ERGODIC THEORY AND AVERAGING ITERATIONS

J. J. KOLIHA

1. Introduction. Suppose X is a Banach space and T a continuous linear Toperator on X. The significance of the asymptotic convergence of T for the approximate solution of the equation (I - T)x = f by means of the Picard iterations was clearly shown in Browder's and Petryshyn's paper [1]. The results of [1] have stimulated further investigation of the Picard, and more generally, averaging iterations for the solution of linear and nonlinear functional equations [2; 3; 4; 8; 9]. Kwon and Redheffer [8] analyzed the Picard iteration under the mildest possible condition on T, namely that T be continuous and linear on a normed (not necessarily complete) space X. The results of [8] (still waiting to be extended for the averaging iterations) seem to give the most complete story of the Picard iterations for the linear case. Only when T is subject to some further restrictions, such as asymptotic A-boundedness and asymptotic A-regularity, one can agree with Dotson [4] that the iterative solution of linear functional equations is a special case of mean ergodic theory for affine operators. This thesis is rather convincingly demonstrated by results of De Figueiredo and Karlovitz [2], and Dotson [3], and most of all by Dotson's recent paper [4], in which the results of [1; 2; 3] are elegantly subsumed under the affine mean ergodic theorem of Eberlein-Dotson.

Our own investigation follows up the fact implicitly contained in the proof of Theorem 1 in [1] that X is the direct sum $N(I - T) \oplus R(I - T)^-$ if $\{T^nx\}$ converges in norm for all $x \in X$. (Here and everywhere in the paper, N(A) and R(A) denote the null space and the range of an operator A respectively, the bar denotes, as usual, closure in X.) A generalization of this decomposition for the ergodic subspace of a semigroup of linear operators ergodic in the sense of Eberlein is given in the subsequent section. Section 3 is devoted to the investigation of some properties of asymptotically A-bounded and asymptotically A-regular operators stemming largely from the decomposition theorem for the ergodic subspace of the semigroup $G = \{I, T, T^2, \ldots\}$, and gives some applications to the iterative solution of the equation (I - T)x = f.

The notation used in the paper is fairly standard. In addition to the symbols N(A), R(A) and - explained above, we use B(X) to denote the Banach algebra of all continuous linear operators on X, \rightarrow and \rightarrow are employed to denote strong and weak convergence in X respectively. The action of a functional $w \in X^*$ on an element $x \in X$ is written as (x, w).

Received April 27, 1971 and in revised form, June 26, 1972.

ERGODIC THEORY

2. Ergodic semigroups. Let X be a Banach space and G a semigroup of continuous linear operators on X. According to Eberlein [5], G is called *ergodic* if it possesses at least one system $\{A_{\alpha} | \alpha \in D\}$ of almost invariant integrals (D is a directed set). For the sake of completeness we list the conditions characterizing such a system:

- I. $A_{\alpha} \in B(X)$ for each $\alpha \in D$.
- II. For each $x \in X$ and all $\alpha \in D$, $A_{\alpha}x \in O(x) = \overline{\operatorname{co}}\{Tx | T \in G\}$, where $\overline{\operatorname{co}}(S)$ is the closed convex hull of S.
- III. $||A_{\alpha}|| \leq M$ for some M > 0 and all $\alpha \in D$.
- IV. For each $T \in G$, $\lim_{\alpha} A_{\alpha}(I T) = \lim_{\alpha} (I T)A_{\alpha} = 0$.

 $\{A_{\alpha}\}$ will be called a *weak* (*strong*) system of almost invariant integrals for G if IV is satisfied in the sense of the weak (strong) operator topology. Accordingly, G will be called weakly (strongly) ergodic. With each ergodic semigroup G we associate two subspaces N and R, where

(1)
$$N = \bigcap_{T \in G} N(I - T), \qquad R = \sup\{ \bigcup_{T \in G} R(I - T)\},$$

with sp(S) denoting the linear hull of S. In addition, the ergodic subspace E of an ergodic semigroup G is defined by

(2)
$$E = \{x | x \in X, O(x) \cap N \neq \emptyset\}.$$

The mean ergodic theorem of Eberlein [5, Theorem 3.1] then states: Suppose G is strongly ergodic. Then:

(E1). $\{A_{\alpha}x\}$ is strongly convergent if and only if $\{A_{\alpha}x\}$ clusters weakly.

