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HARMONIC MOMENTS
OF INHOMOGENEOUS
BRANCHING PROCESSES

DIDIER PIAU,∗ Université Lyon 1

Abstract

We study the harmonic moments of Galton–Watson processes that are possibly inhomoge-
neous and have positive values. Good estimates of these are needed to compute unbiased
estimators for noncanonical branching Markov processes, which occur, for instance, in
the modelling of the polymerase chain reaction. By convexity, the ratio of the harmonic
mean to the mean is at most 1. We prove that, for every square-integrable branching
mechanism, this ratio lies between 1 −A/k and 1 −A′/k for every initial population of
size k > A. The positive constantsA andA′ are such thatA ≥ A′, are explicit, and depend
only on the generation-by-generation branching mechanisms. In particular, we do not use
the distribution of the limit of the classical martingale associated with the Galton–Watson
process. Thus, emphasis is put on nonasymptotic bounds and on the dependence of the
harmonic mean upon the size of the initial population. In the Bernoulli case, which is
relevant for the modelling of the polymerase chain reaction, we prove essentially optimal
bounds that are valid for every initial population size k ≥ 1. Finally, in the general case
and for sufficiently large initial populations, similar techniques yield sharp estimates of
the harmonic moments of higher degree.

Keywords: Branching process; harmonic moment; inhomogeneous Markov chain;
polymerase chain reaction
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1. Introduction and results

We study the behaviour of the harmonic means, 1/E(1/Zn), of Galton–Watson processes,
(Zn)n≥0, that are possibly inhomogeneous and have positive values. A motivation for this
theoretical problem is the construction of unbiased estimators for samples of branching Markov
processes when the state of an individual depends on the number of its siblings. An instance,
outside the realm of pure probability, where this construction is needed arises in the modelling
of the polymerase chain reaction by branching processes; see Sun (1995). In this specific case
each individual has either 1 or 2 offspring, the state of the first descendant is identical to the
state of its parent, and the state of the other descendant, if any, is a stochastic function of the
state of its parent. We wish to estimate, for instance, the mutation rate of the reaction from a
uniform sample of a given generation. Any unbiased estimator of the state of such a sample
requires us to compute the harmonic-mean size of the corresponding generation. However, there
exists no closed-form expression for these harmonic means, except for small initial populations
and small numbers of generations. Since the mean sizes of the generations of a branching
process are well known, the above problem is usually circumvented by assuming that the initial
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population is very large. Then an averaging effect occurs which results, roughly speaking, in
the harmonic-mean size of a generation being close to its mean size.

In the context of the polymerase chain reaction, the author showed in previous papers
(see Piau (2001), (2004)) that this approximation is accurate for surprisingly small initial
populations, and provided sharp quantitative estimates of the discrepancy between the harmonic
mean and the mean, for any initial population. These results also proved useful in establishing
rigorous confidence intervals for the estimator of the mutation rate of the polymerase chain
reaction; see Piau (2005). Our purpose in the present paper is to give the exact extent of this
approximation phenomenon for general, possibly inhomogeneous, Galton–Watson processes
with positive values. When the approximation phenomenon indeed occurs, we quantify it
through nonasymptotic and essentially optimal bounds.

In what follows, (Zn)n≥0 denotes a positive, possibly inhomogeneous, Galton–Watson
process. The distribution of this Markov process with values in {1, 2, . . .} is characterized
by a sequence, � := (ξn)n≥1, of distributions on {1, 2, . . .}, as follows. For every n ≥ 1,
conditionally on the past of the process, Zn is the sum of Zn−1 random variables of law ξn
which are independent of the past. Hence, ξn denotes the law of the offspring number in the
nth generation.

Assume that each ξn is integrable and has mean µn ≥ 1. Then Zn is integrable and, if Ek
denotes the expectation when Z0 = k, for any positive integer k, we have

Ek(Zn) = kMn, with Mn :=
n∏
i=1

µi.

Furthermore, by convexity, the sequence with general term Mn Ek(1/Zn) is nondecreasing for
n ≥ 0. Thus, every term is at least 1/k. Our aim is to provide explicit bounds for the harmonic
moments, implying, in particular, that Mn Ek(1/Zn) is close to 1/k when this is so. In other
words, we wish to show that the sequence with general term Mn Ek(1/Zn) is nearly constant.
Indeed, for every fixed n ≥ 0, as k → ∞ the law of large numbers implies that Ek(1/Zn) is
equivalent to 1/k E1(Zn), whose value is 1/Ek(Zn) = 1/kMn. Much more is true, as we show
below. To ease the task of the reader, we first state the consequence of our general results, in
the homogeneous case.

Theorem 1. Assume that � is constant and square integrable. Then ξn = ξ and Mn = µn,
where ξ is square integrable and µn =: µ ≥ 1 for every n ≥ 1. Thus, there exists a positive
constant, A, depending only on ξ , such that, for every integer k > A and every n ≥ 0,

1

k
≤ µn Ek

(
1

Zn

)
≤ 1

k − A
.

Assume further that µ �= 1. There then exists a positive constant, A′, depending only on ξ ,
such that A′ ≤ A and, for every integer k > A′,

lim
n→∞µ

n Ek

(
1

Zn

)
≥ 1

k − A′ .

1.1. Harmonic moments

Theorem 1 is a consequence of a general quantitative result, stated as Theorem 2 below,
which deals with inhomogeneous processes. To state and prove this result, we rely on some
specific families of distributions, which we now define.
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Branching harmonic moments 467

Definition 1. For every m ≥ 1, the generating function, gm, of the positive, integer-valued
random variable Lm is such that, for any t in [0, 1],

E(tLm) =: gm(t) = t

m− (m− 1)t
.

For any positive real number c, the random variable Lc,m is such that, for any t in [0, 1],

E(tLc,m) =: gc,m(t) = gm(t
c)1/c = t

(m− (m− 1)tc)1/c
.

Thus, gm = g1,m. For every c, Lc,m ≥ 1 almost surely and E(Lc,m) = m. If m = 1 then
Lm = Lc,m = 1 almost surely. If m > 1 then the distribution of Lm − 1 is geometric and the
distribution of (Lc,m − 1)/c is negative binomial.

Definition 2. For any positive real number c, let Ac denote the set of distributions of integrable
random variables L ≥ 1 such that, for any t in [0, 1],

E(tL) ≤ gc,m(t), m := E(L).

In addition, let A′
c denote the set of distributions of integrable random variables L ≥ 1 such

that, for any t in [0, 1],
E(tL) ≥ gc,m(t), m := E(L).

Note that we compare the distribution of L to distributions of random variables not a-priori
integer valued, but with the same mean. We are now able to state our main result.

Theorem 2. (i) Let n ≥ 1. Assume that there exists a c such that ξi belongs to Ac for every
i ≤ n. Then, for every k > c,

Mn Ek

(
1

Zn

)
≤ 1

k − c
.

(ii) Assume that Mn → ∞ as n → ∞ and that there exists a c such that ξi belongs to A′
c for

every i ≥ 1. Then, for every k > c,

lim
n→∞Mn Ek

(
1

Zn

)
≥ 1

k − c
.

