ERGODIC THEORY AND AVERAGING ITERATIONS

J. J. KOLIHA

1. Introduction. Suppose X is a Banach space and T a continuous linear operator on X. The significance of the asymptotic convergence of T for the approximate solution of the equation $(I-T) x=f$ by means of the Picard iterations was clearly shown in Browder's and Petryshyn's paper [1]. The results of [1] have stimulated further investigation of the Picard, and more generally, averaging iterations for the solution of linear and nonlinear functional equations $[\mathbf{2} ; \mathbf{3} ; \mathbf{4} ; \mathbf{8} ; \mathbf{9}]$. Kwon and Redheffer [8] analyzed the Picard iteration under the mildest possible condition on T, namely that T be continuous and linear on a normed (not necessarily complete) space X. The results of [8] (still waiting to be extended for the averaging iterations) seem to give the most complete story of the Picard iterations for the linear case. Only when T is subject to some further restrictions, such as asymptotic A-boundedness and asymptotic A-regularity, one can agree with Dotson [4] that the iterative solution of linear functional equations is a special case of mean ergodic theory for affine operators. This thesis is rather convincingly demonstrated by results of De Figueiredo and Karlovitz [2], and Dotson [3], and most of all by Dotson's recent paper [4], in which the results of $[1 ; 2 ; 3]$ are elegantly subsumed under the affine mean ergodic theorem of Eberlein-Dotson.

Our own investigation follows up the fact implicitly contained in the proof of Theorem 1 in [1] that X is the direct sum $N(I-T) \oplus R(I-T)^{-}$if $\left\{T^{n} x\right\}$ converges in norm for all $x \in X$. (Here and everywhere in the paper, $N(A)$ and $R(A)$ denote the null space and the range of an operator A respectively, the bar denotes, as usual, closure in X.) A generalization of this decomposition for the ergodic subspace of a semigroup of linear operators ergodic in the sense of Eberlein is given in the subsequent section. Section 3 is devoted to the investigation of some properties of asymptotically A-bounded and asymptotically A-regular operators stemming largely from the decomposition theorem for the ergodic subspace of the semigroup $G=\left\{I, T, T^{2}, \ldots\right\}$, and gives some applications to the iterative solution of the equation $(I-T) x=f$.

The notation used in the paper is fairly standard. In addition to the symbols $N(A), R(A)$ and - explained above, we use $B(X)$ to denote the Banach algebra of all continuous linear operators on X, \rightarrow and - are employed to denote strong and weak convergence in X respectively. The action of a functional $w \in X^{*}$ on an element $x \in X$ is written as (x, w).

[^0]2. Ergodic semigroups. Let X be a Banach space and G a semigroup of continuous linear operators on X. According to Eberlein [5], G is called ergodic if it possesses at least one system $\left\{A_{\alpha} \mid \alpha \in D\right\}$ of almost invariant integrals (D is a directed set). For the sake of completeness we list the conditions characterizing such a system:
I. $A_{\alpha} \in B(X)$ for each $\alpha \in D$.
II. For each $x \in X$ and all $\alpha \in D, A_{\alpha} x \in O(x)=\overline{\operatorname{co}}\{T x \mid T \in G\}$, where $\overline{\mathrm{co}}(S)$ is the closed convex hull of S.
III. $\left\|A_{\alpha}\right\| \leqq M$ for some $M>0$ and all $\alpha \in D$.
IV. For each $T \in G, \lim _{\alpha} A_{\alpha}(I-T)=\lim _{\alpha}(I-T) A_{\alpha}=0$.
$\left\{A_{\alpha}\right\}$ will be called a weak (strong) system of almost invariant integrals for G if IV is satisfied in the sense of the weak (strong) operator topology. Accordingly, G will be called weakly (strongly) ergodic. With each ergodic semigroup G we associate two subspaces N and R, where
\[

$$
\begin{equation*}
N=\bigcap_{T \in G} N(I-T), \quad R=\operatorname{sp}\left\{\bigcup_{T \in G} R(I-T)\right\} \tag{1}
\end{equation*}
$$

\]

with $\operatorname{sp}(S)$ denoting the linear hull of S. In addition, the ergodic subspace E of an ergodic semigroup G is defined by

$$
\begin{equation*}
E=\{x \mid x \in X, O(x) \cap N \neq \emptyset\} . \tag{2}
\end{equation*}
$$

