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Abstract
We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the com-
binedd actuarial neural network (CANN) framework proposed by Wüthrich and Merz. The CANN approach
combines a classical actuarial model, such as a generalized linear model, with a neural network. This blending
of models results in a two-component model comprising a classical regression model and a neural network part.
The CANN model leverages the strengths of both components, providing a solid foundation and interpretability
from the classical model while harnessing the flexibility and capacity to capture intricate relationships and interac-
tions offered by the neural network. In our proposed models, we use well-known log-linear claim count regression
models for the classical regression part and a multilayer perceptron (MLP) for the neural network part. The MLP
part is used to process telematics car driving data given as a vector characterizing the driving behavior of each
insured driver. In addition to the Poisson and negative binomial distributions for cross-sectional data, we propose a
procedure for training our CANN model with a multivariate negative binomial specification. By doing so, we intro-
duce a longitudinal model that accounts for the dependence between contracts from the same insured. Our results
reveal that the CANN models exhibit superior performance compared to log-linear models that rely on manually
engineered telematics features.

1. Introduction and motivations
Vehicle insurance products have traditionally been priced based on self-reported attributes provided by
insureds. These attributes commonly include various risk factors, including gender, age, vehicle usage,
and claim history. Insurers rely on this information to assess the level of risk associated with each insur-
ance contract and determine appropriate premium rates. With the introduction of telematics technology,
insurers can now collect a wide range of driving data through devices installed in the vehicles of poli-
cyholders or through mobile applications. This includes information such as vehicle speed, acceleration
and braking behavior, mileage, location data, and factors like the time of day or types of roads frequently
traveled. By leveraging this wealth of data, insurers can gain a more accurate and objective understanding
of each individual’s driving habits and style, enabling them to customize insurance offerings and pricing
based on their actual driving behavior. This emerging paradigm, known as usage-based insurance (UBI),
revolutionizes the insurance landscape in various ways. For insurers, telematics data means more accu-
rate risk assessment algorithms, which can often translate into a competitive advantage. For insureds, it
means fairer premium rates that align more closely with their actual risk profiles rather than being com-
puted based on broad demographic categories. It also means that they are priced based on risk indicators
over which they have control. From a societal perspective, UBI also offers many advantages. One of the
key benefits is the potential to improve road safety. By giving incentives for safe driving behavior and
reduced mileage, UBI not only helps reduce the frequency and severity of accidents, ultimately saving
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lives and reducing the economic burden associated with road accidents, but also contributes to reducing
greenhouse gas emissions. Additionally, telematics provide insurers with viable alternatives to sensitive
risk factors, thereby helping to prevent unfair discrimination. For a more extensive overview of the ben-
efits of UBI, we refer to the works of Litman (2007), Bordoff and Noel (2008), and Ziakopoulos et al.
(2022).

One of the most prominent questions related to UBI is how to make the most out of the collected
driving data. A significant subset of the literature has focused on incorporating mileage into pricing
models due to its acknowledged importance as a risk factor in assessing risk and determining premium
rates (see, for instance, Lemaire et al., 2015; Boucher et al., 2017, and Turcotte and Boucher, 2023).
However, mileage alone fails to provide the whole story about an insured individual’s driving behavior,
prompting researchers to consider additional telematics information. One prevalent approach involves
drawing upon domain knowledge to craft telematics features from raw data. By applying their expertise
in the field, researchers can engineer features that capture critical aspects of driving behavior, specifically
driving characteristics that are thought to be correlated with the risk of accident. Common examples of
such features include harsh braking/acceleration events, cornering events, speeding, distracted driving,
the fraction of driving during both different time slots (e.g., rush hour, late-night hours, weekdays),
and on different road types (e.g., urban roads, highways), as well as the fraction of driving in different
speed slots. This approach proves effective, providing benefits in terms of its simplicity and the ease of
interpretation of the engineered features. However, it relies heavily on human judgment, with its inherent
flaws and biases. With countless possible telematics features that can be engineered from raw telematics
data, selecting the optimal ones for pricing is not straightforward. Furthermore, this process necessitates
the setting of thresholds. For example, how should night driving or harsh braking be precisely defined?

