ζ 2
ρ cos θζ f̂ dζρ dθζ dζz, y = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.27)

f̂ ( y, 0, ζρ, θζ , ζz) = f̂ ( y, 2π, ζρ, θζ , ζz), θζ > 0, (2.28)

f̂ ( y, 2π, ζρ, θζ , ζz) = f̂ ( y, 0, ζρ, θζ , ζz), θζ < 0, (2.29)∫ 2π

0
dχ

∫ 1

0
dy H2

∫∫∫
ζρ f̂ dζρ dθζ dζz = 2π

γ

(
1 + c

2

)
, (2.30)

where E = π−3/2 exp(−ζ 2
ρ − ζ 2

z ) in the new variables. Here, and in what follows,
we use the convention that f̂ (η( y), χ, ζη(ζρ, θζ ), ζχ (ζρ, θζ ), ζz) is simply written as
f̂ ( y, χ, ζρ, θζ , ζz) because no confusion will arise. The ranges of integration with respect
to ζρ, θζ and ζz are, respectively, 0 < ζρ < ∞, −π < θζ < π and −∞ < ζz < ∞ unless
otherwise stated.

The macroscopic variables are

ρ̂ =
∫∫∫

ζρ f̂ dζρ dθζ dζz, (2.31a)
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v̂η = 1
ρ̂

∫∫∫
ζ 2
ρ cos θζ f̂ dζρ dθζ dζz, (2.31b)

v̂χ = 1
ρ̂

∫∫∫
ζ 2
ρ sin θζ f̂ dζρ dθζ dζz, (2.31c)

T̂ = 2
3ρ̂

∫∫∫
ζρ

[
(ζρ cos θζ − v̂η)

2 + (ζρ sin θζ − v̂χ )2 + ζ 2
z

]
f̂ dζρ dθζ dζz, (2.31d)

p̂ = ρ̂T̂, (2.31e)

p̂ηη = 2
∫∫∫

ζρ(ζρ cos θζ − v̂η)
2 f̂ dζρ dθζ dζz, (2.31f )

p̂χη = p̂ηχ = 2
∫∫∫

ζρ(ζρ cos θζ − v̂η)(ζρ sin θζ − v̂χ ) f̂ dζρ dθζ dζz. (2.31g)

Changing the variable η into y using (2.22a), integrating (2.17) with respect to y from 0
to 1 and applying the boundary condition (2.25) or (2.26), we obtain the mass conservation
law

d
dχ

∫ 1

0
Hρ̂v̂χ dy = 0. (2.32)

3. Analysis

3.1. Preliminary remarks and plan of analysis
We seek a solution of the boundary-value problem (2.23)–(2.30) for small c. Note that the
second and the third terms on the left-hand side of (2.23) are multiplied by c. The third
term −cζρG∂ f̂ /∂θζ , which is peculiar to a curvilinear coordinate system, will be called
the curvature term for short. Then, one may consider it feasible to seek a solution using a
perturbation by regarding these two terms as higher-order terms. We seek the solution as
a power series expansion in c

f̂ = f̂(0) + f̂(1)c + · · · . (3.1)

Substituting (3.1) into the boundary-value problem reduces it to a sequence of
boundary-value problems of the Boltzmann equation with only one derivative term with
∂ f̂(m)/∂y (m = 0, 1, . . .); other derivative terms with ∂ f̂(m)/∂χ and ∂ f̂(m)/∂θζ will appear
as inhomogeneous terms. However, this perturbation analysis results in a lubrication
equation that fails to approximate the solution of the Boltzmann equation for large
Knudsen numbers. The reason is as follows (Doi 2022).

Suppose that the dimensionless curvature c is small but the Knudsen number k is
so large that ck2 = O(1). The velocity distribution function will then consist of that
of the molecules arriving from the two cylinders without collisions. Figure 2(a) shows
a schematic of molecular trajectories arriving at a point from the inner and the outer
cylinders. The shaded area represents the range of direction of the molecular velocities
arriving from the rotating inner cylinder. It is clear from figure 2(a) that this range from
the inner cylinder is smaller than that from the outer cylinder at rest. In figure 2(b),
this difference in the angle is denoted by 2ϕ. From figure 2(b), we see that cos ϕ =
c−1/(c−1 + y), and this yields ϕ � (2yc)1/2 because c and thus ϕ are small. Thus, the
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Generalized Reynolds equation for microscale lubrication

O(c1/2)

(a) (b)

ζ

ϕ

ϕ

1/c + y

1/c

Figure 2. Characteristics or trajectories of collisionless molecules. (a) Characteristics of the true Boltzmann
equation (2.23), where the shaded area represents the range of direction of molecular velocities arriving from
the inner cylinder. (b) Schematic showing that the angle of the shaded area in (a) is smaller than π by O(c1/2),
specifically, ϕ � (2yc)1/2. Note that the dimensionless radius of the inner cylinder is 1/c.

gas behaviour is affected by the curvature by O(c1/2) which is much larger than c. On
the other hand, if we regard the curvature term of (2.23) as a higher-order term, then
the characteristics of (2.23) and thus the molecular trajectories are no longer straight,
and the angle of the shaded area becomes π (Doi 2022); so the range of direction of
the molecular velocities from the rotating inner cylinder is overestimated by an amount
proportional to c1/2. Thus, simply treating the curvature term as a higher-order term
produces a non-negligible error of O(c1/2). For example, the macroscopic flow velocity
will be estimated to be greater than its actual value. Clearly, this is a non-continuum effect
arising from the finite nature of the mean free path. This fact was pointed out in Doi (2022)
for a lubrication flow between coaxial cylinders, and an error of O(c1/2) was numerically
demonstrated. A more detailed discussion is given in Doi (2022). It is quite possible that
a similar phenomenon also occurs in the present case of an eccentric annulus.

The above discussion suggests that the key to the correct analysis lies in describing the
characteristics of the Boltzmann equation (2.23) correctly. To this end, it is suggested in
Doi (2022) that the curvature term should not be treated as a higher-order term but dealt
with the first term of (2.23) as a whole, regardless of the magnitude of c. Specifically, let
us define the operator

Dec = cos θζ

γ H
∂

∂y
− cG

∂

∂θζ

. (3.2)

In terms of Dec, the Boltzmann equation is written as

ζρDec f̂ + c
ζρ sin θζ

H
∂ f̂
∂χ

= 1
k

Ĵ( f̂ , f̂ ). (3.3)

The solution is sought in the power series expansion (3.1). Here, Dec is not expanded in c
but treated as a whole. Namely, we assume

Dec f̂ = Dec f̂(0) + Dec f̂(1)c + · · · , Dec f̂(m) ∼ f̂(m) (m = 0, 1, . . .). (3.4a,b)

To be precise, the assumption (3.4b) is inconsistent in the range |θζ − π/2| = O(c).
However, it is expected that this discrepancy is localized within a so narrow range in
the molecular velocity space that an influence on the macroscopic variable is small (Doi
2022). Using this approach, the projection of the characteristics of the Boltzmann equation
on the θζ − y plane at each stage of approximation is maintained. Substituting (3.1) and
(3.4a) into (3.3) and (2.25)–(2.30) and formally arranging the terms of the same order in c,
we obtain a sequence of boundary-value problems that determine f̂(0), f̂(1), . . . successively
from the lowest order as described in the next subsection.
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T. Doi

3.2. Leading- and first-order solutions

The boundary-value problem that governs the leading-order solution f̂(0) is given by

ζρDec f̂(0) = 1
k

Ĵ( f̂(0), f̂(0)), (3.5)

f̂(0) = σ̂a(0)E, cos θζ > 0, y = 0, (3.6)

f̂(0) = σ̂b(0)E, cos θζ < 0, y = 1, (3.7)

σ̂a(0) = −2
√

π

∫∫∫
cos θζ <0

ζ 2
ρ cos θζ f̂(0) dζρ dθζ dζz, y = 0,

σ̂b(0) = 2
√

π

∫∫∫
cos θζ >0

ζ 2
ρ cos θζ f̂(0) dζρ dθζ dζz, y = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

∫ 2π

0
dχ

∫ 1

0
dy H2

∫∫∫
ζρ f̂(0) dζρ dθζ dζz = 2π

γ
. (3.9)

Equations (3.5)–(3.7) can be solved independently at each χ because the derivative term
∂ f̂(0)/∂χ is absent. A solution is an equilibrium state at rest

f̂(0) = C(0)E, (3.10)

where C(0) may be an arbitrary function of χ as long as (3.8) is satisfied. The
factor C(0) can be related to a macroscopic variable. Substituting the expansion (3.1)
into (2.31a)–(2.31e), the macroscopic variables can be expanded in c, e.g. ρ̂ = ρ̂(0) +
ρ̂(1)c + · · · . At the leading order, we obtain from (3.10) that

ρ̂(0) = C(0), v̂η(0) = v̂χ(0) = 0, T̂(0) = 1, p̂(0) = C(0). (3.11a–d)

Thus, C(0) is identified with the leading-order pressure p̂(0). We henceforth write p̂(0) for
C(0). Incidentally, we obtain σ̂a(0) = σ̂b(0) = p̂(0) and

∫∫∫
ζρ f̂(0) dζρ dθζ dζz = ρ̂(0) = p̂(0).

