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Remark on Integral Means of Derivatives of
Blaschke Products

Atte Reijonen

Abstract. If B is the Blachke product with zeros {zn}, then ∣B′(z)∣ ≤ ΨB(z), where

ΨB(z) = ∑
n

1 − ∣zn ∣2

∣1 − znz∣2
.

Moreover, it is a well-known fact that, for 0 < p < ∞,

Mp(r, B′) = (
1
2π ∫

2π

0
∣B′(reiθ)∣p dθ)

1/p
, 0 ≤ r < 1,

is bounded if and only ifMp(r, ΨB) is bounded. We ûnd a Blaschke product B0 such that Mp(r, B′0)
and Mp(r, ΨB0) are not comparable for any 1

2 < p < ∞. In addition, it is shown that, if 0 < p < ∞,
B is a Carleson–Newman Blaschke product and a weight ω satisûes a certain regularity condition,
then

∫
D
∣B′(z)∣pω(z) dA(z) ≍ ∫

D
ΨB(z)pω(z) dA(z),

where dA(z) is the Lebesgue area measure on the unit disc.

1 Notation

Let H(D) be the collection of analytic functions in the unit disc D = {z ∈ C ∶ ∣z∣ < 1}
of the complex plane C. We say that f ∈H(D) belongs to the Nevanlinna class N if

sup
0<r<1

∫

2π

0
log+ ∣ f (reiθ)∣ dθ < ∞,

where log+ 0 = 0 and log+ x = max{0, log x} for 0 < x < ∞. _eHardy spaceHp with
0 < p ≤ ∞, which consists of f ∈H(D) satisfying ∥ f ∥Hp = sup0<r<1 Mp(r, f ) < ∞, is
a proper subspace of N [3]. Here

Mp(r, f ) = (
1
2π ∫

2π

0
∣ f (reiθ)∣p dθ)

1/p
, 0 < p < ∞,

and M∞(r, f ) = max∣z∣=r ∣ f (z)∣.
A function ω∶D → [0,∞) is called a weight if it is integrable over the unit disc D.

A weight ω is said to be radial if ω(z) = ω(∣z∣) for all z ∈ D. For 0 < p < ∞ and a
weight ω, the weighted Bergman space Ap

ω consists of f ∈H(D) satisfying

∥ f ∥p
Ap

ω
= ∫

D
∣ f (z)∣pω(z) dA(z) < ∞,
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where dA(z) is the Lebesgue area measure on D. In the classical case where ω(z) =
(1 − ∣z∣)α for some −1 < α < ∞, the notation Ap

α is used. _e class D̂ of dou-
bling weights consists of radial weights ω such that ω̂(z) ≲ ω̂(

1+∣z∣
2 ), where ω̂(z) =

∫
1
∣z∣ ω(s) ds. A radial weight ω belongs to D̂ if and only if

(1.1) sup
0<r<1

(1 − r)p

ω̂(r) ∫

r

0

ω(s)
(1 − s)p ds < ∞

for some 0 < p < ∞ [15]. If (1.1) holds for some ûxed p, then we write ω ∈ D̂p . For
example, ω(z) = (1 − ∣z∣)α belongs to D̂p if and only if −1 < α < p − 1.

_e notation a ≲ b means that there exists a constant C > 0 such that a ≤ Cb,
while a ≳ b is understood in an analogous manner. If a ≲ b and a ≳ b, then we write
a ≍ b.

2 Introduction and Main Results

_e Blaschke product associated with {zn} ⊂ D ∖ {0} satisfying∑n(1 − ∣zn ∣) < ∞ is
deûned by

B(z) =∏
n

∣zn ∣
zn

zn − z
1 − znz

, z ∈ D.

It is a bounded analytic function having a unimodular radial limit at almost every
point on the boundary T = {z ∈ D ∶ ∣z∣ = 1}; that is, B is an inner function [2, 3, 12].
A Blaschke product associated with a ûnite union of uniformly separated sequences
is called a Carleson–Newman Blaschke product. Recall that a sequence {zn} in D is
separated if

inf
n/=k

ρ(zn , zk) > 0,

and uniformly separated if

inf
k
∏
n/=k

ρ(zn , zk) > 0,

where ρ(a, z) = ∣φa(z)∣ and φa(z) = a−z
1−az .