The limitations of the aforementioned approach have motivated researchers to explore a new set
of methods that rely more on data and decrease the need for human judgment. These could serve as
alternatives or complements to the domain knowledge approach. As highlighted in a recent study by
Embrechts and Wüthrich (2022), the increasing amount of data available presents a challenge in manu-
ally designing features, leading actuaries to increasingly depend on tools like neural networks to learn
and extract meaningful representations from the data. Blier-Wong et al. (2021) underline the importance
of learning valuable representations from emerging data sources such as text, image, and sensor data.
These sources, which include telematics car driving data, can enrich traditional data and offer improved
insights for predicting future losses in insurance contracts. Neural networks are regarded as the most
effective means for automatically extracting valuable features from raw data, which validates their prac-
tical application. In recent years, researchers have successfully applied the toolbox of deep learning,
namely neural networks architectures with a large number of hidden layers, to handle telematics data
and other types of unstructured data. In their work, Wüthrich (2017) introduces the speed-acceleration
heatmap, a matrix representation that characterizes the driving style of an insured driver, which is well-
suited for processing by deep learning algorithms. Subsequent studies (Gao and Wüthrich, 2018, 2019;
Gao et al., 2019, 2022) have effectively leveraged these heatmaps by employing neural networks to learn
representations from them. In Meng et al. (2022), the authors propose a supervised driving risk scoring
convolutional neural network (CNN) model that uses telematics car driving data to improve automo-
bile insurance claims frequency prediction. Blier-Wong et al. (2020) propose a convolutional regional
autoencoder model for generating geographical risk encodings using CNNs. The resulting encodings,
which aim to replace the traditional territory variable, proved beneficial for risk-related regression tasks.
So et al. (2021) develop a dataset generation algorithm based on feed-forward neural networks. Using a
synthetic dataset generated with So et al. (2021), Jeong (2022) uses categorical embedding and principal
component analysis to handle the high dimensionality of telematics data.

In this paper, we present novel claim count models based on the combined actuarial neural network
(CANN) approach, initially proposed by Wüthrich and Merz (2019). The CANN approach involves
embedding a classical regression model, such as a generalized linear model (GLM; see Nelder and
Wedderburn, 1972 and Dionne and Vanasse, 1989), into a neural network, achieved by blending the
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regression functions of both models. Consequently, the resulting model comprises the two following
components: the classical regression (or actuarial) model and the neural network. This blending process
can be interpreted as a form of neural network boosting for the actuarial model, combining the strengths
of both approaches. The calibration of the CANN neural network is performed using the classical actu-
arial model as the initial value in the gradient descent algorithm, with the negative log-likelihood of the
specified distribution used as the loss function. One of the key benefits of this specific architecture is the
solid foundation offered by the classical model, complemented by the network component’s flexibility
and pattern recognition capabilities. Neural networks excel in approximating highly nonlinear func-
tions and possess the ability to compute valuable interactions between input variables automatically.
Consequently, the CANN approach combines the best of both worlds, leveraging the interpretability
and reliability of the classical model while capitalizing on the power of neural networks to capture com-
plex relationships and patterns in the data. A few studies have successfully leveraged this approach:
Schelldorfer and Wuthrich (2019) present a case study where a Poisson GLM for predicting claims
frequencies is initially used, then enhanced through generalized additive models (GAMs) with natural
cubic splines, and finally combined with a neural network, resulting in a CANN approach. The study also
explores the use of embedding layers for more efficient treatment of categorical variables; Gabrielli et al.
(2020) boost an overdispersed Poisson model with a multilayer perceptron (MLP) to improve individual
loss reserving; Tzougas and Kutzkov (2023) use the CANN approach to enhance binary classification;
Laporta et al. (2023) apply the CANN architecture in the context of quantile regression.