(E2). $\{A_{\alpha}x\}$ is strongly convergent if and only if $x \in E$.

(E3). If $x \in E$, the intersection $O(x) \cap N$ consists of a single point, namely the strong limit of $\{A_{\alpha}x\}$.

Analyzing the proof of Theorem 3.1 in [5], we observe that the strong convergence postulated in IV is only needed to establish the strong convergence of $\{A_{\alpha}x\}$ under the assumption that $\{A_{\alpha}x\}$ clusters weakly. Hence we have the following result for weakly ergodic semigroups: Suppose G is weakly ergodic. Then :

(E1)'. $\{A_{\alpha}x\}$ is weakly convergent if and only if $\{A_{\alpha}x\}$ clusters weakly.

(E2)'. $\{A_{\alpha}x\}$ is weakly convergent if and only if $x \in E$.

(E3)'. For each $x \in E$, $O(x) \cap N$ contains exactly the weak limit of $\{A_{\alpha x}\}$. Given a strongly (weakly) ergodic semigroup G, we define an operator $Q: E \to X$ by

$$Qx = O(x) \cap N.$$

(E2) (respectively (E2)') implies that for any strong (respectively weak) system $\{A_{\alpha}\}$ of almost invariant integrals for G, $Qx = \lim_{\alpha} A_{\alpha}x$ ($x \in E$) in the corresponding topology. We show that an analogue of Theorem 4.1 in [5] is valid also for weakly ergodic semigroups.

J. J. KOLIHA

LEMMA 1. Suppose G is a weakly ergodic semigroup. The ergodic subspace E of G is a closed subspace of X invariant under each $T \in G$. The operator Q defined by (3) is a continuous linear mapping of E into itself such that $Q^2 = Q$ and $QT_E = TQ = Q$ for each $T \in G$.

Proof. Let $\{A_{\alpha}\}$ be any weak system of almost invariant integrals for G. Since $A_{\alpha}x \rightarrow Qx$ for each $x \in E$, E is a subspace of X, and Q is linear. N is obviously contained in E, hence $Q: E \rightarrow E$ in view of (3). To establish the continuity of Q, we observe that for any $x \in X$, each w in the dual X^* of X and all $\alpha \in D$,

$$|(Qx, w)| \le |(A_{\alpha}x, w)| + |(Qx - A_{\alpha}x, w)| \le M||x|| ||w|| + |(Qx - A_{\alpha}x, w)|.$$

Passing to the limit as $\alpha \in D$, we obtain $|(Qx, w)| \leq M||x||w||$. Hence

$$||Qx|| = \sup_{||w||=1} |(Qx, w)| \leq M||x||,$$

and $||Q|| \leq M$. To prove the closure of E, suppose $x_n \to x$ for $x_n \in E$. It is easily verified that $\{Qx_n\}$ is a Cauchy sequence in the strong topology of X, so that $Qx_n \to y$ for some $y \in X$. For each $w \in X^*$, all $\alpha \in D$ and any positive integer n,

$$|(A_{\alpha}x - y, w)| \leq M||x - x_n|| ||w|| + ||Qx_n - y|| ||w|| + |(A_{\alpha}x_n - Qx_n, w)|.$$

 $A_{\alpha}x \rightarrow y$ is proved on choosing *n* sufficiently large and that α suitably. The invariance of *E* under *T* follows from IV, and the rest from Lemma 4.1 in [5].

We now describe the structure of the ergodic subspace in terms of the subspaces N and R defined in (1).

THEOREM 1 [6]. If G is a weakly (strongly) ergodic semigroup with the ergodic subspace E, then

$$E = N \oplus R^{-}.$$

The projection of E onto N associated with this direct sum is the operator Q defined by (3).

Proof. As shown in Lemma 1, Q is a continuous linear idempotent operator mapping E into itself. Hence $E = R(Q) \oplus N(Q)$ with R(Q) closed. We establish that R(Q) = N and $N(Q) = R^-$. For each $x \in E$, $Qx \in N$ by virtue of (3). If $y \in N$, Qy = y, and $y \in R(Q)$. Suppose $x \in N(Q)$. Then $Qx = 0 \in O(x)$. For each $\epsilon > 0$ there is $z = \sum_{i=1}^{n} a_i T_i x$ with $a_i \ge 0$, $\sum_{i=1}^{n} a_i = 1$ and $T_i \in G$, such that $||z|| < \epsilon$. The vector $x - z = \sum_{i=1}^{n} a_i (I - T_i) x$ lies in R, and $||x - (x - z)|| = ||z|| < \epsilon$, which in turn means that $x \in R^-$. If, on the other hand, $y \in R$, $y = \sum_{i=1}^{n} (I - T_i) x_i$ for some $T_i \in G$ and some $x_i \in X$. By IV, each $(I - T_i) x_i$ lies in N(Q), hence also $y \in N(Q)$. The inclusion $R^- \subset N(Q)$ then follows from $R \subset N(Q)$ as N(Q) is closed.

