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On the Existence of a New Class of Contact
Metric Manifolds

Themis Koufogiorgos and Charalambos Tsichlias

Abstract. A new class of 3-dimensional contact metric manifolds is found. Moreover it is proved that there
are no such manifolds in dimensions greater than 3.

1 Introduction

Let M be a Riemannian manifold. The tangent sphere bundle T;M admits a contact
metric structure (¢, &,n,¢) and so TiM together with this structure is a contact met-
ric manifold [1]. If M is of constant sectional curvature, then the curvature tensor R of
Ti1M(¢, &, n, g) satisfies the condition

*) R(x, y)§ = kln(y)x — n(x)y] + pln(y)hx — n(x)hy]

for any x, y € X(T1M), where 2h is the Lie derivative of ¢ with respect to £ and &, p are
constant. Moreover, the converse is also true [3]. This class of contact metric manifolds
is especially interesting, because apart from its other characteristics, it contains the well
known Sasakian manifolds. In [5], [6], [7] are studied contact metric manifolds satisfying
(*) but with &, p smooth functions not necessarily constant. In these papers it is proved
that, with an extra assumption, the functions «, £ must be constant. On the other hand, up
to now, we didn’t know any example of a contact metric manifold satisfying (*) and with
K, p non-constant smooth functions. The following question comes up naturally. Do there
exist contact metric manifolds satisfying (*) with x, y non-constant smooth functions,
independent of the choice of vector fields x, y? In this paper we give a negative answer to
the above question for dimensions > 3. For dimension 3 we give an affirmative answer,
through the construction of examples.

2 Preliminaries

A differentiable (2m + 1)-dimensional manifold M?>™*! is called a contact manifold if it
carries a global differential 1-form 7 such that n A (dn)™ # 0 everywhere on M?"*!, Tt is
known that a contact manifold admits an almost contact metric structure (¢, ¢, 7, £), i.e., a
global vector field &, which will be called the characteristic vector field, a (1,1) tensor field
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¢ and a Riemannian metric g such that

(2.1) ¢ =-1d+eE nE)=1,
(2.2) 8(ox, py) = g(x, y) — n(x)n(y),
for all vector fields x, y on M?™*1. Moreover, (¢, £, 1, g) can be chosen such that dn(x, y) =

g(x, ¢y) and thus the structure is called a contact metric structure and the manifold M>"+!
a contact metric manifold. Equations (2.1) and (2.2) imply

Denoting by £ and R, Lie differentiation and the curvature tensor respectively, the opera-
tors I and h are defined by

1
(2.4) Ix =R(x,£)¢, hx= E(quﬁ)x.

The (1,1) tensors h and [ are self-adjoint and satisfy
(2.5) h¢ =0, =0, hp+oh=0.

If V is the Riemannian connection of g, equations (2.1)—(2.5) imply

(2.6) V& = —px — phx,
(2.7) Pl — 1 = 2(¢? + h?),
(2.8) Vep =0,

(2.9) Veh = ¢ — ¢l — ph*.

A contact structure on M*™*! gives rise to an almost complex structure on the product
M1 R, If this structure is integrable, then the contact metric manifold is said to be
Sasakian. Equivalently, a contact metric manifold is Sasakian if and only if

(2.10) R(x, y)€ = n(y)x — n(x)y.

For more details concerning contact manifolds the reader is referred to [1].

3 Main Results

Let M>"™*1(¢, £, 7, g) be a contact metric manifold. We suppose that

(3.1) R(x, )¢ = [n(y)x — n(x)y] + pln(y)hx — n(x)hy],
for some smooth functions x and ¢ on M independent of the choice of vector fields x and y.

We call such a manifold M, a generalized (k, pu)-contact metric manifold. In the special case
K, p = constant, the manifold will be called simply a (x, ut)-contact metric manifold.
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The 3-dimensional case, (m = 1)

Now, we are going to construct examples of 3-dimensional generalized (&, 11)-contact met-
ric manifolds, which are not (x, ©)-contact metric manifolds.