A Blaschke product B has a ûnite angular derivative at e iθ provided that B(e iθ) =
limr→1− B(re iθ) exists, ∣B(e iθ)∣ = 1, and B′(e iθ) = limr→1− B′(reiθ) exists. If B does
not have an angular derivative at e iθ , then we write ∣B′(e iθ)∣ = ∞. By the Julia–
Carathéodory theorem [21], we have

∣B′(e iθ)∣ = lim inf
z→e iθ

1 − ∣B(z)∣
1 − ∣z∣

, 0 ≤ θ < 2π.

Using this fact, one can show that

∣B′(e iθ)∣ = ∑
n

1 − ∣zn ∣2

∣zn − e iθ ∣2
, 0 ≤ θ < 2π;
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see [1, _eorem 2] and [5, _éorème VI]. Hence, for 0 < p < ∞, Hardy’s convexity
and the mean convergence theorem [3] yield

∥B′∥p
Hp = lim

s→1−
M p

p(s, B′) =
1
2π ∫

2π

0
∣B′(e iθ)∣p dθ

=
1
2π ∫

2π

0
(∑

n

1 − ∣zn ∣2

∣zn − e iθ ∣2
)

p
dθ

≳ ∫

2π

0
(∑

n

1 − ∣zn ∣2

∣1 − znre iθ ∣2
)

p
dθ , 0 ≤ r < 1.

(2.1)

_e asymptotic inequality in (2.1) is due to the fact that ∣1 − se i t ∣2 ≍ (1 − s)2 + t2 for
0 ≤ s < 1 and −π ≤ t ≤ π.

If B is the Blaschke product associated with {zn}, then
B′(z)
B(z)

= ∑
n

∣zn ∣2 − 1
(1 − znz)(zn − z)

and ∣B(z)∣ ≤ ∣zn − z∣
∣1 − znz∣

.

It follows that ∣B′(z)∣ ≤ ΨB(z), where

ΨB(z) = ∑
n

1 − ∣zn ∣2

∣1 − znz∣2
, z ∈ D.

Finally, using this inequality together with (2.1), we deduce that B′ ∈ Hp if and only
if Mp(r, ΨB) is bounded. _e deduction above essentially originated in [1]. Next we
give an example based on this result.

Example If 1
2 < p < 1 and B is the Blaschke product associated with a ûnite union

of separated sequences {zn}, then the following statements are equivalent:
(i) B′′ ∈ Ap

p−1,
(ii) B′ ∈ Hp ,
(iii) Mp(r, ΨB) is bounded for 0 ≤ r < 1.
_e equivalence between (ii) and (iii) is clear by the deduction above. If B′ ∈ Hp , then
[19, _eorem 3] yields

(2.2) ∑
n
(1 − ∣zn ∣)1−p

< ∞.

Moreover, by [11, _eorem 3.1], condition (2.2) implies B′′ ∈ Ap
p−1. Hence, (ii)⇒ (i).

For 0 < p ≤ 2, we have { f ∶ f ′ ∈ Ap
p−1} ⊂ Hp by [22, Lemma 1.4], see also [4,

_eorem 3]. If we choose f = B′, then the implication (i)⇒(ii) follows directly from
this result.

It is possible that the derivative of a Blaschke product B does not belong to the
Nevanlinna class N [5]; and consequently, Mp(r, B′) and Mp(r, ΨB) are both un-
bounded for every 0 < p < ∞. _erefore, it is natural to ask if it is true in general that
Mp(r, B′) ≍ Mp(r, ΨB) as r → 1−. _e following result implies the negative answer
for 1

2 < p < ∞.

_eorem 2.1 Let 1
2 < p < ∞ and 1 < α < ∞. _en there exists a Blaschke product Bα

such that
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(i) M p
p(r, B′α) ≲ (1 − r)1/2−p as r → 1−,

(ii) M p
p(r, ΨBα) ≳ (1 − r)1−2p(log e

1−r )
−αp as r → 1−.