Our models employ a log-linear model for the actuarial model part and a MLP for the network part.
Telematics information is incorporated into the MLP as a telematics vector, which is given as input to
represent the driving behavior of each insured driver. The MLP part is given traditional risk factors
as inputs, allowing interactions between traditional and telematics inputs. Meanwhile, the log-linear
part, constrained in estimating complex functions, is only given traditional risk factors. We explore
three distinct distribution specifications for the claim count: Poisson and negative binomial for cross-
sectional analysis, and multivariate negative binomial (MVNB; see (MVNB; see Hausman et al., 1984
and Boucher et al., 2008), also known as negative multinomial, for longitudinal analysis. The MVNB
distribution is a popular choice for modeling longitudinal claim count data, as it captures the dependence
between contracts from the same insured. However, to our knowledge, this specification has never been
adapted to a neural network model for claim count regression. In this study, we extend the applica-
tion of the MVNB distribution by incorporating it into the neural network framework, specifically the
CANN architecture, for modeling longitudinal claim count data. This adaptation allows us to leverage
the strengths of both the MVNB distribution and the neural network architecture. Our findings indicate
that the CANN models perform better than their log-linear counterparts that rely on manually engineered
telematics features. Furthermore, the CANN model using the MVNB specification exhibits a significant
improvement compared to the two cross-sectional specifications.

In Section 2, we present the two datasets available to us: the contract dataset and the telematics
dataset. Following that, in Section 3, we delve into the theory behind the CANN claim count models
and also discuss the log-linear models that serve as benchmarks. Moving on to Section 4, we provide an
explanation of how we apply the models on our specific dataset and show how we preprocess telematics
data. In Section 5, we assess the performance of the models on a holdout sample and interpret the
CANN models through permutation feature importance and partial dependence plots (PDPs). Lastly,
we conclude in Section 6.

2. Data
We have access to data from a Canadian property and casualty insurance company, which comes in two
distinct datasets: the contract and the telematics dataset.
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Table 1. Variables of the contract dataset

Variable name Description Type
vin Unique vehicle identifier ID

annual_distance Annual distance declared by the insured Numeric
commute_distance Distance to the place of work declared by the insured Numeric
conv_count_3_yrs_minor Number of minor contraventions in the last three years Numeric
distance Real distance driven Numeric
expo Contract duration in years Numeric
gender Gender of the insured Categorical
marital_status Marital status of the insured Categorical
pmt_plan Payment plan chosen by the insured Categorical
veh_age Vehicle age Numeric
veh_use Use of the vehicle Categorical
years_licensed Number of years since obtaining driver’s license Numeric

nb_claims Number of claims Numeric

2.1. Contract dataset
In the contract dataset, each row represents a unique insurance contract. Contracts typically last for one
year, but there are instances where their duration may be shorter or longer. Each vehicle is observed over
one or more contracts; therefore, one vehicle can be represented by one or more rows in this dataset.
Based on risk factors, a premium must be computed for each contract. When using a cross-sectional data
model, contracts from the same vehicle are assumed to be independent of each other. On the other hand,
a longitudinal data model assumes dependence between contracts, allowing it to use information from
previous contracts (including traditional risk factors, telematics data, past claims, etc.) to compute the
premium. The contract dataset includes attributes commonly used in vehicle insurance pricing models.
These traditional risk factors, displayed in Table 1, are recorded for 117,268 insurance contracts initiated
between December 15th, 2015 and December 31st, 2018.

In cases where multiple drivers are associated with a particular contract, attributes of the principal
driver are used. Additionally, the dataset includes the vehicle identification number (VIN), allowing us
to identify the insured vehicle accurately, alongside the reported claim count. As our goal is to perform
claim count regression on contracts, the claim count variable will serve as the response for our supervised
learning algorithms, namely the log-linear and the CANN models. The 117,268 contracts are associated
with 49,671 distinct vehicles, resulting in an average of approximately 2.36 contracts per vehicle. The
histogram of the number of contracts per vehicle is shown in Figure 1.

2.2. Telematics dataset
All 117,268 contracts have been logged using an on-board diagnostics device, capturing driving infor-
mation. These data are stored as trip summaries in the telematics dataset, which comprises 117,566,259
trips. Each row in the dataset represents a specific trip, and every trip is described by four attributes: the
departure and arrival date and time, the distance driven, and the maximum speed reached. Additionally,
each trip is associated with a VIN, and with the date information, it is thus possible to link each trip with
one of the 117,268 contracts. An extract from the telematics dataset is presented in Table 2.