The boundary-value problem for the first-order solution f̂(1) is a linear and
inhomogeneous one given by

ζρDec f̂(1) = 2
k

Ĵ( f̂(0), f̂(1)) − ζρ sin θζ

H
∂ f̂(0)

∂χ
, (3.12)

f̂(1) = (
σ̂a(1) + 2uwp̂(0)ζρ sin θζ

)
E, cos θζ > 0, y = 0, (3.13)

f̂(1) = σ̂b(1)E, cos θζ < 0, y = 1, (3.14)

σ̂a(1) = −2
√

π

∫∫∫
cos θζ <0

ζ 2
ρ cos θζ f̂(1) dζρ dθζ dζz, y = 0,

σ̂b(1) = 2
√

π

∫∫∫
cos θζ >0

ζ 2
ρ cos θζ f̂(1) dζρ dθζ dζz, y = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.15)

∫ 2π

0
dχ

∫ 1

0
dy H2

∫∫∫
ζρ f̂(1) dζρ dθζ dζz = π

γ
. (3.16)

To analyse this, we introduce an approximation: the operator Dec in (3.12) is simplified to

D′
ec = cos θζ

γ H
∂

∂y
− c

sinh η sin θζ

sinh ηa

∂

∂θζ

, (3.17)
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Generalized Reynolds equation for microscale lubrication

omitting the term sin χ cos θζ in G. This approximation may be permissible because the
curvature term is crucial for the molecular velocities nearly tangential to the inner cylinder,
i.e. around θζ = ±π/2 (see figure 2a), at which the omitted term sin χ cos θζ vanishes. As
we will see in § 5, this approximation is sufficient for the purpose of this paper. Owing to
this approximation, the operator D′

ec preserves the parity with respect to θζ . As a result, we
can decompose the solution f̂(1) into a sum of even and odd functions with respect to θζ as
f̂(1) = f̂ even

(1) + f̂ odd
(1) . The even function f̂ even

(1) is a solution of the homogeneous Boltzmann
equation that is responsible for σ̂a(1), σ̂b(1) and the subsidiary condition (3.16). A solution
is a Maxwellian at rest

f̂ even
(1) = C(1)E, (3.18)

where C(1) is an arbitrary function of χ subject to (3.16). The odd function f̂ odd
(1) is the

particular solution that is responsible for the inhomogeneous terms. By putting f̂ odd
(1) =

f̂(0)φ, the problem for f̂ odd
(1) can be reduced to a simpler problem for φ

ζρD′
ecφ = p̂(0)

k
L(φ) − ζρ sin θζ

H
1

p̂(0)

dp̂(0)

dχ
, (3.19)

φ = 2uwζρ sin θζ , cos θζ > 0, y = 0, (3.20)

φ = 0, cos θζ < 0, y = 1, (3.21)

where L(·) is the linearized collision operator defined by EL(φ) = 2Ĵ(E, Eφ). Because of
the linearity, the solution is given by

φ( y, χ, ζ ) = 1
p̂(0)

dp̂(0)

dχ
ΦPec

(
y, ζ ; k

p̂(0)

, χ

)
+ uwΦCec

(
y, ζ ; k

p̂(0)

, χ

)
, (3.22)

where ζ is an abbreviation for (ζρ, θζ , ζz). The functions ΦPec( y, ζ ; k̃, χ) and
ΦCec( y, ζ ; k̃, χ) are defined by (A1) and (A2) and (A3)–(A5), respectively, in
Appendix A; they depend on c and ε through the operator D′

ec. The parameter k̃ stands for
k/p̂(0), which may be termed a local Knudsen number due to the variation of the pressure
p̂(0).

Substituting (3.10), (3.18) and (3.22) into (3.1), the solution up to f̂ = f̂(0) + f̂(1)c is
written as

f̂ ( y, χ, ζ ) = p̂(0)E

×
{

1 + c
[

C(1)

p̂(0)

+ 1
p̂(0)

dp̂(0)

dχ
ΦPec

(
y, ζ ; k

p̂(0)

, χ

)
+ uwΦCec

(
y, ζ ; k

p̂(0)

, χ

)]}
,

(3.23)

in terms of the undetermined functions p̂(0) and C(1).
It may be noted that there are more several advantages of the approximation (3.17).

In addition to the solution φ being odd in θζ , it is also symmetric with respect to χ =
π. Further, the characteristic equation γ Hdy/ cos θζ = − sinh ηadθζ /(c sinh η sin θζ ) of
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T. Doi

(3.19), or written explicitly in the original variables η as

dη

(cosh η − cos χ) cos θζ

= dθζ

sinh η sin θζ

, (3.24)

can be solved analytically to yield

sin θζ

cosh η − cos χ
= const. (3.25)

These properties are convenient for an accurate numerical analysis of the boundary-value
problems (A1) and (A2) and (A3)–(A5) of the two-dimensional Boltzmann equation to
obtain ΦPec and ΦCec.

3.3. Lubrication equation
Our next task is to determine the unknown function p̂(0), and this is accomplished by using
the mass conservation law. Substituting (3.23) into (2.31c) and then into (2.32), we obtain
from the first-order mass conservation

d
dχ

[
mPec

(
k

p̂(0)

, χ

)
dp̂(0)

dχ
+ uwp̂(0)mCec

(
k

p̂(0)

, χ

)]
= 0, (3.26)

where the functions mPec(k̃, χ) and mCec(k̃, χ), which depend on c and ε, are defined
by (A9) in Appendix A. As we are about to see, (3.26) plays a role of determining the
leading-order pressure p̂(0).

Suppose that the boundary-value problem (A1) and (A2) for ΦPec and that (A3)–(A5)
for ΦCec are solved over a wide range of the parameters k̃, χ, c and ε, and that the
database of the functions mPec(k̃, χ) and mCec(k̃, χ) is known. Then, (3.26), (3.9) and
the periodic condition constitute the ordinary differential equation to determine p̂(0). Once
p̂(0) is known, the velocity distribution function is given by (3.23). Substituting (3.23) into
(2.31a)–(2.31g), the macroscopic variables are obtained. For example, the component v̂χ

of the flow velocity, those of the stress tensor and the pressure p̂ up to the non-trivial
leading orders are given by

v̂χ = c
[

1
p̂(0)

dp̂(0)

dχ
uPec

(
y; k

p̂(0)

, χ

)
+ uwuCec

(
y; k

p̂(0)

, χ

)]
, (3.27)

p̂ηη = p̂ = p̂(0), (3.28)

p̂χη = c
[

dp̂(0)

dχ
SPec

(
y; k

p̂(0)

, χ

)
+ uwp̂(0)SCec

(
y; k

p̂(0)

, χ

)]
, (3.29)

where the functions uPec( y; k̃, χ) and uCec( y; k̃, χ) are defined by (A7), and the functions
SPec( y; k̃, χ) and SCec( y; k̃, χ) are defined by (A8). Substituting (3.28) and (3.29) into
(2.18) and (2.19), the eccentric force and the torque are obtained. Thus, (3.26) plays the
role of determining the pressure distribution p̂(0). In this sense, (3.26) may be called a
generalized Reynolds equation.