Remark 1. Suppose G is a weakly ergodic semigroup with a weak system $\{A_{\alpha}\}$ of almost invariant integrals. In virtue of II, $\{A_{\alpha}x\}$ is bounded for each

 $x \in X$. If $\{A_{\alpha}x\}$ clusters weakly for each $x \in X$ or if X is reflexive, $X = N \oplus R^{-}$.

Remark 2. A special case of Theorem 1 for the semigroup $G = \{I, T, T^2, \ldots\}$ with $A_n = n^{-1}(I + T + \ldots + T^{n-1})$ as a system of almost invariant integrals was proved by Yosida [10].

Let us consider the semigroup $G = \{I, T, T^2, \ldots\}$, where $T \in B(X)$. We show that in this case the subspaces N and R defined by (1) are given by the formulae

(4)
$$N = N(I - T), R = R(I - T).$$

If $x \in N(I - T)$, $T^n x = x$ for each $n \in N$, and $x \in \bigcap_0^\infty N(I - T^n) = N$. The inclusion $N \subset N(I - T)$ is obvious. From the identity $I - T^n = (I - T)\sum_0^{n-1} T^k$ (with $\sum_{i=1}^{n-1} = 0$) it follows that $R(I - T^n) \subset R(I - T)$ for all $n \ge 0$, and $\operatorname{sp}\{\bigcup_0^\infty R(I - T^n)\} = R \subset R(I - T)$. The reverse inclusion is trivial.

3. Averaging iterations. T denotes a continuous linear operator on a Banach space X. A real infinite matrix $A = [a_{nj}]$ $(n, j \ge 0)$ will be called *admissible* if A is nonnegative lower triangular with each row summing to 1. Following Dotson [3; 4] we define the polynomials $a_n(t)$ and $b_n(t)$ $(n \ge 0)$ by

$$a_n(t) = \sum_{j=0}^n a_{nj}t^j, \quad b_n(t) = (1 - a_n(t))/(1 - t).$$

Definition. Let A be an admissible matrix, and let $A_n = a_n(T)$ and $B_n = b_n(T)$ for each $n \ge 0$.

(i) T is asymptotically A-bounded if $||A_n|| \leq M$ for some M > 0 and all $n \geq 0$.

(ii) T is weak (strong) asymptotically A-regular if $\lim_n A_n(I - T) = 0$ in the weak (strong) operator topology.

(iii) T is weak (strong, uniform) A-convergent if T is weak asymptotically A-regular and $\{B_n\}$ converges in the weak (strong, uniform) operator topology.

(iv) T is weakly (strongly, uniformly) asymptotically A-convergent if T is weak asymptotically A-regular and $\{A_n\}$ converges in the weak (strong, uniform) operator topology.

It follows from the uniform boundedness principle that an asymptotically A-convergent operator T (in any of the three mentioned operator topologies) is also asymptotically A-bounded. In the case when A is the infinite unit matrix I, the preceding definition characterizes ordinary asymptotic boundedness, asymptotic regularity, convergence and asymptotic convergence. Note that the condition that T be weak asymptotically A-regular in parts (iii) and (iv) of the above definition is included only to guarantee $\lim_{n \to \infty} A_n = Q = QT = TQ$. However, there is a class of admissible matrices A satisfying the

equality automatically, namely the matrices with the property that, for each continuous linear operator T, $\lim_n TA_n x = \lim_n A_n x$ whenever $\{A_n x\}$ converges. It is not difficult to verify that the unit and Cesàro matrices belong to this class.

