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Abstract

We obtain an upper bound for the number of solutions to the system of m congruences of the type
ν∏

i=1

(xi + si) ≡ λ j (mod p) j = 1, . . . ,m,

modulo a prime p, with variables 1 ≤ xi ≤ h, i = 1, . . . , ν and arbitrary integers s j, λ j, j = 1, . . . ,m, for a
parameter h significantly smaller than p. We also mention some applications of this bound.

2010 Mathematics subject classification: primary 11D79; secondary 11L40.

Keywords and phrases: multiplicative congruences, resultant, common roots.

1. Introduction

For a prime p, let Fp be the field of p elements and F∗p = Fp\{0}. For positive integers
h, m and ν and m-dimensional vectors

s = (s1, . . . , sm), λ = (λ1, . . . , λm) ∈ Fm
p ,

we denote by Jν(h, s, λ) the number of solutions to the system of congruences
ν∏

i=1

(xi + s j) ≡ λ j (mod p) j = 1, . . . ,m,

1 ≤ x1, . . . , xν ≤ h.

(1.1)

Similarly, we denote by Kν(h, s) the number of solutions to the symmetric system of
congruences

ν∏
i=1

(xi + s j) ≡
ν∏

i=1

(yi + s j) . 0 (mod p) j = 1, . . . ,m,

1 ≤ x1, y1, . . . , xν, yν ≤ h.

(1.2)
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Note that if zero values are allowed then we may have at least h2ν−2 solutions, while
we are most interested in the cases with almost ‘diagonal’ behaviour.

For m = 1, this and several similar congruences have been studied in [4–6], where
one can also find various applications of these bounds. For example, by [4, Lemma 33],
if ν ≥ 1, m = 1, s = s ∈ Fp and λ = λ ∈ F∗p, then for

h ≤ p1/(ν2−1) (1.3)

we have
Jν(h, s, λ) ≤ exp(c(ν) log h/log log h), (1.4)

where c(ν) depends only on ν.
For the symmetric system (1.2) with ν ≥ 3, the bound

Kν(h, s) ≤ hν exp(c(ν) log h/log log h), (1.5)

is given in [5, Theorem 17] in a slightly wider range

h ≤ pγν , (1.6)

where

γν = min
{ 1
ν2 − 2ν − 2

,
1

ν2 − 3ν + 4

}
.

Some generalisations to single multiplicative congruences with polynomials instead
of linear functions have been considered in [8, 10, 15]. Note that the bounds (1.4)
and (1.5) can be extended to arbitrary h by splitting the interval [1, h] into several
smaller intervals satisfying (1.3) and (1.6), respectively: see the formulation and proof
of Theorem 2.1 below.

2. Main result

Most of the above results are based on careful estimates of the resultants of some
auxiliary polynomials associated with solutions to the corresponding congruences.
The goal of this paper is to show that the approach can be combined with a result
of Gómez-Pérez et al. [7] and can lead to more relaxed restrictions on h in the case of
systems of m congruences.

We do this in the simplest cases of the system of congruences (1.1) and show that
for m ≥ 2 the restriction (1.3) on h can be relaxed.

As in [4, 5], we note that, for large values of h, one can use standard methods,
based on bounds of exponential and multiplicative character sums to obtain various
asymptotic formulas for Jν(h, s, λ). However, we are mostly interested in small values
of h beyond the reach of these methods. On the other hand, for large values of ν there
is a wide gap between the values of h, which are covered by these two approaches.
Our result narrows this gap when m is large. For some values of m, the ranges of both
approaches overlap and thus we have nontrivial results for all values of h.
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We define the following sets of vectors

Sm = {s = (s1, . . . , sm) ∈ Fm
p : s j , sk, 1 ≤ j < k ≤ m},

Λm = {(λ1, . . . , λm) ∈ Fm
p : λ j , 0, 1 ≤ j ≤ m}.

For integers ν ≥ 2 and m ≥ 1 we also define

ϑν,m = min
{
νm

ν2 − 1
, 1

}
. (2.1)

Theorem 2.1. Let ν ≥ 2 and m ≥ 1 be fixed integers and let ϑν,m be given by (2.1).
Then, uniformly over s ∈ Sm and λ ∈ Λm, we have the bound

Jν(h, s, λ) ≤ (hνp−ϑν,m + 1) exp(c(ν) log h/log log h),

where c(ν) depends only on ν.

We now immediately derive the following corollary.

Corollary 2.2. In the notation of Theorem 2.1, uniformly over s ∈ Sm,

Kν(h, s) ≤ (hνp−ϑν,m + 1)hν exp(c(ν) log h/log log h).

3. Applications to character sums

Let X be the set of all p − 1 multiplicative characters of F∗p. We refer to [11, Ch. 3]
for background on multiplicative characters. Given m-dimensional vectors

s = (s1, . . . , sm) ∈ Fm
p and χ = (χ1, . . . , χm) ∈ Xm,

we consider the character sums

T (h, s, χ) =

h∑
x=1

m∏
j=1

χ j(x + s j).