The function C(1) is as yet undetermined. So, unlike the coaxial case (Doi 2022), the
truncation error of the solution at this stage is still O(c). To determine C(1), the next-order
analysis is necessary, which is briefly touched on in Appendix B. Instead of conducting
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Generalized Reynolds equation for microscale lubrication

the precise analysis, however, it is proposed in Appendix B to solve (3.26) subject to the
modified subsidiary condition

∫ 2π

0
dχ

∫ 1

0
dy H2p̂(0) = 2π

γ

(
1 + c

2

)
, (3.30)

in place of (3.8). Provided that the nonlinear collision integral Ĵ( f̂(1), f̂(1)) in the
second-order analysis is negligibly small, this solution p̂(0) yields p̂ and the normal stress
p̂ηη approximately up to the first order in c. Incidentally, when the Mach number based on
the lubrication motion is not small in contrast to (2.1b), the difference between the normal
stress and the pressure is non-negligible (Ansumali et al. 2007).

In the derivation of (3.26), we implicitly assumed that the Knudsen number k is of O(1).
By a similar analysis to that in Doi (2022), we can show that the Reynolds equation for
k = c−n(n = 1, 2, . . .) is given by (3.26) in which the functions mPec(k̃, χ) and mCec(k̃, χ)

are replaced by mPec(∞, χ) and mCec(∞, χ), respectively. Thus, we find that (3.26) holds
up to k = ∞ by making n → ∞. Incidentally, the lubrication model (3.26) reduces to that
for a coaxial annulus derived in Doi (2022) in the limit ε → 0 keeping c constant. Details
are given in Appendix C.

3.4. Flow-rate coefficients
Equation (3.26) is similar to the conventional Reynolds equation for a one-dimensional
and time-independent state, but there are two differences. First, the coefficients of the
mass flow rates of Poiseuille and Couette flows in the latter are replaced by the functions
mPec(k̃, χ) and mCec(k̃, χ). That is, the non-continuum effect is condensed in these
functions; it is characterized by the first argument k̃ = k/p̂(0). These are determined by
the solutions of flow problems of a rarefied gas as follows. The first function mPec is
determined by the solution ΦPec of a flow induced by a pressure gradient imposed along
a curved channel. The second function mCec is determined by the solution ΦCec of a
flow along a curved channel induced by a tangential motion of one of the walls. In this
sense, the functions mPec and mCec may be called the flow-rate coefficients of generalized
Poiseuille and Couette flows. Second, the gas-film thickness is absent; it is incorporated
into the functions mPec and mCec. Because the generalized Poiseuille and Couette flows
cannot be solved analytically unlike the Navier–Stokes system, we cannot establish an
explicit expression of the coefficients in terms of the gas-film thickness. The variation of
the gas-film thickness along the channel is characterized by the second argument χ .

Some examples of the flow-rate coefficients are presented in figure 3 for the BGKW
kinetic model. Figures 3(a) and 3(b) show, respectively, −mPec and mCec as functions of
k̃ and χ for ε = 0.1 and 0.9 with c = 0.05. These functions are symmetric with respect
to χ = π, and thus only 0 ≤ χ ≤ π is shown. When the eccentricity ε is vanishingly
small, the flow is axially symmetric and these functions are thus independent of the
longitudinal coordinate χ . The results for ε = 0.1 assume this tendency. The function
−mPec of generalized Poiseuille flow shows a slight Knudsen minimum about k̃ = 1.
As the eccentricity ε approaches unity, both flow rates shrink around χ = π at which
the channel is narrowest. A simple database of the functions mPec and mCec is given in
Appendix D. The numerical data necessary for this database are provided by the author
via Doi (2023) for wide ranges of the parameters c and ε.
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(a) ε = 0.1
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(b)

χ/π

Figure 3. Flow-rate coefficients mPec and mCec for ε = 0.1 and 0.9 (c = 0.05) as functions of k̃ and χ (BGKW
model); (a) −mPec and (b) mCec. Dotted line for ε = 0.1 and solid line for ε = 0.9. These functions are
symmetric with respect to χ = π.

3.5. Lubrication equation without the curvature term
Let us now look back to § 3.1 and discuss what happens if we conduct the perturbation
(3.1) by treating the curvature term of (2.23) as a higher-order term. The analysis is quite
similar to that in §§ 3.2 and 3.3, and thus only the final result is presented here, leaving the
derivation to Appendix E. The lubrication equation thus obtained is

d
dχ

[
mPwoc

(
k

p̂(0)

, χ

)
dp̂(0)

dχ
+ uwp̂(0)mCwoc

(
k

p̂(0)

, χ

)]
= 0. (3.31)

Equation (3.31) is of the same form as (3.26); the only difference is that the functions
mPec and mCec are replaced, respectively, by mPwoc and mCwoc defined by (E10). For
discrimination, let us call (3.31) the lubrication model without the curvature term, or the
WOC model for short. In contrast, let us call (3.26) the improved model. One of our major
objectives is to demonstrate that the solution of the WOC model produces an error of
O(c1/2) when the Knudsen number is large.

We have now derived two lubrication models, namely, improved model (3.26) and the
WOC model (3.31). Our remaining task is to assess whether the solutions of these models
approximate that of the Boltzmann equation. For this assessment, accurate solution of
the Boltzmann equation is required as a reference. This solution is provided in § 4. The
remainder of this paper is devoted to this assessment.

4. Numerical analysis

4.1. Preliminaries
In this section, a direct numerical analysis of the boundary-value problem (2.23)–(2.30) is
conducted. In this numerical analysis, we assume that the gas is governed by the BGKW
kinetic equation. That is, the collision integral is given by

Ĵ( f̂ , f̂ ) = ρ̂( f̂e − f̂ ),

f̂e = ρ̂

(πT̂)3/2
exp

(
−(ζρ cos θζ − v̂η)

2 + (ζρ sin θζ − v̂χ )2 + ζ 2
z

T̂

)
,

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

where ρ̂, v̂η, v̂χ and T̂ are given by (2.31a)–(2.31d). The mean free path � of the BGKW
model is related to the viscosity μ of the gas by (Sone 2007)

μ =
√

π

2
p0

(2RT0)1/2 �. (4.2)
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Generalized Reynolds equation for microscale lubrication

Note that the approximated operator (3.17) is never used in this direct numerical analysis.

4.2. Numerical method
The method of numerical analysis adopted here is based on that in Doi (2019). The
common part is thus outlined here only briefly. First, the following marginal distribution
functions are introduced (Chu 1965):

g1 =
∫ ∞

−∞
f̂ dζz, g2 = 2

∫ ∞

−∞
ζ 2

z f̂ dζz. (4.3a,b)

Multiplying both sides of (2.23)–(2.29) by 1 or 2ζ 2
z and integrating over −∞ < ζz < ∞,

we obtain a reduced boundary-value problem for g1 and g2 in the four-dimensional space
y, χ, ζρ and θζ , i.e. the fifth variable ζz is eliminated. Second, the semi infinite range
0 ≤ ζρ < ∞ is replaced by a finite range 0 ≤ ζρ ≤ ζD, where ζD is a constant such that the
distribution functions g1 and g2 are sufficiently small around ζρ = ζD. Third, rectangular
mesh points are arranged in the finite four-dimensional domain 0 ≤ y ≤ 1, 0 ≤ χ ≤
2π, 0 ≤ ζρ ≤ ζD and −π ≤ θζ ≤ π. Then, the boundary-value problem (2.23)–(2.30) is
discretized and numerically solved using a finite-difference method. One of the features
of the present problem is that the Boltzmann equation is written in a bipolar coordinate
system, from which the following difficulties arise.

