CMS
}ZSMC

http://dx.doi.org/10.4153/CMB-2017-059-2

Canad. Math. Bull. Vol. 61 (3), 2018 pp. 640-649 J
© Canadian Mathematical Society 2017

Remark on Integral Means of Derivatives of
Blaschke Products

Atte Reijonen

Abstract. If B is the Blachke product with zeros {z, }, then |B’(z)| < ¥5(z), where
1-|zq|?
Yp(z) =) ———.
5(2) Zﬂ: TR
Moreover, it is a well-known fact that, for 0 < p < oo,

1 21 . 1/p
MP(r,B'):(Z/O B (re®) i d6) ", 0<r<,

is bounded if and only if M, (r, ¥ ) is bounded. We find a Blaschke product Bq such that M, (, By )
and M, (r, ¥, ) are not comparable for any % < p < co. In addition, it is shown that, if 0 < p < oo,
B is a Carleson-Newman Blaschke product and a weight w satisfies a certain regularity condition,
then

LB @Pa@dae) < [ ) o) da),

where dA(z) is the Lebesgue area measure on the unit disc.

1 Notation

Let H(DD) be the collection of analytic functions in the unit discD = {z € C: || < 1}
of the complex plane C. We say that f € J{(ID) belongs to the Nevanlinna class N if

2 i
sup log" | f(re'?)|d6 < oo,
0<r<1J0
wherelog” 0 = 0 and log" x = max{0,logx} for 0 < x < co. The Hardy space H? with
0 < p < oo, which consists of f € H(ID) satisfying | f|mr = sup,.,; Mp(r, f) < oo, is
a proper subspace of N [3]. Here

1 2m ; 1/p
Mp(r,f):(%fO ()P de) ", 0<p<o,

and Moo (7, f) = maxzp [ f(2)]

A function w:D — [0, o) is called a weight if it is integrable over the unit disc D.
A weight w is said to be radial if w(z) = w(|z|) forallz € D. For 0 < p < oo and a
weight w, the weighted Bergman space A%, consists of f € 3((ID) satisfying

115, = [ @IFe(z) da) < o,
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where dA(z) is the Lebesgue area measure on I. In the classical case where w(z) =
(1 - |2|)® for some -1 < & < oo, the notation A% is used. The class D of dou-

bling weights consists of radial weights w such that @(z) < &)‘(HT‘Z‘)

fli\ w(s) ds. A radial weight  belongs to D if and only if

(-1 7 w(s)
(D S TSy Jo (1-s)p

, where w(z) =

ds < o0

for some 0 < p < oo [15]. If (1.1) holds for some fixed p, then we write w € @p. For
example, w(z) = (1-|2|)® belongs to D, ifand only if -1 < a < p — 1.
The notation a < b means that there exists a constant C > 0 such that a < Cb,

while a 2 b is understood in an analogous manner. If a < b and a 2 b, then we write
axb.

2 Introduction and Main Results

The Blaschke product associated with {z,,} c D \ {0} satisfying Y, (1 - |z,|) < oo is
defined by

Znl Zn— 2
B(z) = H' |1—z zeD.
n Vl

It is a bounded analytic function having a unimodular radial limit at almost every
point on the boundary T = {z € D : |¢| = 1}; that is, B is an inner function [2, 3,12].
A Blaschke product associated with a finite union of uniformly separated sequences
is called a Carleson-Newman Blaschke product. Recall that a sequence {z,} in D is
separated if

inf p(z, 0,
;r;kp(zn zi) >

and uniformly separated if

inf [ p(zn2) >0,
k n#k

where p(a,z) = |pa(z)|and ¢.(2) = ==

A Blaschke product B has a finite angular derivative at e’ provided that B(e'?) =
lim, ;- B(re'?) exists, |B(e’®)| = 1, and B'(e'%) = lim,_,- B'(re'®) exists. If B does
not have an angular derivative at e, then we write [B’(e’®)| = oco. By the Julia-
Carathéodory theorem [21], we have

IB ()] = lim inf |(Z)|, 0<6<2m.

z—>eif | |
Using this fact, one can show that

|Zn

B'(e'® 0<0<2m
|B'(e"”)] = Z|Z SpTER
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see [1, Theorem 2] and [5, Théoréme VI]. Hence, for 0 < p < oo, Hardy’s convexity
and the mean convergence theorem [3] yield

) 1 2n i
(1 B 1} = lim ME(sB) = [ 1B/ do
1 2 1- |Zn|2 P
- — ——E ) de
21 Jo (Zn: |zn—e’9|2)

27 1- |Zn|2 P
2 ——————) df, 0<r<lL
/0 ( Zn: [1-Z,reif]? )
The asymptotic inequality in (2.1) is due to the fact that [1 - se’’|* x (1-5)* + * for
0<s<land-m<t<m.
If B is the Blaschke product associated with {z, }, then
B'(z) _ Z |Zn|2 -1
B(z) 4 (1-%Z,z)(zy,-2)

It follows that |B’(z)| < Wg(z), where

|20 — 2

and |B(2)|< —.
Ba)I< 2

N (Z):Z% zeD
’ n |1—EnZ|2’ .