Recall that, by convexity, the sequenceMn Ek(1/Zn) is nondecreasing. The existence of the
limit as n → ∞ is thus a general fact. Assertion (ii) of Theorem 2 is false if Mn is allowed to
stay bounded, or if the limit n → ∞ is replaced with a finite n, since, for instance, the n = 0
value is 1/k. On the other hand, in practical situations, the hypothesis that Mn → ∞ is easy
to check since it only involves the first moments of the generation-by-generation mechanisms.

The restriction to k > c is important as well. As Proposition 1 shows, the behaviours of
Ek(1/Zn) and 1/Mn can be quite different if k is not sufficiently large. Proposition 1 deals with
one generation of a branching process using random variables distributed as Lc,m, asm → ∞,
and Corollary 1 applies this result to the nth generation of a branching process using random
variables distributed as Lc,m for a given m, as n → ∞.

Definition 3. Let Z denote a random variable and Pc,mk a probability measure with respect
to which Z is distributed like the sum of k independent, identically distributed copies of the
random variable Lc,m.
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Proposition 1. For any k ≤ c, mEc,mk (1/Z) → ∞ as m → ∞.

Corollary 1. Assume that c is an integer and that ξn is the distribution of Lc,m, for every n;
hence, Mn = Z0m

n. Then the distribution of Zn coincides with the distribution of the first
generation of the branching process based on Lc,mn . As a consequence,mn Ec,mk (1/Zn) → ∞
as n → ∞.

Thus, when k ≤ c, Ek(1/Zn)may decay on a different scale than 1/Mn; see more on this in
Section 8. However, Theorem 2 describes every square-integrable Galton–Watson process if k
is sufficiently large, as the following theorem shows.

Theorem 3. Any square-integrable distribution on [1,∞) belongs to Ac for sufficiently large
c and to A′

c for sufficiently small c. Conversely, any distribution on [1,∞) which belongs to
Ac is square integrable and has variance equal to at most cm(m − 1), where m denotes its
mean. Likewise, the variance of any distribution on [1,∞) which belongs to A′

c is either finite
and equal to at least cm(m− 1), or infinite.

We shall make precise the optimal values of c for some common distributions.
Finally, Theorem 2 indeed describes the behaviour of Ek(1/Zn)when k is sufficiently large,

for any square-integrable branching process.

1.2. The Bernoulli case

We apply Theorem 2 to the Bernoulli case, when the number of offspring is always 1 or
2. This case is relevant in the context of the polymerase chain reaction. Our techniques yield
accurate bounds of Ek(1/Zn) for every positive k, even k = 1, for instance in the homogeneous
case; see Theorem 5, below. We first state uniform bounds that are simple consequences of the
results of Section 1.1. For every j , let δj denote the Dirac mass at j .

Theorem 4. Let n ≥ 0. Assume that the laws, ξi on {1, 2}, of the offspring numbers are given
by ξi = (1 − xi)δ1 + xiδ2, with xi in [0, 1], for every i ≤ n. Then, for any k ≥ 2,

1

k
≤ Mn Ek

(
1

Zn

)
≤ 1

k − 1
.

In the homogeneous case, we can prove tighter bounds. We write Exk for Ek when ξi =
(1 − x)δ1 + xδ2 for every i ≥ 1. For every x in (0, 1), define

α1(x) := 1 − x

1 + x
, α2(x) := 1 − x.

Then 0 ≤ α1 ≤ α2 ≤ 1 and α2 and α1 decrease from α2(0) = α1(0) = 1 to α2(1) = α1(1) = 0.

Theorem 5. (i) For any k ≥ 1 and n ≥ 0,

1

k
≤ (1 + x)n Exk

(
1

Zn

)
≤ 1

k − α2(x)
.

(ii) For any k ≥ 1,

lim
n→∞(1 + x)n Exk

(
1

Zn

)
≥ 1

k − α1(x)
.
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These estimates are precise enough to imply the following secondary result for k = 1.

Proposition 2. There exists no uniform upper bound of (1 + x)n Ex1(1/Zn) for n ≥ 0 and x
in (0, 1), since limx→0 limn→∞(1 + x)n Ex1(1/Zn) is infinite. More precisely, for every x in
(0, 1) and every n ≥ 1,

c(x)

x
< lim
n→∞(1 + x)n Ex1

(
1

Zn

)
<

1

x
,

where c(x) := 1 − x(1 − x)/(1 + 3x) is such that 8
9 ≤ c(x) < 1.

In Theorem 5, the value of α1(x) stems from the general construction of Section 1.1, but
the value of α2(x) does not. In other words, a direct application of Section 1.1 to the Bernoulli
case yields α(x) instead of α2(x), with

α(x) := − log(1 + x)

log(1 − x)
.

For every x in (0, 1), we have α1(x) < α2(x) < α(x).
Theorem 5 follows from the more general case below.

Theorem 6. Recall that ξi denotes the law of the offspring number in the ith generation, and
assume that ξi = (1 − xi)δ1 + xiδ2 for every i.

(i) If xi ≥ x for every i ≤ n then, for any k ≥ 1,

1

k
≤ Ek

(
1

Zn

) n∏
i=1

(1 + xi) ≤ 1

k − α2(x)
.

(ii) If xi ≤ x for every i and
∑
i≥1 xi diverges then, for any k ≥ 1,

lim
n→∞ Ek

(
1

Zn

) n∏
i=1

(1 + xi) ≥ 1

k − α1(x)
.

1.3. A discontinuity result

In the Bernoulli case, the functions α2(x) and α1(x) have a nonzero limit as x → 0+. Hence,
the second part of Theorem 5 shows that the limit of the normalized harmonic moments does
not always depend continuously on the parameters of the model. We show in this section that
the phenomenon is general. For the sake of simplicity, we deal with the homogeneous case.

Let M denote a given subset of (1,∞) that has 1 as a limit point. Below, the limits asµ → 1
are implicitly restricted to values of µ in M. For each µ in M, let ξµ denote a distribution of
mean µ. If ξi = ξµ for every i ≥ 1, define a function, hk , on M by

hk(µ) := lim
n→∞µ

n Ek(1/Zn).

Proposition 3. Assume that for each µ in M there exist functions, a(µ) and a′(µ), such that
ξµ belongs to both Aa(µ) and A′

a′(µ). Then

1

k − a′∗
≤ lim inf

µ→1
hk(µ) ≤ lim sup

µ→1
hk(µ) ≤ 1

k − a∗
,

where a∗ := lim supµ→1 a(µ) and a′∗ := lim infµ→1 a
′(µ). Thus, if a′∗ is positive then the

function hk is not continuous at µ = 1+.
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Theorem 7. In the homogeneous case, assume that each ξµ is the law of 1 + X, where the
law of the random variable X is binomial, Poisson, or geometric. Then, for every k ≥ 1, hk is
discontinuous at µ = 1, since hk(1) = 1/k and

lim
µ→1

hk(µ) = 1

k − 1
.

If the law of X is geometric, then hk(µ) = 1/(k − 1) for every µ > 1 and hk(1) = 1/k.
Now assume that each ξµ is the law ofLc,µ, for a given positive integer c. Then hk(1) = 1/k

for every k. Furthermore, for every µ > 1, hk(µ) = 1/(k − c) if k > c and hk(µ) = ∞ if
k ≤ c.