Because the gas region is over the convex inner cylinder, the distribution functions g1
and g2 are discontinuous in the θζ –χ–y phase space (Sone 2007). Figure 4(a) shows a
schematic of a cross-section χ = const of it. (We discuss only θζ > 0 side for simplicity;
the other side θζ < 0 is similar.) The solid lines in figure 4(a) represent the characteristics
of the Boltzmann equation (2.23). The boundary condition (2.25) on the inner cylinder
y = 0 is applied only in θζ < π/2, and thus the distribution function is discontinuous at
y = 0 and θζ = π/2. This discontinuity propagates along the characteristics

dy
(γ H)−1 cos θζ

= dθζ

−cG
= dχ

cH−1 sin θζ

(4.4)

of the Boltzmann equation (2.23), to form the surface of discontinuity. An example
is shown in figure 4(b). A numerical method to avoid the finite difference across the
discontinuous surface has been developed for cylindrical coordinates in Sugimoto &
Sone (1992). A feature of the bipolar coordinates in the present case is that the surface
of discontinuity depends on χ coordinate, cf. figure 4(b). Because of this, it is too
complicated to establish a direct extension of the method of Sugimoto & Sone (1992).
We therefore use the following method, which is an application of Sone & Sugimoto
(1995). Let a division of regions I, II and III be made as shown in figure 4(a), where
region II contains the discontinuous curve. First, in region I, the Boltzmann equation is
solved from the boundary condition at y = 1 using the standard finite-difference method.
The distribution function on the plane θζ = π/2 is obtained. Second, in region II, the
distribution function at an arbitrary point, say A, is solved as follows. The characteristic
(4.4) is traced back to reach a boundary point, say B, of region II. If B lies on y = 0, then
the distribution function there is known from the boundary condition. From the data at B,
we numerically integrate the Boltzmann equation from B to A along the characteristic.
Finally, in region III, the Boltzmann equation is solved from the boundary condition
at y = 0 using a finite difference with the aid of the data in region II. To calculate
macroscopic variables at a given physical coordinates ( y, χ), the value of θζ (position
C) on the discontinuous curve in figure 4(a) is required. It is determined by seeking the
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Figure 4. Discontinuity in the velocity distribution function and the numerical method. (a) Schematic view of
a cross-section χ = const in the θζ − χ − y phase space. (b) Characteristics (4.4) starting from the line y = 0
and θζ = π/2, which form the surface of discontinuity (c = 0.05, ε = 0.9). In (a), the thick lines represent
the intervals along which the boundary conditions on the cylinders are imposed. The double lines in θζ < π/2
represent the section of the discontinuous surface in (b). The solid lines with arrows represent the characteristics
of the Boltzmann equation along which the finite-difference computation should proceed. The Boltzmann
equation (2.23) is solved using the finite-difference method in regions I and III, whereas it is integrated along
the characteristics in region II.

characteristic (4.4) that starts from some point on the line ( y, θζ ) = (0, π/2) and passes
the horizontal line possessing the desired ( y, χ) using a shooting method. The distribution
function at C is obtained in a similar way to that in region II. A shortcoming of this method
is that a large amount of computational time is required in region II.

Regarding the second difficulty, another feature of the bipolar coordinates in the present
case is that G in (4.4) changes sign across the surfaces

tan θζ = sin χ

sinh η( y)
. (4.5)

The lines in a cross-section χ = const are schematically shown in dashed lines in figure 5.
Because dθζ of (4.4) changes sign across these dashed lines, the characteristics of the
Boltzmann equation are those as shown in solid lines with arrows. The finite-difference
method should follow these directions, or it will diverge. Because the separation lines
(4.5) are not vertical, a precise numerical analysis is difficult. We therefore use an
approximation. When c is small, the separation lines (4.5) are close to vertical. Thus, they
may be approximated by the nearest vertical lines along which the mesh points align. For
the dashed line in π/2 < θζ < π for example, the Boltzmann equation is first solved from
y = 1 for the mesh points along this vertical line by the finite-difference method imposing
G = 0. Once the solution on this line is known, the finite difference can be developed in
the left and right directions from this line. A similar process is adopted to the other dashed
line.

In this way, a finite-difference approach to the Boltzmann equation in a bipolar
coordinate system is accompanied by particular difficulties. Nevertheless, we use the
finite-difference method rather than the direct-simulation Monte Carlo (DSMC) method.
This is because the purpose of this direct numerical analysis is to present accurate
reference data for the assessment of the lubrication models in § 3 when both c and the
flow speed v̂w are small. In this situation, a close examination, especially that in the last
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Generalized Reynolds equation for microscale lubrication

y

0 π/2 π
θζ–π/2–π

1

Figure 5. Schematic view of the cross-section χ = const of the θζ − χ − y phase space (cf. figure 4a). The
dashed lines represent the separation lines (4.5) across which the sign of dθζ of the characteristics (4.4) changes.
The solid lines with arrows represent a schematic of the characteristics of the Boltzmann equation along which
the finite-difference computation should proceed.

figure of this paper, would be hopeless if using the stochastic methods such as the DSMC
method.

4.3. Computational conditions and accuracy tests
In this paper, the computations are conducted only for the cases of v̂w(= cuw) = 0.1.

The computational conditions are as follows. For the y coordinate, the Ny + 1 mesh
points are arranged non-uniformly in the interval 0 ≤ y ≤ 1, where Ny = 100. The mesh
size is a minimum of 0.0021 at y = 0 and y = 1, and it is uniform and a maximum of
0.0125 in the interval 0.1 ≤ y ≤ 0.9. For χ , Nx + 1 mesh points are arranged uniformly
in the interval 0 ≤ χ ≤ 2π, where Nx = 200. For ζρ , Nu + 1 mesh points are arranged
uniformly in the interval 0 ≤ ζρ ≤ ζD, where Nu = 32 and ζD = 5. For θζ , Nv + 1 mesh
points are arranged uniformly in the interval −π ≤ θζ ≤ π, where Nv = 400.

The results of accuracy tests are as follows.
(i) Conservation law. According to (2.32), the dimensionless mass flow rate

∫ 1
0 Hρ̂v̂χ dy

is theoretically independent of χ . Thus, uniformness of this quantity serves for a measure
of the accuracy. The variation of the mass flow rate of the present computation over 0 ≤
χ ≤ 2π is less than 0.52 %.

(ii) Dependence of the mesh system. For a test of accuracy, we conducted
re-computations using coarser mesh systems in addition to the production run
P with (Ny, Nx, Nu, Nv) = (100, 200, 32, 400), namely, the coarser system A with
(Ny, Nx, Nu, Nv) = (50, 100, 32, 200) and the coarsest system B with (Ny, Nx, Nu, Nv) =
(24, 50, 32, 100). By examining the differences between the three runs, i.e. B–P and
A–P, the error in the production run P is estimated. From this test, it is estimated that
the numerical error in the dimensionless pressure p̂ over 0 ≤ χ ≤ 2π at y = 0 is less
than 0.38 %, and that the numerical error in the flow velocity v̂χ over 0 ≤ y ≤ 1 at the
cross-section χ = 0 is less than 0.19 %. Further, the numerical errors in the eccentric
force (F1, F2) in (2.18) and the torque N in (2.19) are estimated to be less than 0.26 %;
in particular for ε = 0.5, the error is less than 0.14 %.

5. Results

5.1. Macroscopic variables
We first present some examples of the pressure distribution along the channel. Figure 6
shows the dimensionless pressure p̂ as a function of the longitudinal coordinate
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Figure 6. Distribution of the dimensionless pressure p̂ along the channel (ε = 0.5, v̂w = 0.1); (a) (c, k) =
(0.2, 0.1), (b) (0.2, 10), (c) (0.05, 0.1) and (d) (0.05, 10). Solid line for the direct numerical solution; dotted line
for the improved lubrication model (3.26); dashed line for the WOC model (3.31). The dotted and solid lines
are almost indistinguishable.