In Section 3, _eorem 2.1 is proved by using a Blaschke product Bα with zeros on
the positive real axis. Even in this special case,M p

p(r, ΨBα)may growmuch faster than
M p

p(r, B′α). Nevertheless, if B is a Carleson–Newman Blaschke product, then ∥B′∥Ap
ω

and ∥ΨB∥Lp
ω
are comparable; see _eorem 2.2. It is worth noting that, in general, the

sparsity of zeros of B does not force B′ to Hp . For example, there exists a Blaschke
product B with uniformly separated zeros {zn} such that B′ does not belong to the
Nevanlinna class N and∑n(1 − ∣zn ∣)α < ∞ for every α > 1

2 [14].

_eorem 2.2 Let 0 < p < ∞ and ω ∈ D̂p . If B is a Carleson-Newman Blaschke
product, then ∥B′∥Ap

ω
≍ ∥ΨB∥Lp

ω
.

_e proof of _eorem 2.2 can be found in Section 4. Moreover, it is proved that,
under an additional hypothesis for the weight ω, the statement of _eorem 2.2 for
1
2 < p ≤ 1 is valid also in the case where B is associated with a ûnite union of separated
sequences. Furthermore, Section 4 contains an example showing that the statement
of _eorem 2.2 is not true in general if B is an arbitrary Blaschke product.

3 Proof and Modification of Theorem 2.1

_e main purpose of this section is to prove _eorem 2.1. We begin with Proposi-
tions 3.1 and 3.2, which play key roles in the proof. It is worth noting that the proof of
Proposition 3.1 uses some ideas from [7].

Proposition 3.1 Let 0 < p < ∞ and k ∈ N, and let g ∶ [k,∞) → (0, 1) be a continuous
and strictly decreasing function satisfying ∫

∞

k g(x) dx < ∞. In addition, let Nt be the
unique real number on [k + 1,∞) such that g(Nt) = t for 0 < t ≤ g(k + 1). If B is the
Blaschke product associated with the sequence {zn}, where

zn = 1 − g(n), n = k, k + 1, . . . ,

then

M p
p(r, ΨB) ≳ ∫

g(k+1)

1−r
(∫

N t

k

dx
g(x)

)
p
dt, r → 1− .

Proof We begin by noting that the monotonicity and continuity of g imply the ex-
istence of the unique real number Nt on [k + 1,∞) such that g(Nt) = t for 0 < t ≤
g(k + 1).

Let z = re iθ for −π ≤ θ ≤ π and 0 ≤ r < 1. _en, by [7, Lemma 3], we ûnd 0 < R < 1
such that

1 − ∣zn ∣2

∣1 − znz∣2
=

1 − ∣zn ∣2

∣1 − ∣zn ∣z∣2
≍

1 − ∣zn ∣
((1 − r) + ∣θ∣ + (1 − ∣zn ∣))2 , R < r < 1,
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where the comparison constants depend on R and B. Hence, for R < r < 1 and −π ≤

θ ≤ π, we have ΨB(re iθ) ≍ fB((1 − r) + ∣θ∣), where

fB(t) =
∞

∑
n=k

1 − ∣zn ∣
(t + (1 − ∣zn ∣))2 =

∞

∑
n=k

g(n)−1

(tg(n)−1 + 1)2 , 0 < t < ∞.

It follows that

fB(t) ≥
1
4

N t

∑
n=k

g(n)−1 , 0 < t ≤ g(k + 1).

Now, by the estimates above, we have

M p
p(r, ΨB) ≍ ∫

π

0
fB((1 − r) + θ)p dθ = ∫

π+(1−r)

1−r
fB(t)p dt

≥ ∫

g(k+1)

1−r
fB(t)p dt ≥ 4−p

∫

g(k+1)

1−r
(

N t

∑
n=k

g(n)−1
)

p
dt

≍ ∫

g(k+1)

1−r
(∫

N t

k

dx
g(x)

)
p
dt, r → 1− .

_is completes the proof.