1.4. Higher harmonic moments

We now state an extension of Theorem 2 to higher harmonic moments. Theorem 8 is simply
a special case of Proposition 11, below.

Theorem 8. (i) Let n ≥ 1. Assume that there exists a c such that ξi belongs to Ac for every
i ≤ n. Then, for every positive integer r and every integer k > rc,

Mr
n Ek

(
1

Zrn

)
≤ 1

(k − c)(k − 2c) · · · (k − rc)
.

(ii) Assume that Mn → ∞ as n → ∞ and that there exists a c such that ξi belongs to A′
c for

every i. Then, for every positive integer r and every integer k > rc,

lim
n→∞M

r
n Ek

(
1

Zrn

)
≥ 1

(k − c)(k − 2c) · · · (k − rc)
.

Corollary 2. Let n ≥ 1. Assume that there exists a c such that ξi belongs to Ac for every i ≤ n,
and write σ 2

k (1/Zn) for the variance of 1/Zn when Z0 = k. Then, for every integer k > 2c,

M2
nσ

2
k

(
1

Zn

)
≤ 3c

k(k − c)(k − 2c)
.

If, additionally, there exists a c′ such that ξi belongs to A′
c′ for every i ≤ n, then the sequence

k3M2
nσ

2
k (1/Zn) is bounded above and below by finite positive constants, independently of n

and k, for sufficiently large values of k.

1.5. Related studies

As mentioned above, Piau (2001), (2004) used preliminary versions of our results, especially
in the Bernoulli case, which is relevant to the study of the polymerase chain reaction. In this
specific case, we are now able to deal directly with every initial population size, even k = 1.

Ney andVidyashankar (2003) gave asymptotics of the harmonic moments of every integrable
homogeneous branching process starting from k = 1 particle. Furthermore, when L logL is
integrable, their results specialize as follows (see also Bingham (1988) for some classical facts
that are recalled below).

Let p1 := P(L = 1), let µ := E(L), and let γ denote the Karlin–McGregor exponent of the
distribution ofL, defined by the equalityp1µ

γ = 1 (γ is also called the Schröder constant). Let
W denote the almost-sure limit of the nonnegative martingale Zn/µn. The Poincaré function
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is the Laplace transform, P(s) := E1(exp(−sW)), of the distribution of W when k = 1, and
solves Poincaré’s functional equation:

P(µs) = f (P (s)).

Three cases may arise. First, if r > γ then E1(1/Zrn)/p
n
1 converges to a finite, positive limit

whose expression is an integral which involves the Schröder function S, defined for any t in
[0, 1) by

S(t) := lim
n→∞ E1(t

Zn)/pn1 .

Up to a multiplicative constant, S is the unique finite solution in [0, 1) to Schröder’s functional
equation:

S(f (t)) = p1S(t).

Second, when r = γ , E1(1/Z
γ
n )/np

n
1 converges to a finite, positive limit whose expression

involves Poincaré and Schröder functions. Third, when r < γ , µnr E1(1/Zrn) converges to
a finite, positive limit. Ney and Vidyashankar (2003) provided an expression for the limit in
terms of an integral of the Poincaré function. It can readily be checked that this limit is in fact
E1(1/Wr), and that the limit is also an upper bound.

When L logL is not integrable the results are similar, but the normalizations npn1 = n/µγ

(for r = γ ) and 1/µnr (for r < γ ) must be replaced by similar expressions which involve the
Seneta–Heyde constants.

Restricting ourselves henceforth to the L logL case, we recall that the distribution ofW has
a density, w, on the nonnegative real line such that w(x)/xγ−1 is bounded to lie between two
finite, positive constants as x → 0; see Dubuc (1971).

The comparison of our results with those recalled above is based on two elementary lemmas.

Lemma 1. For any distribution, ξ , in Ac, we have γ (ξ) ≥ 1/c. For any distribution, ξ , in A′
c,

we have γ (ξ) ≤ 1/c.

In other words (see Definition 4, below),

A′(ξ) ≤ 1/γ (ξ) ≤ A(ξ).

Lemma 2. For any branching process, any k ≥ 1, any n ≥ 0, and any positive real number r ,
we have

kr Ek(1/Z
r
n) ≤ E1(1/Z

r/k
n )k.

Corollary 3 is not stated as such in the papers mentioned above, but it follows from results
that we have recalled.

Corollary 3. For any homogeneous branching process of Schröder exponent γ and any k >
r/γ , the sequence µnr Ek(1/Zrn) is bounded, as n varies, by the finite constant Ek(1/Wr).

An interesting feature of Corollary 3 is that it deals with the entire regime wherein such a
constraint on µnr Ek(1/Zrn)may hold, that is, with every initial population size k > r/γ (ξ). In
other words, when k ≤ r/γ (ξ), µnr Ek(1/Zrn) is not bounded. Our upper bounds are restricted
to higher values of k, namely to the regime in which k > rA(ξ).

One might think of recovering the dependence with respect to k from the results of Ney and
Vidyashankar (2003) even when k ≥ 2, starting from the inequality

Ek

(
1

Wr

)
≤ E1(1/Wr/k)k

kr
.
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However, the bounds obtained cannot be optimal for k ≥ 2, since

Eck

(
1

W

)
= 1

k − c
<

Ec1(1/W
1/k)k

k
.

Furthermore, as stressed by Bingham (1988), the law of W and, hence, the value of E(1/Wr)

may be explicitly computed only in very specific cases. In contrast with every other paper
the author is aware of, the bounds provided here are explicit. The assumptions involve only
elementary, step-by-step characteristics of the branching process, namely the distributions of
the number of descendants at each generation. Also, we allow for inhomogeneous processes,
as long as the reproduction laws all belong to a given space (either Ac or A′

c), and we make
explicit the dependence of the bounds on the initial population.

The introduction of the family of distributions described by gc,m, for integer values of c, is
hardly new; see Harris (1948), for instance. A key point is that we use them for noninteger
values of c and as a reference scale for any square-integrable distribution. For instance, the
k = 1 Bernoulli distribution requires us to make use of values of c in (0, 1). Although these
distributions do not correspond to a branching process for noninteger values of c, they still
satisfy a semigroup property, and this property is sufficient for our purposes. Finally, our
methods do not determine the behaviour of the harmonic moments of homogeneous processes
whose reproduction laws are not square integrable.

1.6. Plan

The remainder of the paper is organized as follows. In Section 2, we reduce the case of
branching processes in Ac and A′

c to the case of well-chosen distributions gc,m, which we
solve in Section 3. In Section 4, we show that the Ac and A′

c cases imply the result for
every square-integrable branching process. In Section 5, we deal with harmonic moments of
higher degree. In Section 6, we thoroughly study the Bernoulli case, that is, the case when
the offspring number is 1 or 2, sharpening our previous results on this subject. We provide
an algorithm to compute the asymptotic harmonic moments to any accuracy, and we present
some simulations and conjectures about this specific case. Section 7 is a remark about size-
biased offsprings. Finally, in Section 8, we briefly explain how to deal with cases in which the
asymptotic behaviours of the harmonic mean and the mean do not coincide.

2. From Ac and A′
c to gc,m

We show that every branching process whose branching mechanism uses only laws in Ac

can be reduced to the case of Lc,m for a suitablem, and we solve this case. Similar results hold
regarding the comparison with A′

c.