Example 1 We consider the 3-dimensional manifold M = {(x,x,,x3) € R® | x5 # 0},
where (x1, x,, x3) are the standard coordinates in R*. The vector fields

0 0 2x 0 1 9 1 0
=2 =205+ 5 - = 3= — - —
8x1

€1 o
Ox; x5 Ox

g ==
x3 Ox3’ x3 0%,

are linearly independent at each point of M. Let g be the Riemannian metric defined by
glei,ej) = &ij,i,j = 1,2,3. Let V be the Riemannian connection and R the curvature
tensor of g. We easily get

1
le1,e2] = —es,  ler,e3] =2e1 + €3, [es,e1] =0.
X3 X3

Let 1 be the 1-form defined by 7n(z) = g(z,e;) for any z € X(M). Because n A dn # 0
everywhere on M, 7 is a contact form. Let ¢ be the (1,1)-tensor field, defined by ¢e; = 0,
¢e; = es, pes = —e,. Using the linearity of ¢, dn and g we find n(e;) = 1, ¢’z =
—z+n(2)er, dn(z, w) = g(z, pw) and g(¢z, pw) = g(z, w) —n(z)n(w) for any z, w € X(M).
Hence (¢, e;,7,g) defines a contact metric structure on M and so M together with this
structure is a contact metric manifold.

Putting & = ey, x = e;, px = e5 and using the well known formula

2¢(V,z,w) = yg(z,w) + zg(w, y) — wg(y,z) — g(y, [z, w]) — g(z, [y, w]) + g(w, [y,2])

we calculate
1
Vi =— <1 + 2) ox, Vgl =
X3
1
Vex = (1 + 2> ox, Veopx =
X3

1 1 1
Vix =0, Vipx= <1 + 2) 3 V¢xx = (1 + 2> §— 5ox, vd)x(bx = 3%

X3 X3 X3
Therefore for the tensor field h we get b = 0, hx = Ax, hx = —A¢x, where A = xiz Now,

4
x;—1

putting pu = 2(1 — %) and K = we finally get

T
X3

R(x,8)¢ = k(n(©)x — n(x)E) + p(n(€)hx — n(x)hé)
R(¢x, £)¢ = £(n(&)px — n(¢x)€) + p(n(€)hex — n($x)h)
R(x, ¢px)& = K (n(¢x)x — n(x)px) + p(n(ex)hx — n(x)hex).
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These relations yield the following, by a straightforward calculation,

R(z,w)¢ = k(n(w)z — n(2)w) + p(n(w)hz — n(z)hw),

where k and p are non-constant smooth functions. Hence M is a generalized (k, p)-contact
metric manifold.

Example 2 We consider the 3-dimensional manifold M = {(x;,x,,x3) € R* | x3 # 0}
and the vector fields

0 1 0 9 20 1

0

2

=——, =S5, ea=20X"—+——F——+—-—.
0x;,’ x3 Oxy’ 3 0x, x§ Oxy x5 Ox3

€1
We define §7g7777 ¢bY§ =€ g(eivej) = 5ij> (17 ] = 17273) and ge; =0, ¢62 = e3, pe3 =
—e;. Working as in the previous example we finally get that M(¢, £, 7, ) is a generalized
(k, p)-contact metric manifold with k = 1 — é, pw=2(1+ é).

Let us give some more examples. Starting with the examples given previously we will
now construct new 3-dimensional generalized (k, t)-contact metric manifolds for any pos-
itive real number.

Let M(¢,&,n,g) be a 3-dimensional generalized (k, pt)-contact metric manifold. By a
D,-homothetic deformation [8] we mean a change of structure tensors of the form 7 = an,
£ = iﬁ, ¢ = ¢, ¢ = ag+ala— 1)n ® n, where a is a positive constant. It is well known
that M(¢, £, 7, g) is also a contact metric manifold. Moreover the curvature tensor R and
the tensor h transform in the following manner [3], h = %h and

aR(x, y)& = R(x, )¢ + (a — 1)*(n(y)x — n(x)y)
—(a—D{(Vip)y — (V,9)x +n(x)(y + hy) — n(y)(x + hx)},

for any x, y € X(M).

Additionally it is well known [9, pp. 446—447], that any 3-dimensional contact metric
manifold satisfies (V,p)y = g(x + hx, )€ — n(y)(x + hx). Using the above relations we
finally obtain

K+a*—1
2

R(x,y)€ = n(y)hx — 7(x)hy)

(A~ y) + LE2HOZD

for any x, y € X(M). So we have proved the following Theorem.