2.3. Training, validation, and testing datasets
In supervised learning analysis, splitting the available data into training, validation, and testing sets is
paramount to ensure the reliability and generalization ability of the learned model. The training set,
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Figure 1. Number of contracts per vehicle.

which usually comprises the largest portion of the data, is used to train the model’s parameters and opti-
mize its performance. However, relying solely on the training set for performance assessment can lead
to overfitting, particularly when the model has a high capacity. To address this, the validation set is used
during the modeling process to assess the model’s performance on unseen data. It plays an important
role in tuning hyperparameters, selecting the optimal model architecture, and preventing overfitting. By
assessing the model’s performance on the validation set, one can obtain an estimate of its generalization
performance and make necessary adjustments to improve its ability to generalize well to new, unseen
examples. However, it is important to note that the back-and-forth process of evaluating the model on the
validation set and adjusting its hyperparameters can introduce information leakage from the validation
set into the training set. This can create an illusion of better performance than the model would exhibit
in real-world scenarios. As a result, the testing set is reserved for the final evaluation of the learned
model. It serves as an unbiased assessment of how well the model will perform on completely unseen
data. This final evaluation provides an estimate of the model’s true performance and helps determine its
reliability in real-world scenarios. By keeping the testing set separate from the training and validation
sets, we can ensure an unbiased evaluation and avoid any potential data leakage. We partition the data as
outlined in Table 3 for our analysis. Approximately 60% of the vehicles are allocated for training, while
approximately 20% is assigned to the validation and testing sets.

3. Count regression models
We consider a training dataset denoted as Tr, which consists of |Tr| rows representing vehicle insurance
contracts. Contracts are grouped by vehicle and each vehicle i is observed over Ti contracts. We define
Yit as a discrete random variable denoting the number of claims during the tth contract of vehicle i.
Furthermore, we have xit a vector containing relevant predictor variables associated with the tth contract
of vehicle i. Importantly, we assume independence among all insured vehicles. In claim count regression,
the ultimate goal is to estimate the probability mass function (PMF) of the number of claims, given all
past and current information about the vehicle. Mathematically, we seek to estimate:

P
(
Yit = yit|yi,(1:t−1), xi,(1:t)

)
, yit ∈N, (3.1)

where yi,(1:t−1) = (yi1, . . . , yi,t−1) is the vector of past claims and xi,(1:t) = {xi1, . . . , xit} is the set of past and
current covariate vectors for vehicle i.
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Table 2. Extract from the telematics dataset. Dates are displayed in the yyyy-mm-dd format. The actual
VINs have been hidden for privacy purposes

VIN Trip ID Departure datetime Arrival datetime Distance Maximum speed
A 1 2017-05-02 19:04:15 2017-05-02 19:24:24 25.0 104
A 2 2017-05-02 21:31:29 2017-05-02 21:31:29 6.4 66
...

...
...

...
...

...

A 2320 2018-04-30 21:17:22 2018-04-30 21:18:44 0.2 27

B 1 2017-03-26 11:46:07 2017-03-26 11:53:29 1.5 76
B 2 2017-03-26 15:18:23 2017-03-26 15:51:46 35.1 119
...

...
...

...
...

...

B 1485 2018-03-23 20:07:08 2018-03-23 20:20:30 10.1 92

C 1 2017-11-20 08:14:34 2017-11-20 08:40:21 9.7 78
...

...
...

...
...

...

Table 3. Data partitioning

Set Symbol Number of vehicles Number of contracts Number of trips
Training Tr 30,000 70,451 71,416,560
Validation Va 10,000 23,368 22,611,829
Testing Te 9671 23,449 23,537,870

Total – 49,671 117,268 117,566,259

3.1. Cross-sectional models
In addition to assuming independence between vehicles, cross-sectional models also assume indepen-
dence between contracts from the same vehicle. Consequently, these models do not use the history of a
vehicle to estimate its future risk. The PMF of the number of claims can thus be written as:

P
(
Yit = yit|yi,(1:t−1), xi,(1:t)

)= P (Yit = yit|xit) , yit ∈N. (3.2)