For ξ ∈ T and 1 < η < ∞, the approaching region

Ωη(ξ) = {z ∈ D ∶ ∣1 − ξz∣ ≤ η(1 − ∣z∣)}

is known as a Stolz domain. Denote the family of all Blaschke products whose zeros
lie in some Stolz domain byB.

Proposition 3.2 Let 0 < p < ∞ and B ∈B. _en there exists R = R(B) ∈ [0, 1) such
that
(i)

M p
p(r, ΨB) ≲

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, p < 1
2 ,

log( e
1−r ), p = 1

2 ,
(1 − r)1−2p , p > 1

2 ,

for R < r < 1;
(ii)

M p
p(r, B′) ≲ ∫

2π

0
(
1 − ∣B(re iθ)∣

1 − r
)

p
dθ ≲ I(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, p < 1
2 ,

log( e
1−r ), p = 1

2 ,
(1 − r)1/2−p , p > 1

2 ,

for R < r < 1.

Note that the asymptotic inequality M p
p(r, B′) ≲ I(r) was earlier proved in [20].

Some special cases of Proposition 3.2(ii) are also possible to verify using results in [8,
9], as mentioned in [20]. _e proof here uses a straightforward method that is based
on the inequalities ∣B′(z)∣ ≤ ΨB(z) and ∣B′(z)∣ ≲ (1 − ∣z∣)−1 for all z ∈ D. Due to this,
the upper bound is also valid for the integral mean Mp of min{ΨB(re iθ), (1 − r)−1}.
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Proof Assume, without loss of generality, that the zero-sequence {zn} of B is con-
tained in Ωη(1) for some 1 < η < ∞, and set

fB(t) = ∑
n

1 − ∣zn ∣
(t + (1 − ∣zn ∣))2 , 0 < t < ∞.

By [7, Lemmas 3 and 4], we ûnd R = R(η) ∈ (0, 1) such that Ψ(re iθ) ≍ fB((1−r)+∣θ∣)
for R < r < 1 and −π ≤ θ ≤ π. Hence,

M p
p(r, ΨB) ≍ ∫

π+(1−r)

1−r
fB(t)p dt ≲ ∫

π+(1−r)

1−r

dt
t2p

, R < r < 1;

and consequently, assertion (i) follows.
By the Schwarz–Pick lemma and [12, _eorem 3.5], we obtain

∣B′(re iθ)∣ ≤ 1 − ∣B(re iθ)∣2

1 − r2
= ∑

n
∣Bn(re iθ)∣2

1 − ∣zn ∣2

∣1 − znre iθ ∣2
≤ Ψ(re iθ)

≍ fB((1 − r) + ∣θ∣) ≲ θ−2 , R < r < 1, −π ≤ θ ≤ π,
where

B1(z) = 1 and Bk(z) =
k−1

∏
j=1

z j − z
1 − z jz

, k ∈ N ∖ {1}, z ∈ D.

Hence, for 1
2 < p < ∞, we have

M p
p(r, B′) ≲ ∫

π

−π
(
1 − ∣B(re iθ)∣

1 − r
)

p
dθ ≲ (1 − r)−p

∫

√
1−r

0
dθ + ∫

π
√

1−r

dθ
θ2p

≍ (1 − r)1/2−p , R < r < 1.

_is gives assertion (ii) for 1
2 < p < ∞. _e remaining cases are direct consequences

of assertion (i).

Now we are ready to prove_eorem 2.1.

Proof of_eorem 2.1 Let 1
2 < p < ∞ and 1 < α < ∞, and set

g(x) = 1
x(log x)α

, x ≥ 2.

Let Bα be the Blaschke product associatedwith the sequence {zn}, where zn = 1−g(n)
for n ∈ N ∖ {1}. _en Bα satisûes assertion (i) by Proposition 3.2(ii).