2.1. Results

Lemma 3 describes the semigroup structure of each family (gc,m)m. This is the starting
point of our computations. Corollary 5 is a special case of Corollary 4 and Corollary 4 is a
consequence of Lemma 3. Corollary 4 uses Definition 3.

Lemma 3. For any positive real number c and anym ≥ 1 andm′ ≥ 1, we have gc,m ◦ gc,m′ =
gc,m′′ , with m′′ := mm′.

Corollary 4. Let ϕ denote a nonnegative, completely monotone function. For every branching
process in Ac, every k ≥ 1, and every n ≥ 0, we have

Ek(ϕ(Zn)) ≤ Ec,mk (ϕ(Z)), where m := Mn.
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For every branching process in A′
c, every k ≥ 1, and every n ≥ 0, we have

Ek(ϕ(Zn)) ≥ Ec,mk (ϕ(Z)), where m := Mn.

Recall that ϕ is completely monotone if and only if its derivatives (the orders of which
are indicated by superscripts in parentheses) are such that (−1)iϕ(i) is nonnegative for every
positive integer i. Nonnegative, completely monotone functions are Laplace transforms of
nonnegative measures on [0,∞); see Chapter IV of Widder (1941).

Corollary 5. For every branching process in Ac and every positive real number r , we have

Ek(1/Z
r
n) ≤ Ec,mk (1/Zr), where m := Mn.

For every branching process in A′
c and every positive real number r , we have

Ek(1/Z
r
n) ≥ Ec,mk (1/Zr), where m := Mn.

2.2. Proofs

Proof of Lemma 3. Since each gc,m is the conjugate of gm by the bijection t 	→ tc, the case
c = 1 implies the general case. When c = 1, 1/(1 − gm(t)) is an affine function of 1/(1 − t).
By composition, gm ◦ gm′ is also an affine function of 1/(1 − t) and it only remains to compute
its coefficients to prove the semigroup property.

Proof of Corollary 4. The representation of completely monotone functions which we re-
called after the statement of the corollary shows that

ϕ(z) =
∫ 1

0
tz dπ(t),

for a given measure, π , on [0, 1]. Thus, Ek(ϕ(Zn)) is a positive, linear functional of the
generating function, Ek(tZn), of Zn. The function Ek(tZn) is the kth power of the composition
from i = 1 to i = n of the generating functions of the ξi . When the branching process belongs
to Ac, the generating function of ξi is bounded above by gc,µi and, thus, the composition is
bounded above by the composition of the functions gc,µi , 1 ≤ i ≤ n, which equals gc,m.
Finally,

Ek(ϕ(Zn)) ≤
∫ 1

0
gc,m(t)

k dπ(t) = Ec,mk (ϕ(Z)).

The proof of the result for branching processes in A′
c is similar.

Proof of Corollary 5. For every positive real number r , ϕ(z) := 1/zr is completely mono-
tone. To see this, choose dπ(t) = (log 1/t)r−1 dt/	(r)t in the representation of ϕ which we
used to prove Corollary 4.

3. The case gc,m

Our task in this section is to evaluate the moments of 1/Z under the measure Pc,mk . The cases
k > c and k ≤ c yield different asymptotic behaviours for the first moment of 1/Z. We begin
with the direct way to deal with Pc,mk when k is sufficiently large, namely the computation
of factorial moments of Z instead of the usual moments; see Proposition 4. Starting with
Lemma 4, which gives a representation formula valid for every k, we study in depth the first
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harmonic moment, both in the small-k and large-k regimes. Corollary 5 and Lemma 5 below
then imply the results of Theorem 2. Lemma 6 deals with the case k = c. Lemma 7 provides
an alternative formulation of the integral of Lemma 4, a formulation used in Lemma 8 to treat
the case k < c. Proposition 1, which applies when k ≤ c, is then an easy consequence.

3.1. Results

We begin with exact formulae. Theorem 8 is a consequence of Corollary 6, below.

Proposition 4. (i) For every nonnegative integer r ,

Ec,mk (Z(Z + c) · · · (Z + rc)) = mr+1k(k + c) · · · (k + rc).

(ii) For every real number r such that k > rc,

mr Ec,mk

(
	(Z/c − r)

	(Z/c)

)
= 	(k/c − r)

	(k/c)
.

(iii) In particular, for every nonnegative integer r such that k > rc,

mr Ec,mk

(
1

(Z − c) · · · (Z − rc)

)
= 1

(k − c) · · · (k − rc)
.

Corollary 6. For every nonnegative integer r such that k > rc,

1

kr
≤ mr Ec,mk

(
1

Zr

)
≤ 1

(k − c) · · · (k − rc)
.

In particular, for every k > c,

1

k
≤ mEc,mk

(
1

Z

)
< mEc,mk

(
1

Z − c

)
= 1

k − c
.

The following is a slight generalization of the assertion for r = 1 in Corollary 6.

Proposition 5. For every c > 0, every m ≥ 1, every u ≥ 0, and every positive integer k > u,

1

k
≤ mEc,mk

(
1

Z − u

)
≤ 1

k − sup{c, u} .

Proposition 4 and Corollary 6 are the results that we use to treat the case k > c in the rest of
the paper. We now turn to the evaluation of the exact harmonic moment of Z with respect to
Pc,mk . The results below are mostly used to deal with the case k ≤ c.

Lemma 4. For every positive integer k, every positive real number c, and every m > 1,

Ec,mk

(
1

Z

)
= G(k/c,m)

c
, G(u,m) :=

∫ 1

0

tu−1 dt

1 + (m− 1)t
.

Alternatively,

G(u,m) = Bu,1−u(1 − 1/m)

(m− 1)u
,

where Bu,v denotes the incomplete beta function with parameters u and v, that is, for every x
in [0, 1),

Bu,v(x) :=
∫ x

0
tu−1(1 − t)v−1 dt.
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Lemma 5. Assume that u > 1. Then

mG(u,m) ≤ 1

u− 1
.

The order of this upper bound is exact when m is large, since the function (m − 1)G(u,m)
increases as m increases and converges to 1/(u− 1) as m → ∞.

Lemma 6. G(1,m) = (logm)/(m− 1).

Lemma 7. For any u, (m− 1)uG(u,m) is an increasing function of m ≥ 1.

Lemma 8. Assume that u < 1. Asm → ∞, (m− 1)uG(u,m) converges to cu := π/ sin(πu).
Thus, on the one hand, for any m > 1, (m − 1)uG(u,m) ≤ cu. On the other hand, for any
m ≥ 2, (m− 1)uG(u,m) ≥ 1/2u. For every u < 1, bounds of cu are cu ≥ π and

1

2u(1 − u)
≤ cu ≤ 1

u(1 − u)
.

Corollary 7. Let k < c and 
(k, c) := c/k(c − k). For every m,

(m− 1)k/c Ec,mk (1/Z) ≤ 
(k, c).

The order of this upper bound is exact, since

lim
m→∞(m− 1)k/c Ec,mk (1/Z) ≥ 1

2
(k, c).

3.2. Proofs

Lemmas 6, 7, and 8 follow from the definitions.

Proof of Proposition 4. (i) For any x with |x| < 1 and any positive real number y,

1

(1 − x)y
=

∑
r≥0

xr
	(y + r)

	(y)	(r + 1)
.