Theorem 3.1 For any positive number, there exists a 3-dimensional generalized (k, p)-contact
metric manifold.

The case m > 1 Let M*™*1(¢,£,m,g) be a generalized (k, p)-contact metric manifold
and B = {p € M | k(p) = 1}. The set N = M — B is an open subset of M and
thus N2 (¢, £,m, g) is a contact metric manifold, which satisfies the equation (3.1) with
k # 1 everywhere.
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Lemma 3.2 The following relations are valid on N*"*1(¢,£,m, g)

(3.2) lp — ¢l = 2phe,

(3.3) P=(k-19¢% r<l

(3.4) R(&, x)y = klg(x, )§ — n(y)x] + plg(hx, y)§ — n(y)hx],

(35) (Vih)y = (Vyh)x = (1 — k) [28(x, ¢y)§ + n(x)gy — n(y)¢x]
+ (1 = wnx)phy — n(y)phx],

(3.6) €k =0.

forany x,y € X(N).

Proof The proof of (3.2)—(3.5) is similar to that of Lemma 3.1 of [3] and hence we omit it.
To prove (3.6), we operate (3.2) by ¢ and use (2.7) and (3.3) we get | = —x¢? + ph and so
through (2.8) we find

(3.7) Vel = —(Er)¢” + (Ewh + u(Veh).
Moreover from (2.9), (3.3) and | = —k@? + ph we obtain
(3.8) Veh = ph.

The use of (3.8) in (3.7) shows

(3.9) Vel = —(€r)$* + (Ewh + p*ho.

Differentiating (2.7) along £ and using (3.8) we get ¢(V¢I)¢ — V¢l = 0. This together with
(3.9) complete the proof of the Lemma.

Lemma 3.3 For any vector fields x, y on a 2m + 1)-dimensional generalized (k, 1)-contact
metric manifold the following differantial equation is valid

(3.10) (yR)¢*x — (xK)@°y + (xp)hy — (yp)hx + (Ep) [n(y)hx — n(x)hy] = 0.

Proof Differentiating (3.1) along an arbitrary vector field z and using (2.6) we find

V. R(x, )€ = (z6)[n(y)x — n(x)y] + (zp) [n(y)hx + n(x)hy]
+ 5[ (n(V2y) — g(y, ¢2) — gy, phz))x + n(y)V.x
— (n(Vx) — g(x, ¢2) — g(x, $h2)) y + n(x)V.y]
+u[(1(V2y) = g(y, ¢2) — (3, ohz) ) hx + 1(y) V. hx
— (n(V2x) = gx, ¢2) — g(x, $h2)) hy + n(x)V.hy].
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The use of the last relation, (3.1) and (2.6) in Bianchi second identity yield to the following
relation, by a direct calculation,

P (@) n(y)x — )yl + @) n(y)hx + n(x)hy]
{xy.2}

+ K [(N(V2y) — g(y, ¢2) — g(y, ¢hz))x + n(y)V.x
— (n(V.x) — g(x, ¢z) — g(x, ¢hz))y + 1(x)V.y]
+u[(n(V2y) — gy, ¢2) — g(y, dhz)) hx + n(y)V.hx
— (n(V2x) — g(x, $2) — g(x, 9hz)) hy +1(x) V. hy]
= &[n()Vox = n(Vox)y] — pln(y)hV.x — n(V.x)hy]
= &[N(Vi2)y = n(y)Viz] — pln(Viz)hy — n(y)hVz]
+R(x, y)¢z + R(x, y)phz} = 0,
where @@ {x,y,2} denotes the cyclic sum of x, y, z. Putting £ instead of z in the last relation
and using (3.4) and (3.6) we obtain
— (yr)x + (xr)y + [(EpIn(y) — (yp)Ihx + [—(EpIn(x) + (xu)]hy
+0(y)(Veh)x — pm(x)(Veh)y + p(Vih)y — w(Vy h)x
+ [=(xr)n(y) + (yr)n(x) + £ (8(y, phx) — g(x, phy))
+ p(g(hx, ghy) — g(hy, ¢hx) — g(hy, ¢x) + g(hx, 63))] €
— pn(x)hV,§ — un(y)hVy§ = 0.
Substituting (2.1), (2.5) and (3.5) in the last relation we finally get (3.10) and it completes
the proof of the Lemma.