The mean ergodic theorem of Eberlein [5, Theorem 3.1] then states: Suppose G is strongly ergodic. Then:
(E1). $\left\{A_{\alpha} x\right\}$ is strongly convergent if and only if $\left\{A_{\alpha} x\right\}$ clusters weakly.
(E2). $\left\{A_{\alpha} x\right\}$ is strongly convergent if and only if $x \in E$.
(E3). If $x \in E$, the intersection $O(x) \cap N$ consists of a single point, namely the strong limit of $\left\{A_{\alpha} x\right\}$.
Analyzing the proof of Theorem 3.1 in [5], we observe that the strong convergence postulated in IV is only needed to establish the strong convergence of $\left\{A_{\alpha} x\right\}$ under the assumption that $\left\{A_{\alpha} x\right\}$ clusters weakly. Hence we have the following result for weakly ergodic semigroups: Suppose G is weakly ergodic. Then :
(E1)'. $\left\{A_{\alpha} x\right\}$ is weakly convergent if and only if $\left\{A_{\alpha} x\right\}$ clusters weakly.
(E2)'. $\left\{A_{\alpha} x\right\}$ is weakly convergent if and only if $x \in E$.
$(E 3)^{\prime}$. For each $x \in E, O(x) \cap N$ contains exactly the weak limit of $\left\{A_{\alpha} x\right\}$.
Given a strongly (weakly) ergodic semigroup G, we define an operator $Q: E \rightarrow X$ by

$$
\begin{equation*}
Q x=O(x) \cap N . \tag{3}
\end{equation*}
$$

(E2) (respectively (E2)') implies that for any strong (respectively weak) system $\left\{A_{\alpha}\right\}$ of almost invariant integrals for $G, Q x=\lim _{\alpha} A_{\alpha} x(x \in E)$ in the corresponding topology. We show that an analogue of Theorem 4.1 in [5] is valid also for weakly ergodic semigroups.

Lemma 1. Suppose G is a weakly ergodic semigroup. The ergodic subspace E of G is a closed subspace of X invariant under each $T \in G$. The operator Q defined by (3) is a continuous linear mapping of E into itself such that $Q^{2}=Q$ and $Q T_{E}=T Q=Q$ for each $T \in G$.

Proof. Let $\left\{A_{\alpha}\right\}$ be any weak system of almost invariant integrals for G. Since $A_{\alpha} x \rightharpoonup Q x$ for each $x \in E, E$ is a subspace of X, and Q is linear. N is obviously contained in E, hence $Q: E \rightarrow E$ in view of (3). To establish the continuity of Q, we observe that for any $x \in X$, each w in the dual X^{*} of X and all $\alpha \in D$,

$$
|(Q x, w)| \leqq\left|\left(A_{\alpha} x, w\right)\right|+\left|\left(Q x-A_{\alpha} x, w\right)\right| \leqq M| | x\| \| w \|+\left|\left(Q x-A_{\alpha} x, w\right)\right|
$$

Passing to the limit as $\alpha \in D$, we obtain $|(Q x, w)| \leqq M| | x\|w\|$. Hence

$$
\|Q x\|=\sup _{\|w\|=1}|(Q x, w)| \leqq M\|x\|
$$

and $\|Q\| \leqq M$. To prove the closure of E, suppose $x_{n} \rightarrow x$ for $x_{n} \in E$. It is easily verified that $\left\{Q x_{n}\right\}$ is a Cauchy sequence in the strong topology of X, so that $Q x_{n} \rightarrow y$ for some $y \in X$. For each $w \in X^{*}$, all $\alpha \in D$ and any positive integer n,

$$
\left|\left(A_{\alpha} x-y, w\right)\right| \leqq M| | x-x_{n}\| \| w\|+\| Q x_{n}-y\| \| w \|+\left|\left(A_{\alpha} x_{n}-Q x_{n}, w\right)\right| .
$$

$A_{\alpha} x \rightarrow y$ is proved on choosing n sufficiently large and that α suitably. The invariance of E under T follows from IV, and the rest from Lemma 4.1 in [5].