Setting y = Z/c and integrating yields

Ec,mk

(
1

(1 − x)Z/c

)
=

∑
r≥0

Ec,mk

(
	(r + Z/c)

	(Z/c)

)
xr

	(r + 1)
.

However, we also have

Ec,mk

(
1

(1 − x)Z/c

)
= gc,m

(
1

(1 − x)1/c

)k
= 1

(1 −mx)k/c
.

Using the expansion of 1/(1 − mx)k/c given above and equating the coefficients of the two
series yields the result for any nonnegative integer r .

(ii) For any positive real numbers y and r with y > r ,

	(r)	(y − r)

	(y)
=

∫ 1

0
ty−r−1(1 − t)r−1 dt.
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Setting y = Z/c and performing the integration yields

	(r)Ec,mk

(
	(Z/c − r)

	(Z/c)

)
=

∫ 1

0
gc,m(t

1/c)k
(1 − t)r−1

t r+1 dt.

The change of variable s := gc,m(t
1/c)c = gm(t) yields

	(r)Ec,mk

(
	(Z/c − r)

	(Z/c)

)
=

∫ 1

0
sk/c−r−1 (1 − s)r−1

mr
ds,

which is the desired formula.

Proof of Lemma 4. Write Ec,mk (1/Z) as the integral ofgc,m(t)k/t over (0, 1). Use the change
of variable t ′ := gc,m(t)

c. This yields the first expression for G in the lemma. To obtain
the expression for G in terms of the incomplete beta function, use the change of variable
t ′ := (m− 1)t/(1 + (m− 1)t) in the first expression for G.

Proof of Lemma 5. In the first expression for G in Lemma 4, use the fact that 1 + (m− 1)t
lies between mt and m. Thus, G(u,m) lies between the integral of tu−2/m and the integral of
tu−1/m, that is, between 1/(u− 1)m and 1/um.

Proof of Corollary 7. Lemma 4 and Lemma 8 imply that the left-hand side of the inequality
is indeed bounded by cu/c, where u := k/c. Therefore, we can use the bound of cu by
1/u(1 − u) in Lemma 8. This yields the bound for every finite value of m. The limit as
m → ∞ is cu/c ≥ 1/2uc(1 − u) = 
(k, c)/2.

4. From Ac and A′
c to the general case

In this section, we show that every square-integrable branching process belongs either to the
set Ac or to the set A′

c, for a suitable value of c; we prove Theorem 3; and we describe the best
possible values for the constants, c, of Theorem 2 in some specific examples.

4.1. Comparisons

Our next proposition is related to Theorem 3 and motivates Definition 4, below.

Proposition 6. If c1 ≤ c2 and m ≥ 1 then gc1,m ≤ gc2,m. If c1 < c2 and m > 1 then the
distribution of Lc2,m belongs to Ac2 but not to Ac1 and the distribution of Lc1,m belongs to A′

c1
but not to A′

c2
. Thus, (Ac)c is a strictly increasing sequence and (A′

c)c is a strictly decreasing
sequence.

Definition 4. For any square-integrable distribution ξ on [1,∞), let

A(ξ) := inf{c > 0 : ξ ∈ Ac}, A′(ξ) := sup{c > 0 : ξ ∈ A′
c}.

4.2. Examples

We now study some specific transformations and examples. Proposition 7 follows from the
definitions.

Proposition 7. For every ξ , we have A′(ξ) ≤ A(ξ). The inequality is strict except in two
cases: when A(ξ) = A′(ξ) = 0, in which case ξ is a Dirac measure at m ≥ 1, and when
A(ξ) = A′(ξ) = c is positive, in which case ξ is the distribution of a random variable Lc,m.
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Proposition 8. (i) If the laws of the independent random variables 1 + X and 1 + X′ belong
to A′

c, then the law of 1 +X+X′ also belongs to A′
c. This statement is false if A′

c is replaced
by Ac.

(ii) If the law of 1 +X belongs to Ac and b is positive, then the law of 1 + bX belongs to Acb.
A similar statement holds if Ac and Acb are respectively replaced by A′

c and A′
cb.

(iii) If the law of L belongs to Ac and L′ stochastically dominates L, then the law of L′ also
belongs to Ac. For instance, if b is nonnegative then the law of L+ b belongs to Ac. A similar
statement holds if Ac is replaced by A′

c.

If ξ is a Dirac measure then A′(ξ) = A(ξ) = 0. Other common cases are as follows.

Proposition 9. (i) If ξ is uniform on {1, . . . , n} thenA(ξ) < 1; more precisely, 2nA(ξ) = n+1.

(ii) If ξ is uniform on {1, n} then A′(ξ) = (n− 1)/(n+ 1) and 2A(ξ)+1 = n+ 1.

(iii) If ξ is the law of 1 + X, where X is binomial(n, x)-distributed, then A(ξ) < 1; more
precisely, (1 + xn)(1 − x)nA(ξ) = 1.

(iv) If ξ is the law of 1 +X, where X is Poisson-distributed with mean x, then A(ξ) < 1; more
precisely, exA(ξ) = 1 + x.

In the notation of Section 1.5, cases (i) to (iv) of Proposition 9 are such thatA(ξ) = 1/γ (ξ) >
A′(ξ). To check that the three values A(ξ), 1/γ (ξ), and A′(ξ) can indeed be different, assume
that ξ := (1 −p)δ1 + (δ2 + δ3)p/2 with p ∈ (0, 1). Then γ (ξ) := − log(1 −p)/ log(1 + 3p).
For p = 1

5 , we can check that the function t 	→ E(tL)/g1/γ,m(t) has positive derivative at
t = 0 and t = 1. Thus, some values of this function are greater than 1 and some are smaller
than 1. This implies that A(ξ) > 1/γ (ξ) > A′(ξ).

4.3. The Bernoulli case

Definition 5. If ξ = (1 − x)δ1 + xδ2 then we write α(x) for A(ξ) and α1(x) for A′(ξ).

Proposition 10. For any x in (0, 1), we have α1(x) < α(x) < 1, since

α1(x) = 1 − x

1 + x
, (1 − x)α(x)(1 + x) = 1.

Thus, α and α1 decrease in (0, 1], from α(0+) = α1(0+) = 1 to α(1) = α1(1) = 0. Both are
discontinuous at 0, since α(0) = α1(0) = 0.

Note that α1(x) ≤ 1 − x ≤ α(x).

4.4. Proofs

Proof of Proposition 6. To prove this result, simply compare the logarithmic derivatives.

Proof of Theorem 3. Both results stem from the expansion of gc,m near 1, which reads as
follows: when t = o(1),

gc,m(1 − t) = 1 −mt + 1
2c(c + 1)m(m− 1)t2 + o(t2).

We also have
E((1 − t)L) = 1 − E(L)t + 1

2 E(L(L− 1))t2 + o(t2).
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A comparison of the second-order terms of these expansions yields the conditions on the variance
of L for L to belong to Ac and, respectively, A′

c.
To show that any square-integrable distribution belongs to Ac for suitable values of c, we

first choose values of d and s < 1 sufficiently large to ensure that E(tL) ≤ gd,m(t) for every
t ≥ s. According to the expansion above, this is possible for any d such that

d(d + 1)m(m− 1) > E(L(L− 1)), m := E(L).