Suppose *T* is asymptotically *A*-bounded and weak (strong) asymptotically *A*-regular for some admissible *A*. It is immediately obvious that $\{A_n\}$ is a weak (strong) system of almost invariant integrals for $G = \{I, T, T^2, \ldots\}$. Let *E* be the ergodic subspace of *G*, and *Q* the operator defined by (3). According to Theorem 1 and the formula (4), $E = N(I - T) \bigoplus R(I - T)^-$, and $\{A_nx\}$ converges weakly (strongly) to Qx if and only if $x \in E$. Moreover, the operators A_n , B_n and *Q* satisfy the following conditions:

(A1) $(I - T)B_n = I - A_n$ for each $n \ge 0$.

(A2) For each $x \in E$ and all $n \ge 0$, $QA_n x = Qx$, and $QB_n x = \phi(n)Qx$, where $\phi(n)$ is a real valued function of n.

(A3) If $\lim_{n} a_{nj} = 0$ for each $j \ge 0$ (in this case A will be called *Toeplitz*), $\lim_{n} \phi(n) = +\infty$.

This all can be easily deduced from Theorem 3 in [3].

In the sequel we consider the approximate solution of the equation (I - T)x = f by means of the averaging iteration $x_n = A_n x_0 + B_n f$ [3; 4] provided T is at least asymptotically A-bounded and weak asymptotically A-regular. This iteration can be viewed as a generalization of the Picard iteration $x_n = T^n x_0 + (\sum_{n=1}^{n-1} T^k) f$ which arises when A = I.

PROPOSITION 1. Suppose T is asymptotically A-bounded and weak (strong) asymptotically A-regular for some admissible matrix A. If $f \in R(I - T)$, the sequence $\{x_n\} = \{A_nx_0 + B_nf\}$ converges weakly (strongly) to a solution x of the equation (I - T)x = f if and only if $x_0 - y \in N(I - T) \oplus R(I - T)^$ for some y with (I - T)y = f.

Proof. Suppose (I - T)y = f and put $y_n = A_n y + B_n f$. Then $y_n = A_n y + B_n (I - T)y = A_n y + (I - A_n)y = y$ in view of (A1). Furthermore, $x_n - y = x_n - y_n = A_n(x_0 - y)$, and $\{x_n\}$ converges weakly (strongly) if and only if $x_0 - y$ lies in the ergodic subspace $E = N(I - T) \bigoplus R(I - T)^-$ of $G = \{I, T, T^2, \ldots\}$. Let x be the limit of $\{x_n\}$. Since $x_n = y + A_n(x_0 - y)$, $x = y + Q(x_0 - y)$, and $(I - T)x = (I - T)y + (I - T)Q(x_0 - y) = f$.

Remark 3. A result related to the preceding proposition has been obtained by Kwon and Redheffer [8, Remark 1] for A = I, without the assumption of asymptotic boundedness and asymptotic regularity and with the subspace $\{x|\{T^nx\}\)$ converges strongly} in place of $N(I - T) \oplus R(I - T)^-$.

Next we consider the case when the equation (I - T)x = f has a solution given by an averaging analogue of the Neumann series, namely a solution of the form $x = \lim_{n \to \infty} B_n f$.

PROPOSITION 2. Suppose T is asymptotically A-bounded and weak (strong)

asymptotically A-regular for some admissible Toeplitz matrix A. The following are equivalent:

(i) $\{B_n f\}$ is weakly (strongly) convergent.

(ii) $\{B_n f\}$ has a weak cluster point.

(iii) f belongs to the image Y of $R(I - T)^{-}$ under I - T.

Moreover, any cluster point of $\{B_n f\}$ is a solution of the equation (I - T)x = f contained in $R(I - T)^-$.

Proof. The implication (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii). Suppose $B_n f \rightarrow x$ as $n = n_j \rightarrow \infty$. Then $(I - A_n)f = (I - T)B_n f \rightarrow (I - T)x$ as $n = n_j \rightarrow \infty, \{A_n f\}$ has a weak cluster point, and $f \in E = N(I - T) \oplus R(I - T)^-$ according to (E1)' (respectively (E1)). Hence $QB_n f$ is defined and equal to $\phi(n)Qf$ by (A2). $\{\phi(n)Qf\}$ has a weak cluster point; since $\lim_n \phi(n) = +\infty$ in view of (A3), Qf = 0. Consequently, (I - T)x = f - Qf = f, and the cluster point x of $\{B_n f\} = \{(I - T)B_n x\}$ is contained in $R(I - T)^-$. This proves (iii) as well as the last statement of the present proposition.