We now describe the structure of the ergodic subspace in terms of the subspaces N and R defined in (1).

Theorem 1 [6]. If G is a weakly (strongly) ergodic semigroup with the ergodic subspace E, then

$$
E=N \oplus R^{-}
$$

The projection of E onto N associated with this direct sum is the operator Q defined by (3).

Proof. As shown in Lemma 1, Q is a continuous linear idempotent operator mapping E into itself. Hence $E=R(Q) \oplus N(Q)$ with $R(Q)$ closed. We establish that $R(Q)=N$ and $N(Q)=R^{-}$. For each $x \in E, Q x \in N$ by virtue of (3). If $y \in N, Q y=y$, and $y \in R(Q)$. Suppose $x \in N(Q)$. Then $Q x=0 \in O(x)$. For each $\epsilon>0$ there is $z=\sum_{1}^{n} a_{i} T_{i} x$ with $a_{i} \geqq 0, \sum_{1}^{n} a_{i}=1$ and $T_{i} \in G$, such that $\|z\|<\epsilon$. The vector $x-z=\sum_{1}^{n} a_{i}\left(I-T_{i}\right) x$ lies in R, and $\|x-(x-z)\|=\|z\|<\epsilon$, which in turn means that $x \in R^{-}$. If, on the other hand, $y \in R, y=\sum_{1}^{n}\left(I-T_{i}\right) x_{i}$ for some $T_{i} \in G$ and some $x_{i} \in X$. By IV, each $\left(I-T_{i}\right) x_{i}$ lies in $N(Q)$, hence also $y \in N(Q)$. The inclusion $R^{-} \subset N(Q)$ then follows from $R \subset N(Q)$ as $N(Q)$ is closed.

Remark 1. Suppose G is a weakly ergodic semigroup with a weak system $\left\{A_{\alpha}\right\}$ of almost invariant integrals. In virtue of II, $\left\{A_{\alpha} x\right\}$ is bounded for each
$x \in X$. If $\left\{A_{\alpha} x\right\}$ clusters weakly for each $x \in X$ or if X is reflexive, $X=N \oplus R^{-}$.

Remark 2. A special case of Theorem 1 for the semigroup $G=\left\{I, T, T^{2}, \ldots\right\}$ with $A_{n}=n^{-1}\left(I+T+\ldots+T^{n-1}\right)$ as a system of almost invariant integrals was proved by Yosida [10].

Let us consider the semigroup $G=\left\{I, T, T^{2}, \ldots\right\}$, where $T \in B(X)$. We show that in this case the subspaces N and R defined by (1) are given by the formulae

$$
\begin{equation*}
N=N(I-T), \quad R=R(I-T) \tag{4}
\end{equation*}
$$

If $x \in N(I-T), T^{n} x=x$ for each $n \in N$, and $x \in \cap_{0}^{\infty} N\left(I-T^{n}\right)=N$. The inclusion $N \subset N(I-T)$ is obvious. From the identity $I-T^{n}=$ $(I-T) \sum_{0}^{n-1} T^{k}$ (with $\sum_{0}^{-1}=0$) it follows that $R\left(I-T^{n}\right) \subset R(I-T)$ for all $n \geqq 0$, and $\mathrm{sp}\left\{\cup_{0}^{\infty} R\left(I-T^{n}\right)\right\}=R \subset R(I-T)$. The reverse inclusion is trivial.
3. Averaging iterations. T denotes a continuous linear operator on a Banach space X. A real infinite matrix $A=\left[a_{n j}\right](n, j \geqq 0)$ will be called admissible if A is nonnegative lower triangular with each row summing to 1 . Following Dotson [3; 4] we define the polynomials $a_{n}(t)$ and $b_{n}(t)(n \geqq 0)$ by

$$
a_{n}(t)=\sum_{j=0}^{n} a_{n j} t^{j}, \quad b_{n}(t)=\left(1-a_{n}(t)\right) /(1-t)
$$

Definition. Let A be an admissible matrix, and let $A_{n}=a_{n}(T)$ and $B_{n}=b_{n}(T)$ for each $n \geqq 0$.
(i) T is asymptotically A-bounded if $\left\|A_{n}\right\| \leqq M$ for some $M>0$ and all $n \geqq 0$.
(ii) T is weak (strong) asymptotically A-regular if $\lim _{n} A_{n}(I-T)=0$ in the weak (strong) operator topology.
(iii) T is weak (strong, uniform) A-convergent if T is weak asymptotically A-regular and $\left\{B_{n}\right\}$ converges in the weak (strong, uniform) operator topology.
(iv) T is weakly (strongly, uniformly) asymptotically A-convergent if T is weak asymptotically A-regular and $\left\{A_{n}\right\}$ converges in the weak (strong, uniform) operator topology.