3.1.1. Poisson regression
The Poisson distribution is widely used in supervised learning analysis for claim count data due to its
good properties and simplicity. Under the Poisson specification, the PMF of the claim count for the tth

contract of vehicle i, denoted by Yit, given its predictor vector, denoted by xit, is defined by

P(Yit = yit|xit) = e−μ(xit)μ(xit)yit

yit! , for yit ∈N, (3.3)

with E[Yit|X it = xit] = Var[Yit|X it = xit] =μ(xit). The mean parameter μ(xit) denotes the conditional
expectation (and conditional variance) of Yit. The regression function μ( · ) captures the relationship
between the predictors xit and the mean parameter in the Poisson distribution, indicating how the con-
ditional expected count is influenced by the predictors. Choosing a functional form for μ( · ) defines
a hypothesis function space H that includes all the candidate functions for modeling μ( · ). Typically,
one aims at minimizing the Poisson deviance loss1 (see subsection 4.1.2 and Table 4.1 of Wüthrich and
Merz, 2023) over the training set:

1The criterion in Equation (3.4) is, in fact, the deviance loss scaled by a factor of 2.
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μ̂= argminμ∈H

{
− 1

|Tr|
∑

(i,t)∈Tr

yit ln [μ(xit)] −μ(xit) − ln (yit!)
}

. (3.4)

Note that this is equivalent to maximizing the likelihood function. For some specifications of μ( · ),
notably the log-linear specification, the criterion in Equation (3.4) is convex, which enables various
convex optimization techniques to be applied.

Log-linear Poisson regression
In the Poisson regression context, one notable specification for the regression function is the log-

linear form, where the mean parameter is expressed as the exponential of a linear function of the
predictors:

μLL(x; β) = exp {〈x, β〉}, (3.5)

where β denotes a vector of parameters, and 〈x, β〉 stands for the inner product between the predictor
vector x and the coefficient vector β. Log-linear Poisson regression has favorable properties, notably
its interpretability stemming from the quasi-linearity of the link function μ( · ). Moreover, when max-
imum likelihood is used for parameter estimation, this regression model falls within the framework of
GLMs. GLMs provide valuable properties, such as the asymptotic Gaussian distribution of the parame-
ters β, allowing for the estimation of standard errors, hypothesis testing, and construction of confidence
intervals.

However, log-linear regression does have a significant drawback – its regression function, being
linear, lacks flexibility. To address this limitation, various techniques can be employed. In fact, any
supervised learning technique could be used for the specification of μ( · ), such as GAMs and tree-
based models. Alternatively, one could incorporate non-linearity by computing polynomial terms (e.g.,
quadratic or cubic terms) of the predictors.

CANN Poisson regression
In some cases, the supervised learning problem may require even more flexibility, and neural net-

works are particularly useful in such scenarios. Neural networks are formidable function approximation
machines, well-known for their ability to estimate a wide range of highly non-linear multivariate func-
tions. One of the key advantages of neural networks is their ability to handle raw and unstructured data
effectively. Because we deal with detailed telematics data, this capability forms the basis for adopting
the CANN approach of Wüthrich and Merz (2019), which embeds a classical actuarial model into a neu-
ral network architecture. A CANN model consists of two distinct components: the classical regression
model component and the neural network component. This architecture offers great flexibility, allowing
for seamless integration of any classical model whose regression function is compatible with a neural
network architecture. Likewise, the neural network component can employ various types of supervised
architectures, such as CNNs, recurrent neural networks (RNNs), and other architectures tailored to the
specific problem at hand. The classical regression model provides good initial estimations and serves
as a guide for the neural network component. It offers a starting point for the network’s optimization
process, enabling faster convergence. The neural network component, in turn, refines the initial estima-
tions, capturing additional signals and uncovering patterns that may have been missed by the classical
model alone.