One can easily show that if at least one of the characters χ1, . . . , χm is nonprincipal
then, for s ∈ Sm,

T (h, s, χ) = O(p1/2 log p), (3.1)

where the implied constant depends only on m. Indeed, the bound (3.1) follows
instantly from the Weil bound of hybrid sums of multiplicative and additive characters
in its classical form given in [17, Example 12 of Appendix 5] and the standard
reduction between bounds of complete and incomplete sums (see, for example, [11,
Section 12.2]). Clearly, for (3.1) to be nontrivial, one needs h ≥ p1/2+ε with some fixed
ε > 0. For m = 1, the Burgess bound (see [11, Theorem 12.6]) gives a nontrivial result
already for h ≥ p1/4+ε. For shorter sums, only bounds on average are known. Define

Tν(h, s) =
1

(p − 1)m

∑
χ∈Xm

|T (h, s, χ)|2ν.
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As an example, for ν = 2 and m = 1, Ayyad et al. [2, Theorem 2] have shown that

T2(h, s) = O(h4/p + h2(log p)2)

for arbitrary h < p. For ν ≥ 3 and m = 1 and using the orthogonality of multiplicative
characters, as in the proof of Theorem 3.1 below, one can also reformulate (1.5) as the
bound

yTν(h, s) = hν exp(c(ν) log h/log log h),

provided that h satisfies (1.6). We obtain the following improved bound for arbitrary
m ≥ 1 and ν ≥ 2.

Theorem 3.1. Let ν ≥ 2 and m ≥ 1 be fixed integers and let ϑν,m be given by (2.1).
Then, uniformly over s ∈ Sm, we have the bound

Tν(h, s) ≤ (hνp−ϑν,m + 1)hν exp(c(ν) log h/log log h).

In particular, for h ≤ pϑν,m/ν+o(1) the bounds of Theorem 2.1, Corollary 2.2 and
Theorem 3.1 become, respectively,

Jν(h, s, λ) ≤ ho(1), Kν(h, s) ≤ hν+o(1) and Tν(h, s) ≤ hν+o(1).

4. Preparations

We need the following bound of the resultant Res(P,Q) with restricted coefficients,
which is given by [4, Corollary 32].

Lemma 4.1. Let H ≥ 1 and let 2 ≤ k, ` ≤ ν be fixed integers. Let P(Z) and Q(Z) be
polynomials

P1(Z) =

k−1∑
i=0

aiZi and P2(Z) =

`−1∑
i=0

biZi

such that
ak−1, b`−1 , 0 and |ai|, |bi| < Hν−i i = 0, . . . , ν − 1.

Then
|Res(P1, P2)| ≤ C(ν)Hν2−1,

where C(ν) depends only on ν.

Our second result is a generalisation of the well know fact that if two univariate
polynomials f (X), g(X) ∈ Z[X] have a common zero modulo p then their resultant
Res( f , g) is divisible by p. We need the following extension of this property, due to
Gómez-Pérez et al. [7], to polynomials with several common roots modulo a prime p.
We use Fp to denote the algebraic closure of Fp.

Lemma 4.2. Let p be a prime and let f , g ∈ Z[X] be two polynomials whose reductions
modulo p have N common roots in Fp counted with multiplicities. Then pN | Res( f , g).

We remark that, for our applications, the result of [12, Lemma 5.3] (which counts
only simple roots) is sufficient.
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5. Proof of Theorem 2.1

We define α1,m = 1 and also, for ν ≥ 2,

αν,m = ϑν,m/ν = min
{ m
ν2 − 1

,
1
ν

}
.

We follow quite closely the proof of [4, Lemma 33]. Let ε < 1 be a sufficiently small
positive number, to be chosen later. Cover the interval [1, h] by at most ε−1hp−αν,m + 1
intervals of length at most H = εpαν,m . Then for some collection I1, . . . ,Iν of these
intervals, we have the bound

Jν(h, s, λ) ≤ (ε−1hp−αν,m + 1)νJ∗, (5.1)

where J∗ is the number of solutions to the system of congruences
ν∏

i=1

(xi + si) ≡ λ j (mod p) j = 1, . . . ,m,

x1 ∈ I1, . . . , xν ∈ Iν.