We then choose a value of c > d sufficiently large that 1/m1/c ≥ gd,m(s)/s. Thus, E(tL) ≤
gd,m(t) ≤ gc,m(t) for every t ≥ s and, since E(tL)/t is a nondecreasing function of t ,

E(tL) ≤ t E(sL)/s ≤ tgd,m(s)/s ≤ t/m1/c ≤ gc,m(t)

for any t ≤ s. The proof for the comparison with distributions in A′
c is similar.

Proof of Proposition 8. Part (i) follows from the fact that

gc,m(t)gc,m′(t) ≥ tgc,mm′(t).

We leave the verification of this as an exercice for the reader. Parts (ii) and (iii) are clear, and
their proofs thus omitted.

5. Higher moments

Assume that ξi belongs to Ac for every i ≤ n, and let m := Mn. Then

Mr
n Ek(1/Z

r
n) ≤ mr Ec,mk (1/Zr).

Expansions of gc,m(t) in the limit as m → ∞ show that the distribution of Z/m with respect
to Pc,m1 converges to the distribution of W with respect to a measure, Pc1, such that

Ec1(e
−tW ) = (1 + ct)−1/c.

The distribution ofW is gamma(c, 1/c), that is, its density with respect to the Lebesgue measure,
dw, is

wc−1e−w/c 1{w≥0} /cc	(c).
Furthermore, gc,m(t) ≤ gc(t) := Ec1(t

W ) = (1 − c log t)−1/c. Hence,

Mr
n Ek

(
1

Zrn

)
≤ Eck

(
1

Wr

)
= 	(k/c − r)

cr	(k/c)
.

This inequality holds for every positive value of r and c and every positive integer k such that
k > cr . These results prove the following proposition.

Proposition 11. (i) Consider a c such that ξi belongs to Ac for every i ≤ n. For every positive
real number r and every k such that k > rc, we have

Mr
n Ek

(
1

Zrn

)
≤ 1

[k, c]r , where [k, c]r := cr	(k/c)

	(k/c − r)
.

When r is an integer, [k, c]r = ∏r
i=1(k − ic).

(ii) Conversely, consider a c such that ξi belongs to A′
c for every i. Assume that Mn → ∞.

Then, for every k and every positive real number r ≥ k/c,

lim
n→∞M

r
n Ek(1/Z

r
n) = ∞.
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6. Bernoulli branching processes

6.1. Preliminaries

We first set some notation, to be able to deal with inhomogeneous processes.

Definition 6. The efficiency of a Bernoulli branching process is the sequence X := (xi)i≥1
such that ξi = (1−xi)δ1+xiδ2. Let L and L

∗ denote the sets of efficiencies such that xi belongs
to [0, 1] and, respectively, (0, 1] for every i ≥ 1. For any X in L, let s(X) := (xi+1)i≥1 denote
the shifted sequence.

Definition 7. For any k ≥ 1 and any efficiency X, let

Bk(X) := lim
n→∞ Ek(1/Zn)

n∏
i=1

(1 + xi).

In the homogeneous case, in which xi = x for every i ≥ 1, we write Bk(x) for Bk(X).

By convexity, the limit which definesBk(X) is also a supremum over n ≥ 0; thus, Bk(X) ≥
1/k. The functional Bk also describes Ek(1/Zn) for finite values of n, since replacing every
xi , i ≥ n+ 1, by 0 freezes the branching process at the value Zn. Thus, uniform upper bounds
of Bk on L yield upper bounds of Ek(1/Zn) for finite values of n.

6.2. Results

The following result holds uniformly over the set L and is a consequence of the fact that
A(ξ) < 1 for every Bernoulli distribution ξ ; see Proposition 10.

Proposition 12. For every efficiency X in L and every k ≥ 1,

1

k
≤ Bk(X) ≤ 1

k − 1
.

Thus, for every n ≥ 0,

1

k
≤ Ek

(
1

Zn

) n∏
i=1

(1 + xi) ≤ 1

k − 1
.

The sequence (Bk)k≥1 satisfies recursion relations, which we state in Proposition 13, that
characterize it fully; see Proposition 14.

Proposition 13. For every k ≥ 1, the function Bk is measurable on L. Furthermore, for every
k ≥ 1 and X in L,

Bk(X) = (1 + x1)
∑
i

(
k

i

)
xi1(1 − x1)

k−iBk+i (s(X)). (1)

Proposition 14. Let (Fk)k≥1 denote a sequence of functionals defined on L
∗. Assume that, as

k → ∞, kFk(X) → 1 uniformly over X in L
∗, and that (Fk)k≥1 solves (1) on L

∗ for every
k ≥ 1. Then Fk = Bk on L

∗ for every k ≥ 1.

The sequence (Bk)k≥1 is entirely determined on L
∗ by the recursion (1) and by the bounds

1/k ≤ Bk ≤ 1/(k − 1).
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Note finally that the recursion (1) is just a special case of the following result. For any
branching process of reproduction law � = (ξi)i≥1 and any k ≥ 1, introduce

Hk(�) := lim
n→∞Mn Ek(1/Zn)

and the shifted mechanism s(�) := (ξi+1)i≥1. Let ξ∗k
1 denote the k-fold convolution of the

measure ξ1 with itself. Then

Hk(�) = µ1

∑
i≥k

ξ∗k
1 (i)Hi(s(�)).

6.3. The homogeneous case

We start with a version of the relation (1) in the homogeneous case.

Proposition 15. For every x in (0, 1),

Bk(x) = (1 + x)
∑
i

(
k

i

)
xi(1 − x)k−iBk+i (x).

The recursion whose left-hand side isBk(x) involves the whole set of valuesBk(x), Bk+1(x),

. . . , B2k(x). Thus, this system of equations does not directly yield the value of each Bk(x).
The exception is the case k = 1.

Corollary 8. For every x �= 0, B1(x) = B2(x)(1 + x)/x.

Our main result in this section is Proposition 16.

Proposition 16. Let α1(x) := (1 − x)/(1 + x) and α2(x) := 1 − x. For every k ≥ 1,

1

k − α1(x)
≤ Bk(x) ≤ 1

k − α2(x)
.

Thus, Bk(0+) = 1/(k − 1) and Bk(1−) = 1/k.

For k = 1, Proposition 16 states thatB1(x) is at least 1/(1−α′(x)). A tighter bound, namely

(1 + x)2

1 + 3x
≤ xB1(x) ≤ 1,

obtains if we use Corollary 8 first and then Proposition 16. The lower bound is always greater
than 8

9 = 0.8889−. In our numerical simulations in Section 6.9, below, some values of λB1(λ)

are found to be as small as B∗ = 0.9274 ± 0.0002.
We could iterate the procedure, obtaining yet tighter upper and lower bounds for Ex1(1/Zn) or

for any Exk (1/Zn) with k ≥ 1, to any prescribed accuracy. We develop this idea in Section 6.7.
We end this section with a conjecture.