In our specific case, we use log-linear count regression as the classical model and a MLP as the
neural network component in the CANN model. As a result, we have the following specification for the
regression function:

μCANN(x; β, θ ) =μLL(x; β) ×μMLP(x; θ ), (3.6)

where μMLP( · ) is the regression function of a MLP parametrized with θ . In a nutshell, an MLP consists
of interconnected layers, including an input layer, hidden layers, and an output layer. Each layer applies
an affine transformation to the inputs it receives, followed by a non-linear activation function φ. This
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combination of linear transformations and non-linear activations allows MLPs to model complex non-
linear relationships in the data. To delve into the mathematical description of an MLP, we can break
down its structure starting from the input layer and progressing toward the output layer:

1. Input layer (l = 0): The input layer consists of n0 nodes representing the input variables x =
[x1, x2, . . . , xn0 ] = z(0).

2. Hidden layers (l = 1, 2, . . . , L − 2): Each hidden layer l consists of nl nodes, connected to
the nodes from the previous layer (l − 1) and the nodes in the following layer (l + 1). The
computations in the hidden layers involve an affine transformation of the inputs z(l−1) followed
by the application of the non-linear activation function φ. Let us denote the weight matrix
between layers l − 1 and l as W (l) with dimensions (nl, nl−1) and the bias vector as b(l) with
dimensions (nl, 1). The computations in each hidden layer l can then be expressed as:

a(l) = W (l)z(l−1) + b(l), z(l) = φ
(
a(l)
)

, (3.7)

where a(l) represents the preactivation values in the lth hidden layer, and z(l) represents the post-
activation values.

3. Output layer (l = L − 1): The output layer consists of nL−1 nodes, representing the final out-
put(s) of the MLP. The computations in the output layer consist of an affine transformation
followed by an activation function g. We denote the weight matrix between layers L − 2 (last
hidden layer) and L − 1 as W (L−1) with dimensions (nL−1, nL−2) and the bias vector as b(L−1) with
dimensions (nL−1, 1). The computations within the output layer can be expressed as:

a(L−1) = W (L−1)z(L−2) + b(L−1), z(L−1) = g
(
a(L−1)

)
. (3.8)

Note that the number of output neurons nL−1 should match the number of modeled distribution param-
eters. In the context of Poisson regression, where we are modeling a single parameter μ, only one output
neuron is necessary. The choice of the output activation function g( · ) is important and should be aligned
with the specific problem being tackled since it determines the range and properties of the output val-
ues. In our case, we need to ensure that the parameter μ, which represents the expected count, is always
positive. While the exponential function is a natural choice to enforce positivity, it can sometimes lead
to numerical instability, especially for large input values. As a better alternative, we choose to use the
softplus function as the activation function for the output layer, defined as ζ (x) = log (1 + exp (x)). The
softplus function is well-behaved even for large input values, mitigating the issue of numerical instabil-
ity that can arise with the exponential function. The parameters of the generic MLP described above,
consisting of weight matrices and bias vectors, can be denoted as:

θ = {
W (1), b(1), W (2), b(2), . . . , W (L−1), b(L−1)} . (3.9)

Naturally, these parameters must be estimated. However, the criterion in Equation (3.4) is typically
not convex, making it challenging to find the global minimum of the empirical risk. In practice, the goal
is to find a “good enough” local minimum that yields satisfactory performance on the task. Gradient
descent algorithms, such as stochastic gradient descent and its variants, are commonly employed to
update iteratively the parameters θ in the direction of the steepest descent. The backpropagation algo-
rithm efficiently computes the gradients and propagates them through the network, enabling parameter
updates.

With the introduced notation for the MLP, we can now express the specification in (3.6) as

μCANN(x; β, θ) = ζ
{〈x, β〉 + a(L−1)(x; θ )

}
. (3.10)

The corresponding computational graph for L = 5 (i.e., 3 hidden layers) is shown in Figure 2. Like a
standard MLP, the network parameters β and θ can be estimated using gradient descent. A simplified
pseudo-algorithm for the training of the Poisson CANN model is provided in Algorithm 3.1.1. The
learning rate η is a hyperparameter that determines the step size taken every time a gradient descent
step is performed. In other words, it controls how quickly or slowly the network parameters are updated
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Figure 2. CANN architecture for the Poisson specification. The MLP’s preactivation output value a(4)
1

is added to the log-linear model’s preactivation output value 〈x, β〉 before being transformed with the
softplus function ζ ( · ). The resulting μ value is compared to the ground truth y using Poisson deviance
loss. The architecture shown employs a 3-hidden-layer MLP but can be customized with any number of
layers.