We prove assertion (ii) using Proposition 3.1. Let h(t) = (t(log 1
t )
α)−1 for 0 < t <

1
e . Since g is decreasing and

g(h(t)) =
t(log 1

t )
α

( log ( 1
t(log 1

t )
α ))

α ≥ t = g(Nt), 0 < t < 1
e
,

we have h(t) ≤ Nt . Hence, Proposition 3.1 yields

M p
p(r, ΨB) ≳ ∫

t0

1−r
( ∫

h(t)

2

dx
g(x)

)
p
dt ≍ ∫

t0

1−r
h(t)2p( log h(t)) αp dt

≍ ∫

t0

1−r

dt
t2p(log 1

t )
αp

≍ (1 − r)1−2p
( log

e
1 − r

)
−αp

, r → 1− ,
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for some suõciently small t0 = t0(Bα) ∈ (0, 1). _is completes the proof.

_ere exists a Blaschke product Bα such that the statement of _eorem 2.1 is also
valid if M p

p(r, B′α) is replaced by

ΦBα ,p(r) = ∫
2π

0
(∑

n
∣Bn(re iθ)∣2

1 − ∣zn ∣2

∣1 − znre iθ ∣2
)

p
dθ ,

where {zn} is the zero-sequence of Bα and

B1(z) = 1 and Bk(z) =
k−1

∏
j=1

z j − z
1 − z jz

, k ∈ N ∖ {1}, z ∈ D.

_is is due to the proofs of _eorem 2.1 and Proposition 3.2. Hence, by _eorem 2.1,
the term ∣Bn(re iθ)∣2 may aòect essentially to the size of ΦBα ,p .

_e proof of _eorem 2.1 gives an example in which Mp(r, B′α) and Mp(r, ΨBα)

are not comparable for any 1
2 < p < ∞. If we allow the choice of α to be dependent

on p, then the following result oòers an alternative counter example.

_eorem 3.3 Let 1
2 < p < ∞ and 1 < α < min{2, 2p}. Let Bα be the Blaschke product

associated with the sequence {zn}, where zn = 1 − ( 1
n )
α for n ∈ N. _en

(i) M p
p(r, B′α) ≲ (1 − r)1/2−p as r → 1−,

(ii) M p
p(r, ΨBα) ≳ (1 − r)1−p−p/α as r → 1−.

Proof Assertion (i) is a direct consequence of Proposition 3.2. We prove the as-
sertion (ii) using Proposition 3.1. Since g(x) = x−α for x ≥ 1 and Nt = t−1/α for
0 < t < 1

4 < ( 1
2 )
α , we obtain

M p
p(r, ΨBα) ≳ ∫

1/4

1−r
( ∫

t−1/α

1
xα dx)

p
dt ≍ ∫

1/4

1−r
t−p−p/α dt ≍ (1 − r)1−p−p/α

as r → 1−. _is completes the proof.

It is worth noting that, by using a Blaschke product B in B, we cannot ûnd a
counter example in the case 0 < p < 1

2 . _is is due to the fact that B′ ∈ ⋂0<p< 1
2
Hp ; see

Proposition 3.2. For p = 1
2 , it might be possible because, for example, the derivative

of the Blaschke product with zeros

zn = 1 −
1

n(log n)2 , n ∈ N ∖ {1},

does not belong to H1/2 [7]. Nevertheless, Proposition 3.2 does not oòer a sharp
enough upper bound for M1/2(r, B′). Hence a sharper upper bound depending on B
is needed if one intend to prove a counterpart of _eorem 2.1 for p = 1

2 using B ∈B.
As mentioned in Section 2, there exist Blaschke products B such that B′ ∉ N ⊃

⋃0<p<∞ Hp . _is means that it might be possible to ûnd a Blaschke product B such
that Mp(r, B′) and Mp(r, ΨB) are not comparable for p < 1

2 . Nevertheless, if the
zeros of B behave wild, it might be laborious to verify suõciently sharp bounds for
Mp(r, B′) and Mp(r, ΨB).
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4 Proof and Related Results of Theorem 2.2

We begin with the proof of _eorem 2.2.

Proof of_eorem 2.2 By [6, Chpt. VI, Lemma 3.3] and [13, Lemma 21], the Blasch-
ke product B with zeros {zn} is a Carleson–Newman Blaschke product if and only
if

(4.1) sup
a∈D
∑
n
(1 − ∣φa(zn)∣2) < ∞.