It follows from the uniform boundedness principle that an asymptotically A-convergent operator T (in any of the three mentioned operator topologies) is also asymptotically A-bounded. In the case when A is the infinite unit matrix I, the preceding definition characterizes ordinary asymptotic boundedness, asymptotic regularity, convergence and asymptotic convergence. Note that the condition that T be weak asymptotically A-regular in parts (iii) and (iv) of the above definition is included only to guarantee $\lim _{n} A_{n}=Q=$ $Q T=T Q$. However, there is a class of admissible matrices A satisfying the
equality automatically, namely the matrices with the property that, for each continuous linear operator $T, \lim _{n} T A_{n} x=\lim _{n} A_{n} x$ whenever $\left\{A_{n} x\right\}$ converges. It is not difficult to verify that the unit and Cesàro matrices belong to this class.

Suppose T is asymptotically A-bounded and weak (strong) asymptotically A-regular for some admissible A. It is immediately obvious that $\left\{A_{n}\right\}$ is a weak (strong) system of almost invariant integrals for $G=\left\{I, T, T^{2}, \ldots\right\}$. Let E be the ergodic subspace of G, and Q the operator defined by (3). According to Theorem 1 and the formula (4), $E=N(I-T) \oplus R(I-T)^{-}$, and $\left\{A_{n} x\right\}$ converges weakly (strongly) to $Q x$ if and only if $x \in E$. Moreover, the operators A_{n}, B_{n} and Q satisfy the following conditions:
(A1) $(I-T) B_{n}=I-A_{n}$ for each $n \geqq 0$.
(A2) For each $x \in E$ and all $n \geqq 0, Q A_{n} x=Q x$, and $Q B_{n} x=\phi(n) Q x$, where $\phi(n)$ is a real valued function of n.
(A3) If $\lim _{n} a_{n j}=0$ for each $j \geqq 0$ (in this case A will be called Toeplitz), $\lim _{n} \phi(n)=+\infty$.
This all can be easily deduced from Theorem 3 in [3].
In the sequel we consider the approximate solution of the equation $(I-T) x=f$ by means of the averaging iteration $x_{n}=A_{n} x_{0}+B_{n} f[\mathbf{3} ; \mathbf{4}]$ provided T is at least asymptotically A-bounded and weak asymptotically A-regular. This iteration can be viewed as a generalization of the Picard iteration $x_{n}=T^{n} x_{0}+\left(\sum_{0}^{n-1} T^{k}\right) f$ which arises when $A=I$.

Proposition 1. Suppose T is asymptotically A-bounded and weak (strong) asymptotically A-regular for some admissible matrix A. If $f \in R(I-T)$, the sequence $\left\{x_{n}\right\}=\left\{A_{n} x_{0}+B_{n} f\right\}$ converges weakly (strongly) to a solution x of the equation $(I-T) x=f$ if and only if $x_{0}-y \in N(I-T) \oplus R(I-T)^{-}$ for some y with $(I-T) y=f$.

Proof. Suppose $(I-T) y=f$ and put $y_{n}=A_{n} y+B_{n} f$. Then $y_{n}=A_{n} y+$ $B_{n}(I-T) y=A_{n} y+\left(I-A_{n}\right) y=y$ in view of (A1). Furthermore, $x_{n}-y=$ $x_{n}-y_{n}=A_{n}\left(x_{0}-y\right)$, and $\left\{x_{n}\right\}$ converges weakly (strongly) if and only if $x_{0}-y$ lies in the ergodic subspace $E=N(I-T) \oplus R(I-T)^{-}$of $G=\left\{I, T, T^{2}, \ldots\right\}$. Let x be the limit of $\left\{x_{n}\right\}$. Since $x_{n}=y+A_{n}\left(x_{0}-y\right)$, $x=y+Q\left(x_{0}-y\right)$, and $(I-T) x=(I-T) y+(I-T) Q\left(x_{0}-y\right)=f$.