(iii) \Rightarrow (i). Suppose (I - T)x = f for some $x \in R(I - T)^-$. Then $B_n f = B_n (I - T)x = x - A_n x$, and $\{B_n f\}$ is weakly (strongly) convergent. Let us remark that every solution of the equation (I - T)x = f with $f \in Y$ lies in E as the coset x + N(I - T) is contained in E whenever the particular solution x lies in $R(I - T)^-$.

Proposition 2 is related to Remarks 2, 4 and 5 of [8] in a similar way as described in our Remark 3.

PROPOSITION 3. Suppose T is weakly (strongly) A-convergent for some admissible Toeplitz matrix A. Then $\lim_n B_n = (I - T)^{-1}$ in the weak (strong) operator topology. Moreover, for each $f \in X$, the sequence $\{A_nx_0 + B_nf\}$ converges weakly (strongly) to the unique solution of the equation (I - T)x = f.

Proof. A weakly (strongly) A-convergent operator T is also weak (strong) asymptotically A-convergent as follows from (A1). For each $x \in X$ we have $QB_nx = \phi(n)Qx$ in virtue of (A2). Since A is Toeplitz, (A3) holds, and Q = 0 on X, i.e., $N(I - T) = \{0\}$. Moreover, $X = R(I - T)^{-1}$ in view of the decomposition theorem for the ergodic subspace X of $G = \{I, T, T^2, \ldots\}$, and R(I - T) is closed by Proposition 2. Hence $(I - T)^{-1} \in B(X)$ by the Banach theorem. Since $\lim_n (I - T)B_n = \lim_n (I - A_n) = I$ in the weak (strong) operator topology, $\lim_n B_n = (I - T)^{-1}$. The rest of Proposition 3 follows immediately.

It is seen from the foregoing proof that $\lim_n A_n = 0$ and $R(I - T) = R(I - T)^-$ are necessary for T to be A-convergent. The next proposition shows that these conditions are also sufficient even if the matrix A is only admissible.

PROPOSITION 4. Let A be an admissible matrix. Suppose

J. J. KOLIHA

(a) $\lim_{n} A_{n} = 0$ in the weak (strong) operator topology, and

Then T is weakly (strongly) A-convergent.

Proof. If the conditions (a) and (b) are fulfilled, T is asymptotically A-bounded and weak (strong) asymptotically A-regular, so that Theorem 1 applies. Moreover, (a) implies that $N(I - T) = \{0\}$, hence $X = R(I - T)^- = R(I - T)$ by (b), and $(I - T)^{-1} \in B(X)$. Then

$$\{B_n\} = \{(I - T)^{-1}(I - A_n)\}\$$

converges weakly (strongly) to $(I - T)^{-1}$. Let us remark that (b) can be replaced by any of the following equivalent conditions: (b₁) R(I - T) = X, (b₂) $(I - T)^{-1}$ is bounded, (b₃) 1 does not belong to the continuous spectrum of T.

Kwon and Redheffer [8] gave an example of a shift operator T on a separable Hilbert space such that $\lim_n T^n = 0$ in the strong operator topology for which $(I - T)^{-1}$ is not continuous. This situation cannot occur if $A_n \to 0$ uniformly.

PROPOSITION 5. Let A be an admissible matrix such that $||A_n|| = ||a_n(T)|| \to 0$ as $n \to \infty$. Then T is uniformly A-convergent, and $B_n = b_n(T) \to (I - T)^{-1}$ uniformly.

Proof. T is clearly asymptotically A bounded and strong asymptotically A-regular. From $||A_n|| \to 0$ it follows that $||(I - T)B_n - I|| \to 0$ in virtue of (A1). Let N be a fixed positive integer with $||(I - T)B_N - I|| < \frac{1}{2}$. For each $x \in X$ and each $\epsilon > 0$ there is a positive integer n_0 such that

$$||(I-T)(B_n-B_m)B_N x|| < \frac{1}{2}\epsilon, \quad n, m > n_0.$$

Since

$$B_n x - B_m x = (I - (I - T)B_N)(B_n x - B_m x) + (I - T)(B_n - B_m)B_N x,$$

we get the inequality

$$||B_n x - B_m x|| < \frac{1}{2}||B_n x - B_m x|| + \frac{1}{2}\epsilon$$

valid for all $n, m > n_0$. Hence $||B_n x - B_m x|| < \epsilon$ for all $n, m > n_0$, and $\{B_n x\}$ converges in norm for each $x \in X$ as X is complete. For each $x \in X$, $x = \lim_n (I - T)B_n x = (I - T)(\lim_n B_n x)$ in norm, so that X = R(I - T). Q = 0 on X, which proves $N(I - T) = \{0\}$. Therefore $(I - T)^{-1} \in B(X)$, and $||B_n - (I - T)^{-1}|| \leq ||(I - T)^{-1}|| ||(I - T)B_n - I|| \to 0$ as $n \to \infty$.