χ (ε = 0.5). In this figure, the solid lines represent the solution of the direct numerical
analysis of (2.23)–(2.30), the dotted lines represent that of the improved lubrication
model (3.26) and the dashed lines represent that of the WOC model (3.31). The direct
numerical solution is plotted for y = 0, 1/2 and 1; these are almost indistinguishable, in
accordance with (3.10). We first survey the overall behaviour on the basis of the direct
numerical solution. The gas pressure has its maximum in 0 < χ < π and has its minimum
in π < χ < 2π. This is because the channel becomes narrower as the gas proceeds in
0 < χ < π (cf. figure 1b), and thus the pressure increases as a result of the wedge
action; the opposite process occurs in the remaining region π < χ < 2π. The pressure
distributions for the two Knudsen numbers k = 0.1 and 10 are similar, but the pressure rise
occurring at an intermediate Knudsen number around k = 1 is much larger, although this is
not presented in figure 6. The pressure variation becomes larger as c decreases because the
wedge action is strengthened. The maximum position of the pressure moves towards the
narrowest position χ = π as c decreases, cf. figures 6(a) and 6(b). Thus, it is expected that
the direction of the eccentric force acting on the inner cylinder changes from the downward
direction (−X2) towards the rightward direction (X1) in figure 1(a). Now let us compare
the results of the two lubrication models with those of the direct numerical solution. When
the Knudsen number is small (figures 6(a) and 6(c)), the results of both models agree well
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Figure 7. Profiles of the dimensionless flow velocity v̂χ (ε = 0.5, v̂w = 0.1); (a) (c, k) = (0.2, 0.1), (b) (0.2,
10), (c) (0.05, 0.1) and (d) (0.05, 10). Solid line for the direct numerical solution (2.31c); dotted line for the
improved lubrication model (3.27); dashed line for the WOC model (E11). In (a,c,d), the solid and dotted lines
are indistinguishable.

with the direct numerical solution, and the agreement is better for smaller c. However,
when the Knudsen number is large (figures 6(b) and 6(d)), the difference between the
two models is evident. A considerable difference is observed between the WOC model
(dashed lines) and the direct numerical solution (solid lines). In contrast, the solution of
the improved model (dotted lines) still agrees with the direct numerical solution quite well.
The agreement at c = 0.05 is excellent.

Next, the profiles of the flow velocity v̂χ at the two cross-sections χ = 0 and π are
presented in figure 7 as a function of the transverse coordinate y (ε = 0.5). The parameters
c and k shown in figures 7(a)–7(d) are the same as those in figures 6(a)–6(d), respectively.
The meanings of the lines are the same as those in figure 6. As we saw in figure 6, the
maximum of the pressure occurs in the interval 0 < χ < π and the minimum occurs
in the other interval π < χ < 2π. Thus, a flow is induced by this pressure difference
from the former interval to the latter. This flow is superposed on the Couette flow due to
the rotation of the inner cylinder. The pressure-driven flow enhances the Couette flow at
χ = π, whereas it reduces at χ = 0. For a small Knudsen number (figures 7(a) and 7(c)),
the velocity profile is similar to that of the Couette–Poiseuille flow of the Navier–Stokes
equations. A weak reversal of the flow is observed in figure 7(a). For a large Knudsen
number (figures 7(b) and 7(d)), the velocity slips on the cylinders are so large that the
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Figure 8. Eccentric force (5.1a,b) as a function of the Knudsen number k for c = 0.05, 0.1 and 0.2 (ε =
0.5, v̂w = 0.1). (a) Magnitude F and (b) direction ϑF . Symbols for the direct numerical solution; circle (©)
for c = 0.05; triangle (�) for c = 0.1; square (�) for c = 0.2. Solid line for the improved lubrication model;
dashed line for the WOC lubrication model. Horizontal lines represent the asymptotes for k = ∞; dash-dotted
line for the direct numerical solution; solid line for the improved model. The lines are for c = 0.05, 0.1 and 0.2
from the top in (a), and from the bottom in (b).

profile is far from what is expected from continuum fluid dynamics. Now let us compare
the two models with the direct numerical solution. When the Knudsen number is small
(figures 7(a) and 7(c)), both models agree well with the direct numerical solution. When
the Knudsen number is large (figures 7(b) and 7(d)), there is a significant difference
between the result of the WOC model (dashed lines) and that of the direct numerical
solution (solid lines). In contrast, the improved model (dotted lines) agrees with the direct
numerical solution quite well. The difference is indistinguishable when c = 0.05. Note
that in figures 7(b) and 7(d), the flow velocity of the WOC model is greater than that of
the direct numerical solution. This supports the discussion on figure 2.

5.2. Eccentric force and torque
The eccentric force (F1, F2) in (2.18) acting on the inner cylinder is presented in figure 8.
Let the magnitude F and the direction ϑF of the eccentric force be defined by

F1 = F cos ϑF, F2 = −F sin ϑF. (5.1a,b)

Note that ϑF = 0 and ϑF = π/2 correspond, respectively, to the X1 and −X2 directions
in figure 1(a). These are presented in figures 8(a) and 8(b), respectively, as functions
of the Knudsen number k for various values of the dimensionless curvature c. The
symbols represent the direct numerical solution, the solid lines represent the result of
the improved lubrication model and the dashed lines represent that of the WOC model.
We first survey the results. For every given c, the magnitude F has its maximum at an
intermediate Knudsen number around k = 1, and the magnitude increases as c decreases.
This maximum in F is caused because the flow rate −mPec is minimum around k = 1
and thus the pressure variation is made large due to (3.26). The direction ϑF has its
minimum at an intermediate Knudsen number. The direction decreases away from π/2
as c decreases, as is expected from figure 6. Now let us examine the performance of
the two lubrication models in the magnitude F (figure 8a). When the Knudsen number
is small, the results of both models agree with the direct numerical solution very well.
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Figure 9. Eccentric force (5.1a,b) as a function of the eccentricity ε for k = 0.1, 1 and 10 (c = 0.05, v̂w = 0.1).
(a) Magnitude F and (b) direction ϑF . Symbols for the direct numerical solution; circle (•) for k = 0.1; triangle
(�) for k = 1; square (�) for k = 10. Solid line for the improved lubrication model; the lines are for k = 1, 10
and 0.1 from the top in (a) and from the bottom in (b).

As the Knudsen number increases, however, the difference between the two models
becomes apparent. The solution of the WOC model (dashed line) exhibits a non-negligible
error against the direct numerical solution; the WOC model overestimates the magnitude
of the force. In contrast, the improved model (solid line) agrees with the direct numerical
solution over the whole range of the Knudsen number including k = ∞. As for the
direction ϑF (figure 8b), the difference of the WOC model from the direct numerical
solution is less significant than that in figure 8(a), yet it is still visible. The results of
the improved model are almost indistinguishable from the direct numerical solution.

So far, we have presented the results only for the eccentricity ε = 0.5. Now let us
focus our attention on the effect of ε. Figures 9(a) and 9(b) present the magnitude
F and the direction ϑF of the eccentric force as functions of the eccentricity ε. The
symbols represent the direct numerical solution, and the solid lines represent the result
of the improved lubrication model. For vanishingly small ε, the flow is axially symmetric
and so the eccentric force vanishes. The magnitude F of the force is a monotonically
increasing function of ε within the range 0.1 ≤ ε ≤ 0.9. The results of the improved model
show excellent agreement with the direct numerical solution over a wide range of the
eccentricity ε.

Next, the torque N acting on the inner cylinder is presented in figure 10. Figure 10(a)
presents the torque N as a function of the Knudsen number k. The torque is an increasing
function of the Knudsen number. The torque depends only weakly on the dimensionless
curvature c. However, N is a slightly increasing function of c when k ≤ 2, whereas it is
a slightly decreasing function when k ≥ 5; that is, a cross-over is observed. Figure 10(b)
presents the torque N as a function of the eccentricity ε (cf. figure 9). The torque is an
increasing function of the eccentricity ε, because the shear stress at the narrowest point
χ = π increases with increasing ε. This tendency is common to every Knudsen number.
The results of the improved model (solid lines) agree with the direct numerical solution
(symbols) quite well. Note that, in figure 10(a), the differences between the WOC model
(dashed lines) and the direct numerical solution are much smaller than in figure 8. This is
because the torque (2.19) is an integral of the shear stress p̂χη. As we saw in the discussion
on figure 2 in § 3.1, the essential defect of the WOC model lies in the distribution function
around θζ = ±π/2. Because the shear stress (2.31g) contains the factor cos θζ in the
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Figure 10. Torque N (2.19) acting on the inner cylinder (v̂w = 0.1); (a) N as a function of the Knudsen number
k for c = 0.05, 0.1 and 0.2 with ε = 0.5, and (b) N as a function of the eccentricity ε for k = 0.1, 1 and 10 with
c = 0.05. Symbols represent the direct numerical solution; solid line represents the solution of the improved
lubrication model; dashed line in (a) represents that of the WOC model. For other keys, see figures 8(a) and
9(a).
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Figure 11. Relative error �F of the WOC lubrication model as a function of c (k = (2/c)1/2,

ε = 0.5, v̂w = 0.1). Dash-dotted lines represent c1/2 and c1/2/10.

integrand, this defect of the distribution function is fortunately cancelled out by this factor
cos θζ , which vanishes there (Doi 2022).