Remark 3. A result related to the preceding proposition has been obtained by Kwon and Redheffer [8, Remark 1] for $A=I$, without the assumption of asymptotic boundedness and asymptotic regularity and with the subspace $\left\{x \mid\left\{T^{n} x\right\}\right.$ converges strongly $\}$ in place of $N(I-T) \oplus R(I-T)^{-}$.

Next we consider the case when the equation $(I-T) x=f$ has a solution given by an averaging analogue of the Neumann series, namely a solution of the form $x=\lim _{n} B_{n} f$.

Proposition 2. Suppose T is asymptotically A-bounded and weak (strong)
asymptotically A-regular for some admissible Toeplitz matrix A. The following are equivalent:
(i) $\left\{B_{n} f\right\}$ is weakly (strongly) convergent.
(ii) $\left\{B_{n} f\right\}$ has a weak cluster point.
(iii) f belongs to the image Y of $R(I-T)$ - under $I-T$.

Moreover, any cluster point of $\left\{B_{n} f\right\}$ is a solution of the equation $(I-T) x=f$ contained in $R(I-T)^{-}$.

Proof. The implication (i) \Rightarrow (ii) is obvious.
(ii) \Rightarrow (iii). Suppose $\quad B_{n} f \rightharpoonup x$ as $n=n_{j} \rightarrow \infty$. Then $\left(I-A_{n}\right) f=$ $(I-T) B_{n} f \rightharpoonup(I-T) x$ as $n=n_{j} \rightarrow \infty,\left\{A_{n} f\right\}$ has a weak cluster point, and $f \in E=N(I-T) \oplus R(I-T)^{-}$according to (E1)' (respectively (E1)). Hence $Q B_{n} f$ is defined and equal to $\phi(n) Q f$ by (A2). $\{\phi(n) Q f\}$ has a weak cluster point; since $\lim _{n} \phi(n)=+\infty$ in view of (A3), $Q f=0$. Consequently, $(I-T) x=f-Q f=f$, and the cluster point x of $\left\{B_{n} f\right\}=\left\{(I-T) B_{n} x\right\}$ is contained in $R(I-T)^{-}$. This proves (iii) as well as the last statement of the present proposition.
(iii) \Rightarrow (i). Suppose $(I-T) x=f$ for some $x \in R(I-T)^{-}$. Then $B_{n} f=B_{n}(I-T) x=x-A_{n} x$, and $\left\{B_{n} f\right\}$ is weakly (strongly) convergent. Let us remark that every solution of the equation $(I-T) x=f$ with $f \in Y$ lies in E as the coset $x+N(I-T)$ is contained in E whenever the particular solution x lies in $R(I-T)^{-}$.

Proposition 2 is related to Remarks 2, 4 and 5 of [8] in a similar way as described in our Remark 3.

Proposition 3. Suppose T is weakly (strongly) A-convergent for some admissible Toeplitz matrix A. Then $\lim _{n} B_{n}=(I-T)^{-1}$ in the weak (strong) operator topology. Moreover, for each $f \in X$, the sequence $\left\{A_{n} x_{0}+B_{n} f\right\}$ converges weakly (strongly) to the unique solution of the equation $(I-T) x=f$.

Proof. A weakly (strongly) A-convergent operator T is also weak (strong) asymptotically A-convergent as follows from (A1). For each $x \in X$ we have $Q B_{n} x=\phi(n) Q x$ in virtue of (A2). Since A is Toeplitz, (A3) holds, and $Q=0$ on X, i.e., $N(I-T)=\{0\}$. Moreover, $X=R(I-T)^{-}$in view of the decomposition theorem for the ergodic subspace X of $G=\left\{I, T, T^{2}, \ldots\right\}$, and $R(I-T)$ is closed by Proposition 2. Hence $(I-T)^{-1} \in B(X)$ by the Banach theorem. Since $\lim _{n}(I-T) B_{n}=\lim _{n}\left(I-A_{n}\right)=I$ in the weak (strong) operator topology, $\lim _{n} B_{n}=(I-T)^{-1}$. The rest of Proposition 3 follows immediately.