Conjecture 1. Every function x 	→ Bk(x) is decreasing in x on (0, 1].
A problem for further research is to prove this and find a natural explanation of the fact that

Bk(0+) and Bk(0) are not equal.
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6.4. Proofs

Proof of Proposition 13. Since each Ek(1/Zn) is measurable with respect to (xi)i≤n, Bk(x)
is the limit of a measurable, nondecreasing sequence; hence, Bk is measurable. Regarding
the recursion relation, we consider the conditioning on Z1 of the Bernoulli branching process
starting from Z0 = k. On the event {Z1 = k + i}, (Zn+1)n≥0 follows the law of a Galton–
Watson branching process of efficiency s(x) starting from k + i. Hence, (1) follows from the
fact that the distribution of Z1 − k is binomial(k, x1).

Proof of Proposition 14. We show that the conditions in the statement of Proposition 14
define (Bk)k uniquely. The existence follows from the construction of each Bk . A proof of the
uniqueness is as follows. Assume that the sequences of functionals (B ′

k) and (B ′′
k ) are solutions.

In particular, B ′
k/B

′′
k → 1 uniformly on L

∗ as k → ∞. Fix an ε. For every sufficiently large k
and every x in L

∗,
B ′
k(x) ≤ (1 + ε)B ′′

k (x).

Since (B ′
k) and (B ′′

k ) both solve the recursion relation (1), a recursion over the decreasing values
of k shows that B ′

k(x) ≤ (1 + ε)B ′′
k (x) for every k ≥ 1 and every x in L

∗. This recursion uses
as a crucial tool the fact that no xk is 0. Now, since ε is arbitrary, we have B ′

k ≤ B ′′
k on L

∗ for
every k ≥ 1. By exchanging the roles of the two sequences, we see that B ′

k = B ′′
k on L

∗ for
every k ≥ 1.

6.5. Outline of the proof of Proposition 16

We start from relations between the functions Bk in Proposition 15, which read

Bk(x) = (1 + x)Exk (BZ1(x)), k ≥ 1.

With respect to the probability Pxk , Z1 is distributed like the sum of k independent, identically
distributed random variables of distribution (1 − x)δ1 + xδ2. The next lemma follows from the
fact that kBk(x) → 1 as k → ∞.

Lemma 9. Assume that lim infk→∞ kϕ(k) ≥ 1 and that, for every k ≥ 1,

(1 + x)Exk (ϕ(Z1)) ≤ ϕ(k).

Then Bk(x) ≤ ϕ(k) for every k ≥ 1. Conversely, if lim supk→∞ kψ(k) ≤ 1 and, for every
k ≥ 1,

(1 + x)Exk (ψ(Z1)) ≥ ψ(k),

then Bk(x) ≥ ψ(k) for every k ≥ 1.

Definition 8. For every k ≥ 1, let ck denote the unique solution in (0, 1) to the equation

(1 + x)Exk

(
1

Z1 − ck

)
= 1

k − ck
.

The next lemma becomes obvious if an equivalent definition of ck , given below in part (ii)
of Lemma 13, is used.

Lemma 10. If ck ≤ c for every k ≥ 1 then Bk(x) ≤ 1/(k − c) for every k ≥ 1. Conversely, if
ck ≥ c for every k ≥ 1 then Bk(x) ≥ 1/(k − c) for every k ≥ 1.

Lemma 10 asserts that Bk(x) ≤ 1/(k − c) for c = sup{ck : k ≥ 1} and, by Lemma 11, this
supremum is c1 = 1 − x; Proposition 16 thus follows.
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Lemma 11. For every k ≥ 1, ck ≤ c1 = 1 − x.

The following result shows that the technique above cannot yield a better value of α1(x)

than α1(x) = (1 − x)/(1 + x).

Lemma 12. As k → ∞, ck → (1 − x)/(1 + x). Furthermore, for k ≥ 2, ck + xck−1 ≥ 1 − x.
Finally, we use the characterizations below to evaluate ck .

Lemma 13. For every k ≥ 2, the following inequalities are equivalent to each other and to the
fact that c ≥ ck:

(i) (1 + x)Exk (1/(Z1 − c)) ≤ 1/(k − c),

(ii) k(1 + x)Exk−1(1/(Z1 + 2 − c)) ≥ 1,

(iii) k(k − 1)x(1 + x)Exk−2(1/(Z1 + 4 − c)) ≤ xk − 1 + c.

The reversed inequalities, (i′), (ii′), and (iii′), are equivalent to each other and to the fact that
c ≤ ck .

6.6. Technical steps of the proof of Proposition 16

We prove Lemmas 11 and 12, assuming Lemma 13 to hold for the moment. By Jensen’s
inequality, the expectation of the inverse is greater than the inverse of the expectation. Thus,
inequality (ii′) of Lemma 13 implies that

k(1 + x) ≤ (k − 1)(1 + x)+ 2 − c.

This reads c ≤ 1 − x. Since c1 = 1 − x, Lemma 11 follows. Furthermore, we can and do
restrict to c ≤ 1 − x in the reasoning below.

To prove Lemma 12, we first note that inequality (ii) involves the expected value of a concave
function of u := 1/(Z1 − ck−1), namely the function u 	→ u/(1 + bu) with b := ck−1 + 2 − c.
The expected value of a concave function is at most the value of the function at the expected
value of its argument. From the definition of ck−1, inequality (ii) implies that

k(1 + x) ≥ (k − 1 − ck−1)(1 + x)+ ck−1 + 2 − c.

This is equivalent to c ≥ 1 − x − xck−1. Hence, for any k ≥ 2,

1 − x − xck−1 ≤ ck ≤ 1 − x. (2)

This is enough to show that ck ≥ (1 − x)2 for every k ≥ 1. Thus, we can and do further restrict
to c ≥ (1 − x)2 in the reasoning below.

In the second step of the proof of Lemma 12, we use inequality (iii′) in the way we used
inequality (ii). That is, we note that inequality (iii′) involves the expected value of a concave
function of 1/(Z1 − ck−2) and apply Jensen’s inequality once again. From the definition of
ck−2, inequality (iii′) implies that

k(k − 1)x(1 + x) ≥ [(1 + x)(k − 2 − ck−2)+ ck−2 + 4 − c](xk − 1 + c).

After some simplifications, this reads A1k + A0 ≥ 0, with

A1 := (1 − x)2 − c + x2ck−2, A0 := (1 − c)(2(1 − x)− c − xck−2).
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Since c ≥ (1 − x)2 and ck−2 ≥ (1 − x)2, simple bounds show that A0 ≤ 1. Hence,
inequality (iii′) implies that A1 ≥ −1/k. Finally, for every k ≥ 3, we have

(1 − x)2 ≤ ck ≤ (1 − x)2 + x2ck−2 + 1/k. (3)

We use the a-priori bounds of (2) and (3) as follows. On the one hand, the upper bound of ck
in (3) implies that

lim sup ck ≤ (1 − x)2 + x2 lim sup ck.

On the other hand, the lower bound of ck in (2) implies that

1 − x − x lim sup ck ≤ lim inf ck.

Hence, lim sup ck = lim inf ck = (1 − x)/(1 + x). This proves Lemma 12.
Lemma 13 is a consequence of the following trick. Part (i) involves

k − c

Z1 − c
= 1 − Z1 − k

Z1 − c
=: 1 − v.