Finally, using this inequality together with (2.1), we deduce that B’ € H? if and only
if M, (r, ¥p) is bounded. The deduction above essentially originated in [1]. Next we
give an example based on this result.

Example 1f % < p <1and B is the Blaschke product associated with a finite union
of separated sequences {z, }, then the following statements are equivalent:

: P
(i) B'e Ay
(ii) B’ € H?,

(iif) M, (r, ¥p) is bounded for 0 < r < 1.

The equivalence between (ii) and (iii) is clear by the deduction above. If B’ € H?, then
[19, Theorem 3] yields
(2.2) S (1= |za])' 7P < o0,

n
Moreover, by [11, Theorem 3.1], condition (2.2) implies B” € Af,_l. Hence, (ii) = (i).
For 0 < p < 2, we have {f : f' ¢ Al;,_l} c HP by [22, Lemma 1.4], see also [4,
Theorem 3]. If we choose f = B’, then the implication (i)=>(ii) follows directly from
this result.

It is possible that the derivative of a Blaschke product B does not belong to the
Nevanlinna class N [5]; and consequently, M, (r,B") and M, (r, ¥g) are both un-
bounded for every 0 < p < co. Therefore, it is natural to ask if it is true in general that
M,(r,B") x My(r,¥p) as r — 17. The following result implies the negative answer
for % < p < oo.

Theorem 2.1 Let % < p <ooandl< a < oco. Then there exists a Blaschke product B,
such that
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(i) Mg(f, B)s(1-r)"?Pasr -1,
(i) Mb(r,¥p,)2 (1-7)"?(log:%) P asr—1".

In Section 3, Theorem 2.1 is proved by using a Blaschke product B, with zeros on
the positive real axis. Even in this special case, M g (r, ¥, ) may grow much faster than
M 5 (1, By,). Nevertheless, if B is a Carleson-Newman Blaschke product, then | B[ »
and | Wg||;» are comparable; see Theorem 2.2. It is worth noting that, in general, the
sparsity of zeros of B does not force B’ to H?. For example, there exists a Blaschke
product B with uniformly separated zeros {z,} such that B’ does not belong to the
Nevanlinna class N and ¥, (1 - |z,,|)® < oo for every a > 5 [14].

Theorem 2.2 Let0 < p < oo and w ¢ @p. If B is a Carleson-Newman Blaschke
product, then B[ ;o < | ¥g] 2.

The proof of Theorem 2.2 can be found in Section 4. Moreover, it is proved that,
under an additional hypothesis for the weight w, the statement of Theorem 2.2 for
3 < p <lisvalid also in the case where B is associated with a finite union of separated
sequences. Furthermore, Section 4 contains an example showing that the statement
of Theorem 2.2 is not true in general if B is an arbitrary Blaschke product.

3 Proof and Modification of Theorem 2.1

The main purpose of this section is to prove Theorem 2.1. We begin with Proposi-
tions 3.1 and 3.2, which play key roles in the proof. It is worth noting that the proof of
Proposition 3.1 uses some ideas from [7].

Proposition 3.1 Let0< p<ooandk €N, andlet g: [k, o0) = (0,1) be a continuous
and strictly decreasing function satisfying [,” g(x) dx < co. In addition, let N be the
unique real number on [k + 1, 00) such that g(N;) = t for 0 < t < g(k +1). If B is the
Blaschke product associated with the sequence {z, }, where

zp=1-g(n), n=kk+1,...,

then
g(k+1) Ne dx \P
ME(r, ¥ zf f ——_)dt, r->1.
p(r:¥s) 1-r ( k g(x)) ’

Proof We begin by noting that the monotonicity and continuity of g imply the ex-
istence of the unique real number N; on [k + 1, 00) such that g(N;) = tfor 0 < t <
g(k+1).

Letz=re for—-m<@<mand0<r<1. Then, by [7, Lemma 3], we find 0 < R < 1
such that

1_|Zn|2 _ 1_|Zn|2 o 1|z,
((A=7)+ 0]+ (1= |za]))?’

R<r<l,

~

1=Zuzl? (1= [znl2l?
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where the comparison constants depend on R and B. Hence, for R < r <1land -7 <
6 < 7, we have Wp(re'?) < fB((l —r)+16]), where

= 1-fal ()"
PO 3 G R 2 G T

n=k

0<t<oo.

It follows that
21 N

Zg n)7, 0<t<glk+1).