Assume that B is a Carleson-Newman Blaschke product. Using (4.1) together with
the inequality 1− r2 ≤ −2 log r for 0 < r ≤ 1 and the fact that (1− e−x)/x is decreasing
on (0,∞), one can show that

1 − ∣B(z)∣ ≳ ∑
n
(1 − ∣φzn(z)∣

2
) = (1 − ∣z∣2)ΨB(z), z ∈ D;

see details, for example, in the proof of [17, _eorem 4.1]. Moreover, for 0 < p < ∞

and ω ∈ D̂p , [16, _eorem 1] together with the Schwarz–Pick lemma yields

(4.2) ∥Θ′
∥
p
Ap

ω
≍ ∫

D
(
1 − ∣Θ(z)∣

1 − ∣z∣
)

p
ω(z) dA(z)

for any inner function Θ. In particular, (4.2) is valid if Θ is the Blaschke product B.
By combining these facts, we obtain ∥B′∥Ap

ω
≳ ∥ΨB∥Lp

ω
. Since ∣B′(z)∣ ≤ ΨB(z) for all

z ∈ D, the assertion is proved.

A radial weight ω belongs to D if there exist C = C(ω) ≥ 1, α = α(ω) > 0 and
β = β(ω) ≥ α such that

C−1
(
1 − r
1 − t

)
α
ω̂(t) ≤ ω̂(r) ≤ C( 1 − r

1 − t
)
β
ω̂(t), 0 ≤ r ≤ t < 1.(4.3)

It is worth noting that the right-hand side inequality of (4.3) is valid for some β if and
only if ω ∈ D̂ [15]. Using this notation, we state and prove the following counterpart
of _eorem 2.2 for 1

2 < p ≤ 1.

_eorem 4.1 Let 1
2 < p ≤ 1 and ω ∈D ∩ D̂2p−1. If B is a Blaschke product associated

with a ûnite union of separated sequences, then ∥B′∥Ap
ω
≍ ∥ΨB∥Lp

ω
.

Proof Under the given hypotheses, [18, _eorem 1] gives

(4.4) ∥B′∥p
Ap

ω
≍ ∑

n

ω̂(zn)
(1 − ∣zn ∣)p−1 ,

where {zn} is the zero-sequence of B. In addition, by the proof of [18, Proposition 4],
we obtain

(4.5) ∥B′∥p
Ap

ω
≤ ∥ΨB∥

p
Lp
ω
≲ ∑

n

ω̂(zn)
(1 − ∣zn ∣)p−1 .

More precisely, the asymptotic inequality in (4.5) can be proved by using the fact that
x p is sub-additive for 0 < p ≤ 1 together with the Forelli–Rudin estimate [10, _eo-
rem 1.7], then dividing the radial integral into two parts, from zero to ∣zn ∣ and the rest,
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and ûnally estimating in a natural manner. _e assertion follows by combining (4.4)
and (4.5).

We close this note with the following example, which shows that the statements of
_eorems 2.2 and 4.1 are not true in general if B is an arbitrary Blaschke product.

Example Let 1
2 < p < ∞ and ω(z) = (1 − ∣z∣)α , where α = α(p) = p − 3

2 + xp and
xp = min{ 1

4 ,
p
2 −

1
4}. Since −1 < α < min{p − 1, 2p − 2}, it is clear that ω ∈ D ∩ D̂q ,

where q = q(p) = min{p, 2p − 1}. Let B be the Blaschke product associated with
{zn}, where

zn = 1 −
1

n(log n)2 , n ∈ N ∖ {1}.

By Proposition 3.2 and the proof of _eorem 2.1, we have B′ ∈ Ap
α , while

∥ΨB∥
p
Lp
α
≳ ∫

1

R
(1 − r)1+α−2p

( log
e

1 − r
)
−2p

dr

≥ ∫

1

R
(1 − r)−p/2−3/4

( log
e

1 − r
)
−2p

dr = ∞

for some R = R(p) ∈ [0, 1).
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