By exchangeability, Exk (v) is k times the expected value of (L1 − 1)/(Z1 − c), where L1
denotes the number of descendants of the first individual in the initial population. The event
{L1 − 1 �= 0} is equivalent to {L1 = 2} and has probability x. Thus, for every k ≥ 2,

(k − c)Exk

(
1

Z1 − c

)
= 1 − kx Exk−1

(
1

Z1 + 2 − c

)
.

With the convention that Z1 = 0 Px0-almost surely, this relation holds for k = 1 as well. This
translates inequality (i) or (i′) into inequality (ii) or (ii′). The translation of inequality (ii)
or (ii′) into inequality (iii) or (iii′) uses the same technique, starting from 1/(Z1 + 2 − c). This
concludes the proof of Proposition 16.

6.7. Algorithm

The following algorithm yields approximate values of Bk on L
∗, to any prescribed accu-

racy.

• Fix n ≥ 1.

• For every k ≥ n+ 1 and x, let B0
k,n(x) := 1/k and B1

k,n(x) := 1/(k − 1).

• Find the unique sequence (B1
k,n)k≤n that solves the system of equations (1) for k ≤ n

when every Bk(s(x)), k ≥ n + 1, is replaced with B1
k,n(s(x)), that is, with the value

1/(k − 1).

• Likewise, find the unique sequence (B0
k,n(x))k≤n that solves the system of equations (1)

for k ≤ n when every Bk(s(x)), k ≥ n + 1, is replaced with B1
k,n(x), that is, with the

value 1/k.

• Then, for every k ≥ 1 and every x,

B0
k,n(x) ≤ Bk(x) ≤ B1

k,n(x) ≤ (1 + 1/n)B0
k,n(x).
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6.8. Comments on the algorithm

Neither (B0
k,n)k≥1 nor (B1

k,n)k≥1 solves the full system of equations (1). For any fixed values

of k and x, (B0
k,n(x))n≥1 is a nondecreasing sequence that converges to Bk(x) as n → ∞.

Likewise, (B1
k,n(x))n≥1 is a nonincreasing sequence that converges to Bk(x) as n → ∞.

Increasing values of n yield more and more accurate approximations of each Bk(x), and the
relative error is of order at most 1/n.

In the Bernoulli case, we can use initial values better than B0
k,n(x) and B1

k,n(x), namely, for
every k ≥ n+ 1 and x,

b0
k,n(x) := 1

k − α1(x)
, b1

k,n(x) := 1

k − α2(x)
.

The relative error, which was at most 1 + 1/n in the first version of the algorithm, is now at
most

1 + α2(x)− α1(x)

n+ 1 − α2(x)
≤ 1 + 3 − 2

√
2

n+ x
.

Numerically, this is at most 1 + 0.172/n, for every x.

6.9. Simulations in the homogeneous case

Using the algorithm above with n := 1000 prompts the following refinements. Define
B(x) := B1(x)x = B2(x)(1 + x). Simulations show that B decreases on (0, x∗) from
B(0+) = 1 to B(x∗) =: B∗ and increases on (x∗, 1] from B∗ to B(1) = 1, where

x∗ = 0.38 ± 0.01, B∗ = 0.9274 ± 0.0002.

This implies that, for every positive x,

B∗/x ≤ B1(x) ≤ 1/x.

Simulations show that B2 and, hence, B1 decrease on (0, 1].

7. Size-biased offspring

When computing harmonic means, it may prove convenient to use size-biased distributions,
defined as follows. Assume that L and Li are independent, identically distributed positive,
integrable random variables and that L′ is an independent, size-biased copy of L, that is, for
every t in [0, 1],

E(tL
′
) := E(LtL)/E(L).

Then, for any nonnegative integer k,

E(L)E

(
1

L1 + · · · + Lk + L′

)
= 1

k + 1
.

For more details on this and many other relations between size-biased distributions and branch-
ing mechanisms, see Chapter 10 of Lyons and Peres (2006).

Can we use this in our branching setting? Assume first that 1 ≤ L ≤ c + 1 almost surely,
for a given integer c. Since L′ ≤ c+ 1 ≤ Lk+1 + · · · +Lk+c+1 almost surely, this implies that

E(L)Ek

(
1

Z1

)
≤ 1

k − c
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for every k ≥ c+ 1. More generally, the inequality above holds if E(tL
′
) ≥ E(tL)c+1 for every

t in [0, 1] and a given positive real number c.
In our setting, this line of reasoning suffers from two drawbacks. First, it appears that to

be able to iterate this inequality over n generations, we must assume that k ≥ nc. Second, the
inequality E(tL

′
) ≥ E(tL)c+1 implies that c ≥ A(ξ), where ξ denotes the law of L (the proof

of this is easy and, thus, omitted). In other words, k ≥ c implies that ξ belongs to Ac.

8. The case k ≤ c

This section is a brief description of the behaviour of Ek(1/Zn) when the hypotheses of
Theorem 2 are false. Consider, for the sake of simplicity, a homogeneous branching process
and let

pi := ξ(i) = P(L = i) = P(Z1 = i | Z0 = 1).

Our first remark is that, for every n ≥ 0 and k ≥ 1,

Ek(1/Zn) ≥ rnk /k, rk := max{pk1, 1/µ}.
The bound 1/µ is due to the convexity. The bound pk1 is due to the fact that the probability of
the event {Zn = k} is pk1.

The parameters µ and p1, through rk , indeed describe the asymptotics of Ek(1/Zn), as
follows. For the sake of simplicity, we exclude the degenerate case pk1µ = 1, in which
polynomial corrections appear. For every k ≥ 1, there exists a finite, positive real number hk
such that

lim
n→∞

Ek(1/Zn)

rnk
= hk.

In the Bernoulli case, p1 < 1/µ and, hence, rk = 1/µ for every k ≥ 1, and the rk = pk1 regime
is nonexistent.

The limits hk satisfy the following relations. Assume, for instance, that we wish to compute
h1 and thatµp1 > 1, whence r1 = p1. By conditioning on the value ofZ1, we obtain a relation
between E1(1/Zn+1) and the sequence (Ek(1/Zn))k≥1. Letting n go to infinity yields

h1 = 1 +
∑
k≥2

Hkpk

p1
, Hk :=

∑
n≥0

Ek(1/Zn)

pn1
.

The term E2(1/Zn)/pn1 behaves like (r2/p1)
n, that is, like 1/(µp1)

n if µp2
1 > 1 and like pn1 if

µp2
1 < 1. Since both quantities are summable, H2 is finite. Since Hk ≤ H2 for every k ≥ 2,

h1 is finite as well.
When µp1 < 1, rk = 1/µ for every k ≥ 1 and the same reasoning as above yields

h1 = µ
∑
k≥1

pkhk.

Since µp1 < 1, this gives h1 as a linear combination of the hk , k ≥ 2. In turn, for every k ≥ 2,
a one-step recursion similar to the one we used before shows that hk can be written

hk = µ
∑
i≥k

hiξ
∗k(i).
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Since the coefficient of hk on the right-hand side is µpk1 < 1, this relation implies that hk is a
linear combination of the sequence (hi)i≥k+1, and that this linear combination has nonnegative
coefficients. Since hi ≤ h2 for every i ≥ k + 1, the series converges. However, it does not
seem easy to recover information about the coefficients h1 or hk , k ≥ 2, from these relations.
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