It is seen from the foregoing proof that $\lim _{n} A_{n}=0$ and $R(I-T)=$ $R(I-T)^{-}$are necessary for T to be A-convergent. The next proposition shows that these conditions are also sufficient even if the matrix A is only admissible.

Proposition 4. Let A be an admissible matrix. Suppose
(a) $\lim _{n} A_{n}=0$ in the weak (strong) operator topology, and
(b) $R(I-T)$ is closed.

Then T is weakly (strongly) A-convergent.
Proof. If the conditions (a) and (b) are fulfilled, T is asymptotically A-bounded and weak (strong) asymptotically A-regular, so that Theorem 1 applies. Moreover, (a) implies that $N(I-T)=\{0\}$, hence $X=R(I-T)^{-}=$ $R(I-T)$ by (b), and $(I-T)^{-1} \in B(X)$. Then

$$
\left\{B_{n}\right\}=\left\{(I-T)^{-1}\left(I-A_{n}\right)\right\}
$$

converges weakly (strongly) to $(I-T)^{-1}$. Let us remark that (b) can be replaced by any of the following equivalent conditions: $\left(\mathrm{b}_{1}\right) R(I-T)=X$, $\left(\mathrm{b}_{2}\right)(I-T)^{-1}$ is bounded, $\left(\mathrm{b}_{3}\right) 1$ does not belong to the continuous spectrum of T.

Kwon and Redheffer [8] gave an example of a shift operator T on a separable Hilbert space such that $\lim _{n} T^{n}=0$ in the strong operator topology for which ($I-T)^{-1}$ is not continuous. This situation cannot occur if $A_{n} \rightarrow 0$ uniformly.

Proposition 5. Let A be an admissible matrix such that $\left\|A_{n}\right\|=\left\|a_{n}(T)\right\| \rightarrow 0$ as $n \rightarrow \infty$. Then T is uniformly A-convergent, and $B_{n}=b_{n}(T) \rightarrow(I-T)^{-1}$ uniformly.

Proof. T is clearly asymptotically A bounded and strong asymptotically A-regular. From $\left\|A_{n}\right\| \rightarrow 0$ it follows that $\left\|(I-T) B_{n}-I\right\| \rightarrow 0$ in virtue of (A1). Let N be a fixed positive integer with $\left\|(I-T) B_{N}-I\right\|<\frac{1}{2}$. For each $x \in X$ and each $\epsilon>0$ there is a positive integer n_{0} such that

$$
\left\|(I-T)\left(B_{n}-B_{m}\right) B_{N} x\right\|<\frac{1}{2} \epsilon, \quad n, m>n_{0} .
$$

Since

$$
B_{n} x-B_{m} x=\left(I-(I-T) B_{N}\right)\left(B_{n} x-B_{m} x\right)+(I-T)\left(B_{n}-B_{m}\right) B_{N} x,
$$

we get the inequality

$$
\left\|B_{n} x-B_{m} x\right\|<\frac{1}{2}\left\|B_{n} x-B_{m} x\right\|+\frac{1}{2} \epsilon
$$

valid for all $n, m>n_{0}$. Hence $\left\|B_{n} x-B_{m} x\right\|<\epsilon$ for all $n, m>n_{0}$, and $\left\{B_{n} x\right\}$ converges in norm for each $x \in X$ as X is complete. For each $x \in X$, $x=\lim _{n}(I-T) B_{n} x=(I-T)\left(\lim _{n} B_{n} x\right)$ in norm, so that $X=R(I-T)$. $Q=0$ on X, which proves $N(I-T)=\{0\}$. Therefore $(I-T)^{-1} \in B(X)$, and $\left\|B_{n}-(I-T)^{-1}\right\| \leqq\left\|(I-T)^{-1}\right\|\left\|(I-T) B_{n}-I\right\| \rightarrow 0$ as $n \rightarrow \infty$.