Lemma 3.4 For any P € N there exist an open neighbourhood U of P and orthonormal local
vector fields x;, ¢x;, &, 1 = 1,...,m, defined on U, such as

(3.11) hx; = \x;, hoxi = —Apx;, hE=0, i=1,...,m,
where A\ = /1 — k.

Proof Using (3.3), we see that, at any point of N the tensor h has three eigenvalues; 0
with multiplicity 1, v/1 — x with multiplicity m and —/1 — k with multiplicity m. The
function A = /1 — k is smooth on N. Let y1,..., Y, Vim+1s- - -, Y2m, Yam+1 be a basis of
TpN,suchthat hy; = Ay, i =1,...,mhy; = —Ay;, j=m+1,...,2m, yrp1 = & We
extend yy’s to vector fields on N and define the vector fields w; = (h + AI)y; — An(y:)§,
i=1,...,mwj=(h—=A)yj+An(y;j)§, j = m+1,...,2mand {. At Pwehave w; = 2)\y;,
i=1,...,mandw; = =2\y;, j = m+1,...,2m. Thus wi, ..., Wy, Wyi1, ..., Wam, &
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are linearly independent at P and hence in a neighbourhood U of P. At each point of U we
have

hwi = h((h+ADy; — An(y)€) = dwi, i=1,...,m,
hwi = h((h = ADy; + M(y)§) = —Awj, j=m+1,...,2m,
hé = 0.

The vector fields &, x; = ‘”MV,—" and ¢x;, i = 1,...,m, satisfy (3.11) and so the proof is
completed.

From now on, we will call the vector fields of Lemma 3.4 a local h-basis. We suppose that
{xi, ¢x;,€},i = 1,...,m,is alocal h-basis on N. Substituting x = x;, y = ¢x; in (3.10) we
get

(3.12) AXih = XK,  —AQxju = Pxik, i=1,...,m.

Since m > 1, replacing x, y by x;, x; (i # j) respectively, equation (3.10) gives
(3.13) A =xiKk, i=1,...,m.

Finally, substituting x = ¢x;, y = ¢x;, (i # j), in (3.10) we have

(3.14) A¢xip = ¢pxik, i=1,...,m.

By virtue of (3.6), (3.12), (3.13) and (3.14) we obtain

(3.15) Xik = ¢xik =€k =x;u=¢x;u =0, i=1,...,m.
Considering the 1-form dp and using (3.15) we have dy = (£u)n, and so
(3.16) 0=d*p=dEu) An+(Epdn.

Using (3.15) and (3.16) we obtain d(&u) = £(Eu)n and so Eu = 0. This together with
(3.15) show that the functions « and p are constant on N. Therefore by the continuity
of k, 1 we conclude that the functions x, p are constant on M. If x = 1, then using
h? = (k — 1)¢?, which is valid on any (x, z1)-contact metric manifold, we get h = 0 and so
by (3.1) and (2.10) M is Sasakian manifold.

So we have proved the following Theorem.

Theorem 3.5 On a non Sasakian, generalized (k, pi)-contact metric manifold M*™*! with
m > 1, the functions k, y are constant, i.e., M*™*! is a (k, y)-contact metric manifold.

Using Lemma 3.3, for the 3-dimensional case, and working as in the case m > 1, we
easily prove the following Theorem.

Theorem 3.6 Let M be a non Sasakian, generalized (k, p)-contact metric manifold. If k, p
satisfy the condition ax + by = ¢ (a, b, ¢, constant), then K, | are constant.
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Remarks 1. If k = p = 0, then R(x, y)¢ = 0 and such a contact metric manifold M>"*! is
locally the product of a flat (1 + 1)-dimensional manifold and an m-dimensional manifold
of constant curvature 4 [2].

2. Recently, we have been informed by D. E. Blair, that (&, u4)-contact metric manifolds

have been classified [4]. For the 3-dimensional case see also [3].
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