As a consequence of Proposition 5 we obtain that $\sum_{0}^{\infty} T^n$ converges uniformly if and only if $||T^n|| \to 0$, or equivalently, if and only if $r(T) = \lim_n ||T^n||^{1/n} < 1$. If $\sum_{0}^{\infty} T^n$ converges weakly or strongly, $||T^n|| \leq M$ for some M > 0 and all $n \geq 0$, and $r(T) \leq \lim_n M^{1/n} = 1$. However, even in the case when $\sum_{0}^{\infty} T^n$ converges strongly we can have r(T) = 1. To see this suppose X is a separable

https://doi.org/10.4153/CJM-1973-002-9 Published online by Cambridge University Press

20

⁽b) R(I - T) is closed.

Hilbert space with an orthonormal basis $\{e_k\}_{1}^{\infty}$. Following [6] define a linear diagonal operator T by

$$Te_k = (1-k)k^{-1}e_k, \quad k = 1, 2, \ldots$$

T is selfadjoint, and $r(T) = ||T|| = \sup_k |(1-k)k^{-1}| = 1$. For every *k*, $||T^n e_k|| \to 0$ as $n \to \infty$. Also any finite linear combination *y* of the basis vectors satisfies $||T^n y|| \to 0$ as $n \to \infty$. Each $x \in X$ can be approximated by such *y*, and the inequality $||T^n x|| \leq ||x - y|| + ||T^n y||$ shows that also $||T^n x|| \to 0$ as $n \to \infty$. Given $f = \sum \alpha_k e_k \in X$, we define $x = \sum \lambda_k e_k$ with $\lambda_k = k(2k-1)^{-1}\alpha_k$; $\sum |\lambda_k|^2$ converges as $|\lambda_k| \leq |\alpha_k|$. It is easily verified that f = (I - T)x, hence X = R(I - T). In view of Proposition 4, *T* is strongly convergent.

PROPOSITION 6. Suppose T is weak (strong) asymptotically A-convergent for some admissible matrix A. Then $X = N(I - T) \oplus R(I - T)^-$. For each $f \in R(I - T)$ and any $x_0 \in X$, the sequence $\{A_nx_0 + B_nf\}$ converges weakly (strongly) to a solution x of the equation (I - T)x = f; x is of the form $x = Qx_0 + x^*$, where Qx_0 is the projection of x_0 into N(I - T) in the direction of $R(I - T)^-$, and x^* is the unique solution of (I - T)x = f in $R(I - T)^-$.

Proof. The first two conclusions of the proposition follow from Theorem 1 and Proposition 1 respectively. Suppose (I - T)y = f for some $y \in X$. Then $\{B_n f\} = \{(I - A_n)y\}$ converges weakly (strongly) to the element $x^* = (I - Q)y$ ($Q = \lim_n A_n$). Since I - Q projects X onto $R(I - T)^-$, $x^* \in R(I - T)^-$, and $(I - T)x^* = (I - T)(I - Q)y = (I - T)y = f$. Hence x^* is a solution of (I - T)x = f contained in $R(I - T)^-$; the uniqueness of such a solution is a consequence of the decomposition

$$X = N(I - T) \oplus R(I - T)^{-}.$$

The last statement in Proposition 6 then follows from the fact that $\lim_{n}(A_{n}x_{0} + B_{n}f) = Qx_{0} + x^{*}$ in the corresponding topology.

Remark 4. If we assume that T is strong asymptotically A-regular and that $\{A_n\}$ converges in the weak operator topology, (E1) supplies the result that $\{A_nx_0 + B_nf\}$ converges strongly for each $f \in R(I - T)$ and each $x_0 \in X$ as in Theorem 3 of [4]. Proposition 6 provides the additional insight pertaining to the decomposition of X and the form of a solution x of the equation (I - T)x = f.