Now, by the estimates above, we have

i) < [ pa-nsopao= [T popa

> [ oy ay [I_f “)(z g(m ) at

n=
g(k+1) Ne dx
X 1.
/1_, ( /k ¢(x) ) T
This completes the proof. ]

For £ € T and 1 < 7 < oo, the approaching region
Q(8) = {zeD:[1- &2 < (1~ [e])}

is known as a Stolz domain. Denote the family of all Blaschke products whose zeros
lie in some Stolz domain by 8.

Proposition 3.2 Let 0 < p < oo and B € B. Then there exists R = R(B) € [0,1) such

that
6]
L p<3
Mb(r, W) s{log(%),  p=1,
(l_r)l—Zp, P> %,
forR<r<l;
(ii)
i 1) p< l,
27 1—|B(re'?)|\ P 2
M5 (r,B") S/O (%r)') d0 5 I(r) = {log (%), p=1
(1-n)'2p, p>3,
forR<r<Ll

Note that the asymptotic inequality Mg (r,B") < I(r) was earlier proved in [20].
Some special cases of Proposition 3.2(ii) are also possible to verify using results in [8,
9], as mentioned in [20]. The proof here uses a straightforward method that is based
on the inequalities |B'(z)| < ¥3(z) and |B'(z)| S (1 - |2|) ! for all z € D. Due to this,
the upper bound is also valid for the integral mean M, of min{¥p(re’®), (1-r)7'}.
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Proof Assume, without loss of generality, that the zero-sequence {z, } of B is con-
tained in Q, (1) for some 1 < 7 < oo, and set

= |zn]
t —_— 0<t<oo.
5(t) = Z t+(1 *

|zal))?’
By [7, Lemmas 3 and 4], we find R = R(#) € (0,1) such that ¥ (re’®) < fz((1-r)+|6))
for R < r <land -7 < 6 < . Hence,
n+(1-r) n+(1-r) J¢

P < P < hidd) .
M2 (r, W) fl () dthH S Re<r<i

and consequently, assertion (i) follows.
By the Schwarz-Pick lemma and [12, Theorem 3.5], we obtain

; B(re'%)? ; |z,
(e )] < U < S (e 2 <)
< fa(-r)+|8])$ 0% R<r<l, -m<O<m,
where
k-1,
Bi(z) =1 and Bk(z):szfz, ke N~ {1}, zeD.
i 1-zjz

Hence, for § < p < o0, we have
m1—|B(re'%)|\? , [V T do
P / _ P i
MP(T’B)SLT( 1-r ) d051-n) [0 O+ J = o
<(1-r)*P, R<r<l

This gives assertion (ii) for % < p < oo. The remaining cases are direct consequences
of assertion (i). [ |

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 Let l <p<ooandl< a < oo, and set

—_— > 2.
8(x) = x(log x)o’ *

Let B, be the Blaschke product associated with the sequence {z, }, where z, = 1-g(n)
for n e N\ {1}. Then B, satisfies assertion (i) by Proposition 3.2(ii).

We prove assertion (ii) using Proposition 3.1. Let h(t) = (¢(log1)%)™" for0 < t <
1. Since g is decreasing and

t(log$)*
e

( log( t(log )@ ))

we have h(t) < N¢. Hence, Proposition 3.1 yields

to h(t) dx \P to ap
MP,\I’sz ax xfhtzf’lht dt
vz () e L P (logh(n)
to —ap
f L <(1- )1 2p(10g—) . r—o1,
1

 2#(log 1)r

g(h(1) =

1
=g(Ny), O0<t<-—,
(4

https://doi.org/10.4153/CMB-2017-059-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-059-2

646 A. Reijonen
for some sufficiently small ¢y = t5(Bg) € (0,1). This completes the proof. [ |

There exists a Blaschke product B, such that the statement of Theorem 2.1 is also
valid if MII,’ (r, BY,) is replaced by

q)BwP(r):fozn(Z|Bn(rei9)|2 1-|z,

[1-Z,rel?

|2

)pde,

where {z,} is the zero-sequence of B, and

i—z
Z],, keNN{1}, zeD.
-z

k-1
Bi(z) =1 and Bi(z)=]]
j=1 1 jZ

This is due to the proofs of Theorem 2.1 and Proposition 3.2. Hence, by Theorem 2.1,
the term |B,, (re’®)|* may affect essentially to the size of @, .

The proof of Theorem 2.1 gives an example in which M, (r, B, ) and M, (r, ¥3,)
are not comparable for any 3 < p < oo. If we allow the choice of a to be dependent
on p, then the following result offers an alternative counter example.