Finally, the dependence of the error of the WOC model on the dimensionless curvature
c is examined in figure 11. Let the relative error in the magnitude F of the eccentric force
(cf. figure 8a) be defined by �F = |(FWOC − FDNS)/FDNS|, where FWOC is the result F
of the WOC model and FDNS is that of the direct numerical solution. Figure 11 presents
�F as a function of c for the Knudsen number k such that ck2 = const = 2. It can be
clearly seen that the speed of decay is approximately c1/2. This confirms the discussion
on figure 2. This characteristic has been discovered for the lubrication between coaxial
cylinders. The present study clarified that this phenomenon is not special to the coaxial
case but also occurs with an eccentric annulus.
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Generalized Reynolds equation for microscale lubrication

From these results, we may conclude that the WOC lubrication model, which is derived
by treating the small curvature term as a higher-order term, results in a non-negligible
error of O(c1/2) for large Knudsen numbers. We may also conclude that the improved
lubrication model derived by maintaining the correct characteristics of the Boltzmann
equation provides an excellent approximation to the solution of the Boltzmann equation
over the whole range of the Knudsen number.

6. Conclusion

In this paper, we studied a microscale lubrication flow of a gas between eccentric circular
cylinders on the basis of kinetic theory. The dimensionless curvature, as defined by the
mean clearance divided by the radius of the inner cylinder, was small, and the rotation
speed of the inner cylinder was also small. The Knudsen number based on the mean
clearance was arbitrary. The solution of the Boltzmann equation was studied analytically
using the slowly varying approximation. Two macroscopic lubrication equations were
derived: one which was derived following the method described in the author’s previous
study (improved model), and the other derived from a straightforward application of
the slowly varying approximation (WOC model). To assess the derived models, a direct
numerical analysis of the Boltzmann equation was also conducted. The main conclusions
are as follows.

(i) The improved lubrication model derived maintaining the characteristics of the
Boltzmann equation provides an excellent approximation to the solution of the Boltzmann
equation over the whole range of the Knudsen number.

(ii) The WOC model produces a non-negligible error of O(c1/2) for large Knudsen
numbers. That is, this phenomenon is not only applicable to the concentric annulus but
also occurs with an eccentric annulus.

Besides the above physical outcomes, the value of the lubrication equation (3.26) may be
stressed from a practical point of view. The DSMC method of computation is widely used
in the design of micro devices, e.g. see Socio & Marino (2000) and Wang et al. (2010).
There are two major advantages of our approach over the DSMC approach. First, the
computational time and memory size required are very much smaller than those required
by the DSMC method. Our approach requires less than one minute of computational
time and less than one megabyte of memory storage; we have only to solve the ordinary
differential equation (3.26). This advantage is especially significant when k or 1 − ε is,
or both are, very small. Second, the lubrication equation derived here is similar to the
conventional Reynolds equation, and engineers familiar with the latter equation can thus
handle the former with a same easiness as the latter. No special knowledge is necessary on
kinetic theory and DSMC method. Sufficient numerical data for the equation are available
from Doi (2023); the readers need not explore the analysis in Appendix A. Incidentally,
the advantage in the usefulness of the lubrication equation (3.26) over that in the previous
work (Doi 2022) is obvious because the latter concerned a somewhat artificial problem
and was of little significance in practical engineering. The author hopes that the present
paper will constitute a non-negligible contribution to microengineering.
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Appendix A. Functions related to the lubrication model

The boundary-value problem for ΦPec( y, ζ ; k̃, χ) is given by

ζρD′
ecΦPec − 1

k̃
L(ΦPec) = −ζρ sin θζ

H
, (A1)

ΦPec = 0, cos θζ > 0, y = 0 and cos θζ < 0, y = 1. (A2)

Similarly, the boundary-value problem for ΦCec( y, ζ ; k̃, χ) is given by

ζρD′
ecΦCec − 1

k̃
L(ΦCec) = 0, (A3)

ΦCec = 2ζρ sin θζ , cos θζ > 0, y = 0, (A4)

ΦCec = 0, cos θζ < 0, y = 1. (A5)

The solutions ΦPec and ΦCec can be sought in the form ΦJec = ζρ sin θζΨJ( y, ζρ, θζ , ζz)
(J = P or C), where ΨJ is even with respect to θζ . The boundary-value problem (A3)–(A5)
is similar to that of a linearized Couette flow of a rarefied gas between coaxial cylinders.
For the BGKW kinetic model used in § 4, the linearized collision integral is

L(Φ) =
∫∫∫

K(ζ , ζ ∗)Φ(ζ ∗)ζρ∗E∗ dζρ∗ dθζ∗ dζz∗ − Φ,

K(ζ , ζ ∗) = 1 + 2ζρζρ∗ cos(θζ − θζ∗) + 2ζzζz∗

+ 2
3

(
ζ 2
ρ + ζ 2

z − 3
2

)(
ζ 2
ρ∗ + ζ 2

z∗ − 3
2

)
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A6)

where E∗ = π−3/2 exp(−ζ 2
ρ∗ − ζ 2

z∗). For (A6), ΨJ is independent of ζz.
The normalized flow velocities uPec and uCec are defined by

uJec( y; k̃, χ) =
∫∫∫

ζ 2
ρ sin θζΦJec( y, ζ ; k̃, χ)E dζρ dθζ dζz, J = P or C. (A7)

Similarly, the normalized shear stresses SPec and SCec are defined by

SJec( y; k̃, χ) = 2
∫∫∫

ζ 3
ρ cos θζ sin θζΦJec( y, ζ ; k̃, χ)E dζρ dθζ dζz, J = P or C.

(A8)
The mass flow-rate coefficients mPec and mCec are defined by

mJec(k̃, χ) = γ

∫ 1

0
HuJec( y; k̃, χ) dy, J = P or C. (A9)

Appendix B. Second-order analysis

In this appendix, we briefly survey the next-order analysis that leads to determining C(1).
We first note that (3.18) yields p̂(1) = ρ̂(1) = C(1), where p̂ = p̂(0) + cp̂(1) + · · · , so we
write p̂(1) for C(1). Note also that σ̂a(1) = σ̂b(1) = C(1) = p̂(1).
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Generalized Reynolds equation for microscale lubrication

The boundary-value problem for the second-order solution f̂(2) is given by

ζρD′
ec f̂(2) = 2

k
Ĵ( f̂(0), f̂(2)) + 1

k
Ĵ( f̂(1), f̂(1)) − ζρ sin θζ

H
∂ f̂(1)

∂χ
, (B1)

f̂(2) = (
σ̂a(2) + 2uwp̂(1)ζρ sin θζ + p̂(0)ua

)
E, cos θζ > 0, y = 0, (B2)

f̂(2) = σ̂b(2)E, cos θζ < 0, y = 1, (B3)

σ̂a(2) = −2
√

π

∫∫∫
cos θζ <0

ζ 2
ρ cos θζ f̂(2) dζρ dθζ dζz, y = 0,

σ̂b(2) = 2
√

π

∫∫∫
cos θζ >0

ζ 2
ρ cos θζ f̂(2) dζρ dθζ dζz, y = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B4)

where ua = −u2
w + (2uwζρ sin θζ )

2/2. The nonlinear collision integral Ĵ( f̂(1), f̂(1)) arises
from this order.