As a consequence of Proposition 5 we obtain that $\sum_{0}^{\infty} T^{n}$ converges uniformly if and only if $\left\|T^{n}\right\| \rightarrow 0$, or equivalently, if and only if $r(T)=\lim _{n}\left\|T^{n}\right\|^{1 / n}<1$. If $\sum_{0}^{\infty} T^{n}$ converges weakly or strongly, $\left\|T^{n}\right\| \leqq M$ for some $M>0$ and all $n \geqq 0$, and $r(T) \leqq \lim _{n} M^{1 / n}=1$. However, even in the case when $\sum_{0}^{\infty} T^{n}$ converges strongly we can have $r(T)=1$. To see this suppose X is a separable

Hilbert space with an orthonormal basis $\left\{e_{k}\right\}_{1}^{\infty}$. Following [6] define a linear diagonal operator T by

$$
T e_{k}=(1-k) k^{-1} e_{k}, \quad k=1,2, \ldots .
$$

T is selfadjoint, and $r(T)=\|T\|=\sup _{k}\left|(1-k) k^{-1}\right|=1$. For every k, $\left\|T^{n} e_{k}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Also any finite linear combination y of the basis vectors satisfies $\left\|T^{n} y\right\| \rightarrow 0$ as $n \rightarrow \infty$. Each $x \in X$ can be approximated by such y, and the inequality $\left\|T^{n} x\right\| \leqq\|x-y\|+\left\|T^{n} y\right\|$ shows that also $\left\|T^{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$. Given $f=\sum \alpha_{k} e_{k} \in X$, we define $x=\sum \lambda_{k} e_{k}$ with $\lambda_{k}=k(2 k-1)^{-1} \alpha_{k} ; \sum\left|\lambda_{k}\right|^{2}$ converges as $\left|\lambda_{k}\right| \leqq\left|\alpha_{k}\right|$. It is easily verified that $f=(I-T) x$, hence $X=R(I-T)$. In view of Proposition 4, T is strongly convergent.

Proposition 6. Suppose T is weak (strong) asymptotically A-convergent for some admissible matrix A. Then $X=N(I-T) \oplus R(I-T)^{-}$. For each $f \in R(I-T)$ and any $x_{0} \in X$, the sequence $\left\{A_{n} x_{0}+B_{n} f\right\}$ converges weakly (strongly) to a solution x of the equation $(I-T) x=f ; x$ is of the form $x=Q x_{0}+x^{*}$, where $Q x_{0}$ is the projection of x_{0} into $N(I-T)$ in the direction of $R(I-T)^{-}$, and x^{*} is the unique solution of $(I-T) x=f$ in $R(I-T)^{-}$.

Proof. The first two conclusions of the proposition follow from Theorem 1 and Proposition 1 respectively. Suppose $(I-T) y=f$ for some $y \in X$. Then $\left\{B_{n} f\right\}=\left\{\left(I-A_{n}\right) y\right\}$ converges weakly (strongly) to the element $x^{*}=(I-Q) y\left(Q=\lim _{n} A_{n}\right)$. Since $I-Q$ projects X onto $R(I-T)^{-}$, $x^{*} \in R(I-T)^{-}$, and $(I-T) x^{*}=(I-T)(I-Q) y=(I-T) y=f$. Hence x^{*} is a solution of $(I-T) x=f$ contained in $R(I-T)^{-}$; the uniqueness of such a solution is a consequence of the decomposition

$$
X=N(I-T) \oplus R(I-T)^{-} .
$$

The last statement in Proposition 6 then follows from the fact that $\lim _{n}\left(A_{n} x_{0}+B_{n} f\right)=Q x_{0}+x^{*}$ in the corresponding topology.

Remark 4. If we assume that T is strong asymptotically A-regular and that $\left\{A_{n}\right\}$ converges in the weak operator topology, (E1) supplies the result that $\left\{A_{n} x_{0}+B_{n} f\right\}$ converges strongly for each $f \in R(I-T)$ and each $x_{0} \in X$ as in Theorem 3 of [4]. Proposition 6 provides the additional insight pertaining to the decomposition of X and the form of a solution x of the equation $(I-T) x=f$.