Theorem 3.3 Let 5 < p < oo and1< a < min{2,2p}. Let By, be the Blaschke product
associated with the sequence {z,,}, where z, =1~ () for n € N. Then

(i) Mb(r,By)s(1-r)/*Pasr—>T,

(ii) Mg(r, W, )2 (1-r) PP/ gsr 17

Proof Assertion (i) is a direct consequence of Proposition 3.2. We prove the as-
sertion (ii) using Proposition 3.1 Since g(x) = x™* for x > 1and N; = t™V/* for
0<t<<(3)% weobtain

, 1/4
M)z [ (

1-r

t—l/ax

p 1/4
x* dx) dt = f PPl gy o (1- r)l—p—p/a
1-r
as r — 17. This completes the proof. -

It is worth noting that, by using a Blaschke product B in ‘B, we cannot find a
counter example in the case 0 < p < % This is due to the fact that B’ € ﬂ0<P<%HP; see
Proposition 3.2. For p = 7, it might be possible because, for example, the derivative
of the Blaschke product with zeros

1

—n(Tgn)z, nGN\{l},

zZn =1

does not belong to H/? [7]. Nevertheless, Proposition 3.2 does not offer a sharp
enough upper bound for M, ,(r, B"). Hence a sharper upper bound depending on B

is needed if one intend to prove a counterpart of Theorem 2.1 for p = 7 using B € B.

As mentioned in Section 2, there exist Blaschke products B such that B’ ¢ N >

Uo<p<oo HP. This means that it might be possible to find a Blaschke product B such

that M,(r, B") and M,(r, ¥p) are not comparable for p < 3. Nevertheless, if the

zeros of B behave wild, it might be laborious to verify sufficiently sharp bounds for
M, (r,B") and M, (r, ¥3).
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4 Proof and Related Results of Theorem 2.2

We begin with the proof of Theorem 2.2.
Proof of Theorem 2.2 By [6, Chpt. VI, Lemma 3.3] and [13, Lemma 21], the Blasch-

ke product B with zeros {z,} is a Carleson-Newman Blaschke product if and only
if
(4.1 sup 2(1_ |¢a(zn)|2) < 0.

aeD n

Assume that B is a Carleson Newman Blaschke product. Using (4.1) together with
the inequality 1 - * < —2log r for 0 < r < 1and the fact that (1 - e™*)/x is decreasing
on (0, c0), one can show that

1= [B(2)| 2 (1192, (D)P) = (1- |2 )¥s(2), 2Dy

see details, for example, in the proof of [17, Theorem 4.1]. Moreover, for 0 < p < oo
and w € Dy, 16, Theorem 1] together with the Schwarz-Pick lemma yields

(42) o't = [ ( 1‘1|_®|i|z)|)"w(z) dA(z)

for any inner function @. In particular, (4.2) is valid if © is the Blaschke product B.
By combining these facts, we obtain |B’|,» 2 [¥g| 2. Since |B'(2)| < ¥p(z) for all
z € D, the assertion is proved. n

A radial weight w belongs to D if there exist C = C(w) > 1, & = a(w) > 0 and
B = B(w) > a such that

(4.3) C*(%) (t)<a)(r)<C( )A(t) 0<r<t<lL

It is worth noting that the right-hand side inequality of (4.3) is valid for some f3 if and
only if w € D [15]. Using this notation, we state and prove the following counterpart
of Theorem 2.2 for % <p<lL

Theorem 4.1 Let 3 <p<landweDn @2[,_1. If B is a Blaschke product associated
with a finite union of separated sequences, then |B'|| 4o < || 0.

Proof Under the given hypotheses, [18, Theorem 1] gives

4.4 BIP < @(zn)
( ) ” ”AI; Z (1 |Z |)P 1’
where {z, } is the zero-sequence of B. In addition, by the proof of [18, Proposition 4],
we obtain
w(zn
«5) 115, < 12, 5 T o

More precisely, the asymptotic inequality in (4.5) can be proved by using the fact that
x? is sub-additive for 0 < p < 1 together with the Forelli-Rudin estimate [10, Theo-
rem 1.7], then dividing the radial integral into two parts, from zero to |z, | and the rest,
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and finally estimating in a natural manner. The assertion follows by combining (4.4)
and (4.5). [ |

We close this note with the following example, which shows that the statements of
Theorems 2.2 and 4.1 are not true in general if B is an arbitrary Blaschke product.

Example  Let 3 < p < oo and w(z) = (1 - |z])®%, where a = a(p) = p— 2 + x, and
Xp = min{i, g - i} Since -1 < a < min{p —1,2p — 2}, it is clear that w € D N @q,
where g = g(p) = min{p,2p — 1}. Let B be the Blaschke product associated with
{z,}, where

1

n=l-—r,
‘ n(logn)?

neN~ {1}
By Proposition 3.2 and the proof of Theorem 2.1, we have B’ € A%, while
1 -2p
P _\l+a-2p €
”\PB”L{:NfR (1-n"r(log =) " dr

1 -2p
Zf (l—r)*f’/2*3/4(logi) dr = o0
R 1-r
for some R = R(p) € [0,1).
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