The solution f̂(2) is split into f̂(2) = f̂ even
(2) + f̂ odd

(2) , where f̂ even
(2) is even with respect to

θζ and f̂ odd
(2) is odd. Substituting this expression and f̂(1) = f̂ even

(1) + f̂ odd
(1) , and applying the

bilinearity of the collision integral, we obtain for the odd part f̂ odd
(2) as

ζρD′
ec f̂ odd

(2) = 2
k

Ĵ( f̂(0), f̂ odd
(2) ) + 2

k
Ĵ( f̂ even

(1) , f̂ odd
(1) ) − ζρ sin θζ

H
dp̂(1)

dχ
E, (B5)

f̂(2) = 2uwp̂(1)ζρ sin θζ E, cos θζ > 0, y = 0, (B6)

f̂(2) = 0, cos θζ < 0, y = 1. (B7)

The solution f̂ even
(2) is not necessary to determine C(1). The essential difference of (B5)–(B7)

from the boundary-value problem for f̂ odd
(1) is the presence of the nonlinear collision integral

Ĵ( f̂ even
(1) , f̂ odd

(1) ). This inhomogeneous term, into which (3.18) and (3.22) with f̂ odd
(1) = f̂(0)φ

are substituted, accompanies additional terms to the solution f̂ odd
(2) , so that the form of the

mass conservation law, or the Reynolds-type equation, will change from (3.26).
Here, we introduce an approximation: we neglect this term Ĵ( f̂ even

(1) , f̂ odd
(1) ) compared with

the last term in (B5). Then, (B5)–(B7) is of the same form as that for the boundary-value
problem for f̂ odd

(1) except the shift of the label number of approximation. Following the
same procedure as in §§ 3.2 and 3.3, we obtain from the second-order mass conservation
the linearized Reynolds-type equation to determine p̂(1) as

d
dχ

[
mPec

(
k

p̂(0)

, χ

)
dp̂(1)

dχ
+ uwp̂(1)mCec

(
k

p̂(0)

, χ

)]
= 0, (B8)

subject to the periodic condition and the subsidiary condition (3.16) with
∫∫∫

ζρ f̂(1) dζρ dθζ

dζz = p̂(1). Note that this equation is of the same form as (3.26) except that the factors
dp̂(0)/dχ and p̂(0) in the latter are respectively replaced by dp̂(1)/dχ and p̂(1). If we
multiply (3.26) and (3.8) by 1/2, we find that the solution of (B8) and (3.16) is given by

p̂(1) = 1
2

p̂(0) and thus p̂(0) + cp̂(1) =
(

1 + c
2

)
p̂(0). (B9)

That is, if the Reynolds-type equation (3.26) is solved subject to the modified subsidiary
condition (3.30), then this solution p̂(0) yields the dimensionless pressure p̂ up to the first
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T. Doi

order in c, provided that the nonlinear collision integral is negligibly small. This is the
reasoning of the modified subsidiary condition (3.30). Note that the normal stress p̂ηη

coincides with the pressure p̂ up to O(c) because of (3.18). Finally, however, we must
remind that neglecting the collision integral Ĵ( f̂ even

(1) , f̂ odd
(1) ) is not a justified process but an

arbitrary remedy.

Appendix C. On the limit ε → 0

In this appendix, we show that the basic equations and the lubrication model (3.26) reduce
to those for the cylindrical coordinates in the limit ε → 0 keeping c finite. From (2.5) and
(2.7a), we have

ca = − sinh ηa = 1
ε

(√
1 + c + c2/4 + · · ·

)
� 1 (C1)

when ε � 1 neglecting the terms that vanish in the limit ε → 0. Thus, |η| ≥ |ηa| � 1 and
therefore

cosh ηa

− sinh ηa
� 1,

cosh η

− sinh η
� 1, h � a

cosh η
, (C2a–c)

and so on.
We first study the Boltzmann equation (2.9). To this end, we shift the origin to make it

coincide with the centre of the inner cylinder by

x1 = − a sinh η

cosh η − cos χ
− a cosh ηa

− sinh ηa
, (C3)

and define the dimensionless distance r̂ = (x2
1 + x2

2)
1/2 from the origin. Then, from

(2.20a,b),

cos θ � cos χ, sin θ � sin χ, r̂ � a
cosh η

� h. (C4a–c)

Thus, θ is identified with χ , and r̂ is independent of χ . These imply that the lines
χ = const in figure 1(b) become straight lines from the origin, and the lines η = const
become concentric circles. As a result, the unit vectors eη and eχ become those er and
eθ of the conventional cylindrical coordinates (r̂, θ). Consequently, the molecular velocity
components (ζη, ζχ ) reduce to the cylindrical counterparts (ζr, ζθ ). Using these results,
the left-hand side of the Boltzmann equation (2.9) reduces to

ζr
∂ f̂
∂ r̂

+ ζθ

r̂
∂ f̂
∂θ

+ ζθ

r̂

(
ζθ

∂ f̂
∂ζr

− ζr
∂ f̂
∂ζθ

)
, (C5)

where we used

dr̂ � a
− sinh η

(cosh η)2 dη � h dη,
∂h
∂η

� r̂,
∂h
∂χ

� 0. (C6a–c)

From these results, we see that the Boltzmann equation (2.9) reduces to that of the
cylindrical coordinates.
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Generalized Reynolds equation for microscale lubrication

Next, we study the Boltzmann equation (2.23) for the independent variables y, χ, ζρ, θζ

and ζz. From (C2a–c), we find

H � − sinh ηa

cosh η
, G � − sinh η sin θζ

− sin ηa
. (C7a,b)

Motivated by (C6a), let us introduce Y defined by

dY = γ Hdy, Y = 0 at y = 0. (C8)

Integrating (C8) from y = 0, we obtain

Y � − sinh ηa

c

∫ η

ηa

2 exp(η) dη � 1
c

(− sinh ηa

cosh η
− 1

)
� 1

c
(H − 1) , (C9)

where the change of variable dy = dη/(cγ ), (C7a,b) and the property 1/ cosh η �
2 exp(η) for −η � 1 are used. Therefore,

1 + cY � H. (C10)

It can be easily confirmed that Y � 1 at y = 1. Substituting (C7a,b), (C8) and (C10), the
left-hand side of (2.23) becomes

ζρ cos θζ

∂ f̂
∂Y

+ cζρ sin θζ

1 + cY
∂ f̂
∂θ

− cζρ sin θζ

1 + cY
∂ f̂
∂θζ

, (C11)

as ε → 0. Using these materials, we find that the Boltzmann equation (2.23) in the
variables y, χ, ζρ, θζ and ζz also reduces to that in Doi (2022) in the corresponding
variables; note that Y and c here correspond, respectively, to y and ε in Doi (2022). From
this, it is easily verified that the lubrication model (3.26) reduces to that for the coaxial
problem in which the walls are diffuse-reflection boundary, in the limit ε → 0 with c
being kept.

Appendix D. Database of the functions mPec and mCec

A simple database of the functions mPec(k̃, χ) and mCec(k̃, χ) in (A9) is provided
here. This database is based on Chebyshev interpolation for two independent variables
k̃ and χ ; it is a straightforward extension of that in Doi (2021). The formula for
mJec(k̃, χ) (J = P or C) that is valid in the domain 0.05 ≤ k̃ ≤ 20 and 0 ≤ χ ≤ 2π is
given by

mJec(k̃, χ) = νJ exp

(Nm−1∑
m=0

Nn−1∑
n=0

CJmnTm(A ln k̃)Tn(2|χ/π − 1| − 1)

)
, J = P or C.