Suppose *T* is asymptotically bounded and weak (strong) asymptotically regular. For any admissible matrix *A*, *T* is also asymptotically *A*-bounded. Indeed, if $||T^n|| \leq M$ for some M > 0 and all $n \geq 0$, then $||a_n(T)|| \leq \sum_{i=1}^{n} a_{n,i}||T^j|| \leq M$. If *A* is also Toeplitz, *T* is weak (strong) asymptotically *A*-regular. Suppose $\lim_n T^n x = z$ for some $x \in X$. Then $\lim_n a_n(T)x = z$ [9]. If *T* is weak (strong) asymptotically regular, $\lim_n T^n(I - T)x = 0$ weakly (strongly) for each $x \in X$, and also $\lim_n a_n(T)(I - T)x = 0$ weakly (strongly) for each $x \in X$. Thus we are led to

J. J. KOLIHA

PROPOSITION 7. An operator T is weak (strong) asymptotically convergent if and only if:

(a) T is asymptotically bounded,

(b) T is weak (strong) asymptotically regular, and

(c) for some admissible Toeplitz matrix A, $\{A_nx\}$ clusters weakly for each $x \in X$.

The proposition strengthens the Corollary to Theorem 5 in [3].

The conclusions of Proposition 6 are naturally valid with strong convergence throughout when T is uniform asymptotically A-convergent for some admissible A. In this case however the following stronger result can be obtained.

PROPOSITION 8. Suppose T is uniform asymptotically A-convergent for some admissible matrix A. Then R(I - T) is closed, and

$$X = N(I - T) \oplus R(I - T).$$

Consequently, if $N(I - T) \neq \{0\}$, 1 is a simple pole of $(\lambda I - T)^{-1}$.

Proof. Let Q be the uniform limit of $\{A_n\} = \{a_n(T)\}$. Then $Q^2 = Q$ and $T^jQ = Q$ for each $j = 0, 1, \ldots$, in view of Lemma 1. Hence $(T - Q)^j = T^j - Q$ for each $j = 0, 1, \ldots$, and $a_n(T - Q) = \sum_{j=0}^n a_{nj}(T - Q)^j = \sum_{j=0}^n a_{nj}(T^j - Q) = a_n(T) - Q$. Then $||a_n(T - Q)|| \to 0$ as $n \to \infty$. According to Proposition 5, T - Q is uniformly A-convergent, and

$$(I - T + Q)^{-1} \in B(X).$$

In particular, X = R(I - T + Q), and each $x \in X$ can be written in the form x = (I - T)u + Qu, where $Qu \in N(I - T)$. Suppose $x \in R(I - T)^-$. In view of the decomposition $X = N(I - T) \oplus R(I - T)^-$ which follows from Theorem 1, and the equality x = Qu + (I - T)u, Qu is necessarily 0, and x = (I - T)u. This proves $R(I - T)^- = R(I - T)$. The last statement in Proposition 8 is a direct consequence of the decomposition

$$X = N(I - T) \oplus R(I - T)$$

with R(I - T) closed.

Proposition 8 is a generalization of the result obtained in [7] for a uniform asymptotically convergent operator T.

References

- 1. F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566-570.
- 2. D. G. De Figueiredo and L. A. Karlovitz, On the approximate solution of linear functional equations in Banach spaces, J. Math. Anal. Appl. 24 (1968), 654-664.
- 3. W. G. Dotson, Jr., An application of ergodic theory to the solution of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 75 (1969), 347-352.

- 4. Mean ergodic theorem and iterative solution of linear functional equations, J. Math. Anal. Appl. 34 (1971), 141–150.
- 5. W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240.
- 6. J. J. Koliha, Iterative solution of linear equations in Banach and Hilbert spaces, Ph.D. Thesis, University of Melbourne, 1972.
- 7. ——— Convergent and stable operators and their generalization (to appear).
- 8. Y. K. Kwon and R. M. Redheffer, Remarks on linear equations in Banach space, Arch. Rational Mech. Anal. 32 (1969), 247-254.
- 9. Curtis Outlaw and C. W. Groetsch, Averaging iterations in a Banach space, Bull. Amer. Math. Soc. 75 (1969), 430-432.
- 10. K. Yosida, Functional Analysis (Springer-Verlag, New York, 1965).

University of Melbourne, Parkville, Australia