(5.2)

Hence, we see from (5.1) that it suffices to prove the bound

J∗ ≤ exp(c∗(ν) log h/log log h), (5.3)

where c∗(ν) depends only on ν.
The claim is trivial for ν = 1 and we prove it for ν ≥ 2 by induction on ν.
We can assume that J∗ > ν! as otherwise there is nothing to prove. In particular, we

can fix two solutions (x1, . . . , xν) = (a1, . . . , aν) and (x1, . . . , xν) = (b1, . . . , bν) to (5.2)
such that

P0(Z) = (a1 + Z) . . . (aν + Z) − (b1 + Z) . . . (bν + Z)

is a nonzero polynomial.
By the induction hypothesis, the set (x1, . . . , xν) of solutions to the system of

congruences (5.2) for which xi ∈ {b1, . . . , bν} for some i, contributes to J∗ at most

ν2 exp
(
c(ν − 1)

log h
log log h

)
≤ exp

(c(ν)
2

log h
log log h

)
,

provided that h is large enough (and c(ν) > 2c(ν − 1)).
Consider now the set P of polynomials of the form

P(Z) = (x1 + Z) . . . (xν + Z) − (b1 + Z) . . . (bν + Z),

where (x1, . . . , xν) runs through the set of all solutions to the congruence (5.2) such
that

{x1, . . . , xν} ∩ {b1, . . . , bν} = ∅. (5.4)

We note that each such polynomial P(Z) is nonzero and has the form

P(Z) = A1Zν−1 + · · · + Aν−1Z + Aν,
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with
|Ai| ≤ c0(ν)Hi i = 1, . . . , ν,

where c0(ν) depends only on ν. In particular, since P(s1) ≡ 0 (mod p), it follows
that P(Z) is not a constant polynomial. Indeed, if P(Z) = c ∈ Z, then Aν = P(0) =

c ≡ P(s1) ≡ 0 (mod p). Now, since

|Aν| ≤ c0(ν)Hν < p

for a sufficiently small ε > 0, we conclude that c = Aν = 0. However, (5.4) implies that
P is a nonzero polynomial.

Since we have P(s j) ≡ 0 (mod p), j = 1, . . . ,m, for every P ∈ P (in particular, for
P = P0), we see from Lemma 4.2, and the pairwise distinctness of s1, . . . , sm, that the
resultant Res(P, P0) satisfies

pm | Res(P, P0). (5.5)

On the other hand, from Lemma 4.1,

|Res(P, P0)| ≤ C0(ν)Hν2−1,

with come constant C0(ν) that depends only on ν. Therefore, taking ε < C0(ν)−1/(ν2−1)

we have |Res(P, P0)| < p, which in view of (5.5) implies that Res(P, P0) = 0.
The rest of the proof follows that of [4, Lemma 33] without any changes and

implies (5.3) and thus the desired result.

6. Proof of Theorem 3.1

Using the orthogonality of multiplicative characters∑
χ∈X

χ(u) =

{
0 if u , 1,
1 if u = 1, u ∈ F∗p,

we write Kν(h, s) as the following character sum

Kν(h, s) =
1

(p − 1)m

h∑
x1,y1,...,xν,yν=1

m∏
j=1

∑
χ j∈X

χ j

( ν∏
i=1

(xi + s j)
)
χ j

( ν∏
i=1

(yi + s j)
)
,

where χ denotes the complex conjugate character of χ (thus χ(u−1) = χ(u) for u ∈ F∗p).
Changing the order of summations, we obtain

Kν(h, s) =
1

(p − 1)m

h∑
x1,y1,...,xν,yν=1

∑
χ1,...,χm∈X

m∏
j=1

ν∏
i=1

(χ j(xi + s j)χ j(yi + s j))

=
1

(p − 1)m

∑
χ1,...,χm∈X

h∑
x1,y1,...,xν,yν=1

ν∏
i=1

m∏
j=1

(χ j(xi + s j)χ j(yi + s j))

=
1

(p − 1)m

∑
χ1,...,χm∈X

|T (h, s, χ)|2ν = Tν(h, s).

Applying Corollary 2.2, we conclude the proof.
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7. Comments

We note that one of the natural interpretations of Theorem 3.1 is as a bound on
average on multidimensional correlations of vectors

(χ(s + 1), . . . , χ(s + h)) ∈ Ch, (7.1)

formed by m distinct pairs (χ, s) = (χ j, s j), j = 1, . . . ,m, taken over (χ1, . . . , χm) ∈ Xm.
Similar correlations of (7.1) for a fixed χ but on average over (s1, . . . , sm) ∈ Sm have
also been studied by Lamzouri [13]. We also remark that the vectors (7.1) have
frequently been recommended as sources of pseudorandom numbers (see [1, 9, 14, 16]
and references therein), where some of the measures of pseudorandomness are very
similar to the sums T (h, s, χ).

It is also natural to attempt to improve the bound of Corollary 2.2 by estimating
Kν(h, s) directly via an extension of the arguments from [5] (rather than via the
reduction to bounds on Jν(h, s, λ)). However, this may require nontrivial technical
effort and possibly new ideas.

Finally, we recall that Bourgain and Garaev [3] have recently obtained a series of
results for congruences with inverses from short intervals. The approach of [3] can
also be combined with our argument and so one can obtain new bounds on the number
of solutions to the following system of congruences with reciprocals

ν∑
i=1

1
xi + si

≡ λ j (mod p) j = 1, . . . ,m,

1 ≤ x1, . . . , xν,≤ h,

and similar symmetric congruences.

References
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