(D1)

Here, νP = −1, νC = 1 and A = 1/(ln 20). The parameters Nm, Nn, CPmn and CCmn
are constants that depend on c, ε and the molecular model. For c = 0.05 and ε = 0.5
for the BGKW model, for example, Nm = 8, Nn = 7 and the values of CPmn and CCmn
are presented in table 1. Values for other c and ε are available from Doi (2023).
The functions Tn(·) are the Chebyshev polynomials defined by T0(t) = 1, T1(t) = t and
Tn(t) = 2tTn−1(t) − Tn−2(t) (n = 2, 3, . . .). A comparison with the results of direct
calculations of (A9) shows that the approximation error of (D1) is less than 0.1 %
uniformly in the domain 0.05 ≤ k̃ ≤ 20 and 0 ≤ χ ≤ 2π.
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T. Doi

m n = 0 1 2 3 4 5 6

CPmn
0 −0.34486 0.70220 0.09101 −0.06977 −0.02533 −0.00462 0.00041
1 −0.28418 −0.26851 −0.04285 0.02503 0.01188 0.00259 −0.00019
2 0.27143 0.09332 0.00941 −0.01042 −0.00286 −0.00011 0.00022
3 −0.09834 0.00023 0.00331 0.00094 −0.00080 −0.00045 −0.00007
4 0.00169 −0.01180 −0.00238 0.00103 0.00068 0.00015 −0.00002
5 0.00781 0.00302 0.00020 −0.00042 −0.00009 0.00003 0.00003
6 −0.00082 0.00045 0.00029 0.00004 −0.00007 −0.00004 −0.00001
7 −0.00050 −0.00030 −0.00013 0.00001 0.00004 0.00001 0.00000

CCmn
0 −0.98705 0.58923 0.06679 −0.06104 −0.01885 −0.00275 0.00052
1 −0.11442 −0.03079 −0.00500 0.00276 0.00135 0.00033 0.00001
2 −0.02511 −0.01140 −0.00203 0.00098 0.00054 0.00015 0.00000
3 0.00809 −0.00020 −0.00018 −0.00002 0.00005 0.00002 0.00000
4 0.00575 0.00197 0.00027 −0.00019 −0.00007 −0.00002 0.00000
5 −0.00006 0.00080 0.00015 −0.00007 −0.00004 −0.00001 0.00000
6 −0.00103 −0.00018 0.00000 0.00003 0.00000 0.00000 0.00000
7 −0.00026 −0.00030 −0.00004 0.00003 0.00001 0.00000 0.00000

Table 1. Coefficients CPmn and CCmn in (D1) for c = 0.05 and ε = 0.5 (BGKW model).

Appendix E. Derivation of the WOC model

The derivation of the WOC model (3.31) is quite similar to that in §§ 3.2–3.4, and so
it is outlined only briefly here. The basic equations are (2.23)–(2.30); specifically, (3.3) is
replaced by the original form (2.23) without using Dec. The solution f̂ is sought in the form
of the power series expansion (3.1), where the second and third terms on the left-hand side
of (2.23) are now treated as higher-order terms because of the small factor c.

On substituting the expansion (3.1) into (2.23)–(2.30) and formally arranging terms
of the same order in c, the boundary-value problem for the leading-order solution f̂(0)

becomes

ζρ cos θζ

γ H
∂ f̂(0)

∂y
= 1

k
Ĵ( f̂(0), f̂(0)), (E1)

together with (3.6)–(3.8). The only difference from § 3.2 is that the operator Dec is replaced
by its first term (γ H)−1 cos θζ ∂/∂y alone. A solution f̂(0) is an equilibrium state at rest
(3.10).

The boundary-value problem for the first-order solution f̂(1) is

ζρ cos θζ

γ H
∂ f̂(1)

∂y
= 2

k
Ĵ( f̂(0), f̂(1)) − ζρ sin θζ

H
∂ f̂(0)

∂χ
, (E2)

together with (3.13)–(3.16). The only difference from § 3.2 is that the operator Dec
is replaced by (γ H)−1 cos θζ ∂/∂y. The curvature term ζρG∂ f̂(0)/∂θζ , which ought to
appear as an inhomogeneous term, vanishes because the leading-order solution (3.10) is
independent of θζ . In contrast to Dec, the operator (γ H)−1 cos θζ ∂/∂y preserves the parity
in θζ . As in § 3.2, the solution can be sought as f̂(1) = f̂ even

(1) + f̂ odd
(1) , and we find (3.18).

974 A13-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.732


Generalized Reynolds equation for microscale lubrication

The boundary-value problem for φ where f̂ odd = f̂(0)φ is

ζρ cos θζ

γ H
∂φ

∂y
= p̂(0)

k
L(φ) − ζρ sin θζ

H
1

p̂(0)

dp̂(0)

dχ
, (E3)

together with (3.20) and (3.21). Consequently, the solution f̂ = f̂(0) + f̂(1)c up to the first
order is given by

f̂ ( y, χ, ζ ) = p̂(0)E

×
{

1 + c
[

C(1)

p̂(0)

+ 1
p̂(0)

dp̂(0)

dχ
ΦPwoc

(
y, ζ ; k

p̂(0)

, χ

)
+ uwΦCwoc

(
y, ζ ; k

p̂(0)

, χ

)]}
.

(E4)

The functions ΦPwoc( y, ζ ; k̃, χ) and ΦCwoc( y, ζ ; k̃, χ) are the solutions of the following
boundary-value problems: for ΦPwoc

ζρ cos θζ

γ H
∂ΦPwoc

∂y
− 1

k̃
L(ΦPwoc) = −ζρ sin θζ

H
, (E5)

ΦPwoc = 0, cos θζ > 0, y = 0 and cos θζ < 0, y = 1, (E6)

and for ΦCwoc

ζρ cos θζ

γ H
∂ΦCwoc

∂y
− 1

k̃
L(ΦCwoc) = 0, (E7)

ΦCwoc = 2ζρ sin θζ , cos θζ > 0, y = 0, (E8)

ΦCwoc = 0, cos θζ < 0, y = 1. (E9)

The only difference from (A1) and (A2) and (A3)–(A5) is that D′
ec is replaced by

(γ H)−1 cos θζ ∂/∂y. To distinguish between these solutions, they are denoted by ΦPwoc
and ΦCwoc. Note that, in contrast to a coaxial annulus (Doi 2022), the boundary-value
problems (E5) and (E6) and (E7)–(E9), respectively, are not of the same form as those of
Poiseuille and Couette flows between parallel planes because of the factor H( y, χ) arising
from the bipolar coordinate system.

Substituting the distribution function (E4) into the mass conservation law, (3.31) is
obtained. The normalized flow velocities uPwoc and uCwoc and the normalized shear
stresses SPwoc and SCwoc are respectively given by (A7) and (A8) in which ΦJec is replaced
by ΦJwoc. The mass flow-rate coefficients mPwoc(k̃, χ) and mCwoc(k̃, χ) are given by

mJwoc(k̃, χ) = γ

∫ 1

0
HuJwoc( y; k̃, χ) dy, J = P or C. (E10)

The macroscopic variables are given by the same formulae as those for the improved
lubrication model in § 3.3, except that uPec, uCec and so on are replaced by uPwoc, uCwoc
and so on, respectively. For example, the flow velocity v̂χ is given by

v̂χ = c
[

1
p̂(0)

dp̂(0)

dχ
uPwoc

(
y; k

p̂(0)

, χ

)
+ uwuCwoc

(
y; k

p̂(0)

, χ

)]
. (E11)

It is noted here that the WOC model could be simplified further. When the dimensionless
curvature c, or clearance, is small, the normalized scale factor H varies only by O(c) in
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T. Doi

0 < y < 1, i.e. H( y, χ) = H(0, χ) + O(c). Substituting this expression into (2.23) and
conducting a similar analysis, we obtain a simpler lubrication equation than (3.31) as

d
dχ

[
γ 2H0M̂P

(
k

γ H0p̂(0)

)
dp̂(0)

dχ
+ γ uwH0p̂(0)M̂C

(
k

γ H0p̂(0)

)]
= 0, (E12)

where H0(χ) = H(0, χ). This equation has two significant features. First, M̂P and M̂C are,
respectively, the flow-rate coefficients of plane Poiseuille and Couette flows of a rarefied
gas (Sone 2007). Second, the factor H0, which is approximately equal to the local gas-film
thickness, is separated analytically. Because of these features, (E12) will be more familiar
and convenient to lubrication engineers because the flow-rate coefficients M̂P and M̂C are
widely available over a wide class of molecular models in the literature. However, the
results of (E12) are not presented because they are qualitatively the same as those of the
WOC model (3.31).
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