Suppose T is asymptotically bounded and weak (strong) asymptotically regular. For any admissible matrix A, T is also asymptotically A-bounded. Indeed, if $\left\|T^{n}\right\| \leqq M$ for some $M>0$ and all $n \geqq 0$, then $\left\|a_{n}(T)\right\| \leqq$ $\sum_{0}^{n} a_{n j}\left\|T^{j}\right\| \leqq M$. If A is also Toeplitz, T is weak (strong) asymptotically A-regular. Suppose $\lim _{n} T^{n} x=z$ for some $x \in X$. Then $\lim _{n} a_{n}(T) x=z$ [9]. If T is weak (strong) asymptotically regular, $\lim _{n} T^{n}(I-T) x=0$ weakly (strongly) for each $x \in X$, and also $\lim _{n} a_{n}(T)(I-T) x=0$ weakly (strongly) for each $x \in X$. Thus we are led to

Proposition 7. An operator T is weak (strong) asymptotically convergent if and only if:
(a) T is asymptotically bounded,
(b) T is weak (strong) asymptotically regular, and
(c) for some admissible Toeplitz matrix $A,\left\{A_{n} x\right\}$ clusters weakly for each $x \in X$.

The proposition strengthens the Corollary to Theorem 5 in [3].
The conclusions of Proposition 6 are naturally valid with strong convergence throughout when T is uniform asymptotically A-convergent for some admissible A. In this case however the following stronger result can be obtained.

Proposition 8. Suppose T is uniform asymptotically A-convergent for some admissible matrix A. Then $R(I-T)$ is closed, and

$$
X=N(I-T) \oplus R(I-T)
$$

Consequently, if $N(I-T) \neq\{0\}, 1$ is a simple pole of $(\lambda I-T)^{-1}$.
Proof. Let Q be the uniform limit of $\left\{A_{n}\right\}=\left\{a_{n}(T)\right\}$. Then $Q^{2}=Q$ and $T^{j} Q=Q$ for each $j=0,1, \ldots$, in view of Lemma 1. Hence $(T-Q)^{j}=$ $T^{j}-Q$ for each $j=0,1, \ldots$, and $a_{n}(T-Q)=\sum_{j=0}^{n} a_{n j}(T-Q)^{j}=$ $\sum_{j=0}^{n} a_{n j}\left(T^{j}-Q\right)=a_{n}(T)-Q$. Then $\left\|a_{n}(T-Q)\right\| \rightarrow 0$ as $n \rightarrow \infty$. According to Proposition 5, T-Q is uniformly A-convergent, and

$$
(I-T+Q)^{-1} \in B(X)
$$

In particular, $X=R(I-T+Q)$, and each $x \in X$ can be written in the form $x=(I-T) u+Q u$, where $Q u \in N(I-T)$. Suppose $x \in R(I-T)^{-}$. In view of the decomposition $X=N(I-T) \oplus R(I-T)^{-}$which follows from Theorem 1, and the equality $x=Q u+(I-T) u$, $Q u$ is necessarily 0 , and $x=(I-T) u$. This proves $R(I-T)^{-}=R(I-T)$. The last statement in Proposition 8 is a direct consequence of the decomposition

$$
X=N(I-T) \oplus R(I-T)
$$

with $R(I-T)$ closed.
Proposition 8 is a generalization of the result obtained in [7] for a uniform asymptotically convergent operator T.

References

1. F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566-570.
2. D. G. De Figueiredo and L. A. Karlovitz, On the approximate solution of linear functional equations in Banach spaces, J. Math. Anal. Appl. 24 (1968), 654-664.
3. W. G. Dotson, Jr., An application of ergodic theory to the solution of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 75 (1969), 347-352.
4. Mean ergodic theorem and iterative solution of linear functional equations, J. Math. Anal. Appl. 34 (1971), 141-150.
5. W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240.
6. J. J. Koliha, Iterative solution of linear equations in Banach and Hilbert spaces, Ph.D. Thesis, University of Melbourne, 1972.
7. - Convergent and stable operators and their generalization (to appear).
8. Y. K. Kwon and R. M. Redheffer, Remarks on linear equations in Banach space, Arch. Rational Mech. Anal. 32 (1969), 247-254.
9. Curtis Outlaw and C. W. Groetsch, Averaging iterations in a Banach space, Bull. Amer. Math. Soc. 75 (1969), 430-432.
10. K. Yosida, Functional Analysis (Springer-Verlag, New York, 1965).

University of Melbourne,
Parkville, Australia

[^0]: Received April 27, 1971 and in revised form, June 26, 1972.