during training. A higher learning rate allows for larger steps, which can lead to faster convergence.
However, an excessively high learning rate may cause the optimization process to overshoot or oscillate
around the minimum, hindering convergence. Conversely, a very low learning rate might result in slow
convergence, requiring more iterations to reach an acceptable solution. Finding the right learning rate
is important and is typically an empirical process that requires experimentation and tuning. In prac-
tice, mini-batch gradient descent is commonly used for training neural networks. It works by dividing
the training data into smaller subsets, called mini-batches, and computing the gradients and parame-
ter updates based on these mini-batches. This approach offers computational efficiency and improved
generalization compared to regular gradient descent, making it a preferred choice in practice. For a
comprehensive understanding of neural networks, we refer to the excellent book (Goodfellow et al.,
2016).

3.1.2. Negative binomial regression
One issue with the Poisson distribution is its equidispersion assumption. Indeed, we have that μ(x) =
E[Yit|X = x] = Var[Yit|X = x]. In practice, claim count data often exhibit overdispersion, where the
observed variance of the claim count is greater than the mean. To address this limitation, alternative
distributions allowing for overdispersion can be used. Among them, the negative binomial distribution
(see, for instance, Denuit et al., 2007 and Cameron and Trivedi, 2013) stands out as a common choice.
Under the negative binomial specification, the PMF of the claim count for the tth contract of vehicle i
(Yit), given its predictor vector (xit), can be written as

P(Yit = yit|xit) = �(yit + φ)

yit!�(φ)

(
φ

φ +μ(xit)

)φ (
μ(xit)

μ(xit) + φ

)yit

, for yit ∈N, (3.11)
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Algorithm 1: Parameter estimation procedure – Poisson CANN model

where φ > 0 is a dispersion parameter. This can be seen as a generalization of the Poisson distribu-
tion. Indeed, the Poisson distribution is recovered when 1

φ
→ 0. The first two centered moments are

given by:

E[Yit|X it = xit] =μ(xit) and Var[Yit|X it = xit] =μ(xit) + μ(xit)2

φ
. (3.12)

As can be seen, the negative binomial specification assumes overdispersion since Var[Yit|X it = xit]>
E[Yit|X it = xit]. One can estimate the parameters of the regression function μ( · ) along with the
dispersion parameter φ by minimizing the negative binomial deviance loss over the training set:

{μ̂, φ̂} = argminμ∈H,φ>0

{
− 1

|Tr|
∑

(i,t)∈Tr

ln

[
�(yit + φ)

yit!�(φ)

]
+ φ ln

[
φ

φ +μ(xit)

]
+ yit ln

[
μ(xit)

μ(xit) + φ

]}
.

(3.13)

Log-linear negative binomial regression
As in the Poisson case, a common specification for μ( · ) is the log-linear form, defined in Equation

(3.5). In this case, the criterion in (3.13) is convex, and convex optimization can be used to estimate β

and φ.

CANN negative binomial regression
Similar to the approach used for the Poisson case, a CANN architecture can be used to model the

mean parameter in the negative binomial distribution. The specification for the regression function μ( · )
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Figure 3. CANN architecture for the negative binomial specification. The MLP’s preactivation output
value a(4)

1 is added to the log-linear model’s preactivation output value 〈x, β〉 before being transformed
with the softplus function ζ ( · ) to obtain the μ value of the negative binomial distribution. The φ value
is obtained by transforming a real-valued parameter wφ through the softplus function. The resulting
parameters μ and φ are then compared to the ground truth y using negative binomial deviance loss. The
architecture shown employs a 3-hidden-layer MLP but can be customized with any number of layers.

remains identical to the Poisson case, as defined in Equation (3.10). In order to incorporate the extra
distribution parameter φ, an additional output neuron is introduced in the network. This output neuron
is connected to a neural network weight wφ ∈R through the softplus function, ensuring that φ remains
positive, that is, φ = ζ (wφ). It is important to highlight that the distribution parameter φ is not directly
connected to the input variables x. As a result, no heterogeneity is incorporated into this parameter,
and a common estimated value φ̂ is used for all observations. The exact architecture for the negative
binomial CANN model is depicted in Figure 3. The network parameters β, θ , and wφ can be learned by
minimizing the criterion in Equation (3.13) using a procedure analogous to Algorithm 3.1.1.

3.2. Longitudinal models
Cross-sectional models assume independence between all contracts. However, in our case, the data
exhibit clustering due to contracts being grouped by vehicle. While it is reasonable to assume inde-
pendence between contracts from distinct vehicles, this assumption is less valid for contracts from
the same vehicle. In reality, the claim counts of contracts within the same vehicle may be influenced
by shared vehicle-specific characteristics, unobserved risk factors, or policy-level effects, resulting in
dependence between observations within each vehicle cluster. To appropriately address this dependence,
we transition from cross-sectional to longitudinal models, enabling the introduction of within-vehicle
dependence. In the case of claim count data, a longitudinal model can efficiently leverage the history of
the vehicles to refine the risk estimation for future contracts.

While various models are available to analyze longitudinal data, such as random effects models, fixed
effects models, generalized estimating equations, and autoregressive models, among others, empirical
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evidence in the context of claim count regression supports the effectiveness of random (or mixed) effects
models (see Boucher et al., 2008). In these models, a random effect, which is a random variable, is
introduced in the specified distribution. For instance, in the case of count data, the specified distribution
could be the Poisson distribution. The random effect is assumed to follow a certain distribution, such
as a normal, gamma, or another appropriate distribution. The inclusion of the random effect allows for
capturing the unobserved heterogeneity or individual-specific effects that cannot be accounted for by the
observed covariates. It introduces additional variability into the model and accounts for the dependence
within clusters. In longitudinal analysis, we need, for each vehicle i, to model the random vector of claim
counts Y i,(1:Ti) = (Yi1, . . . , Yi,Ti ). The joint PMF can be expressed with

P
(
Y i,(1:Ti) = yi,(1:Ti)

|xi,(1:Ti)

)=
∫ ∞

−∞

(
Ti∏

t=1

P(Yit = yit|xi,(1:Ti), θi)

)
f (θi)dθi, (3.14)

where f (θi) is the PDF of the random effect.

3.2.1. MVNB regression
A MVNB regression model is obtained by introducing a gamma-distributed random effect in the mean
parameter of the Poisson distribution. Specifically, we assume that the conditional distribution of Yit,
given �i =ψi, follows a Poisson distribution with mean μ(xit)ψi, where �i is a gamma-distributed
random variable with mean 1 and variance 1/φ. The density of �i is given by

f�i (ψi) = φφ

�(φ)
ψ
φ−1
i e−φψi , ψi > 0. (3.15)

By using Equation (3.14), one can derive the joint distribution for the vector of claim counts:

P
(
Y i,(1:Ti) = yi,(1:Ti)

|xi,(1:Ti)

)=
Ti∏

t=1

(
μ(xit)yit

yit!

)
�(yi• + φ)

�(φ)

(
φ

μi• + φ

)φ ( 1

μi• + φ

)yit

, (3.16)

whereμi• =∑Ti

t=1 μit and yi• =∑Ti

t=1 yit. This joint distribution is commonly referred to as MVNB or neg-
ative multinomial distribution. Note that the Poisson distribution is retrieved when 1

φ
→ 0. Furthermore,

given the past claim history denoted as yi,(1:t−1) = (yi1, . . . , yi,t−1) as well as current and past covariate
vectors denoted as xi,(1:t) = (xi1, . . . , xit), one can show that the number of claims at time (or contract) t
follows a negative binomial distribution. The probability of observing yit claims at time t, given the past
claim history as well as past and current covariate vectors, is thus expressed with

P(Yit = yit|yi,(1:t−1), xi,1:t) = �(yit + αit)

yit!�(αit)

(
γit

γit +μ(xit)

)αit
(

μ(xit)

μ(xit) + γit

)yit

, t = 1, 2, . . . , Ti, (3.17)

where αit = φ +�
(y)
it and γit = φ +�

(μ)
it . �(y)

it =∑t−1

t
′=1

yit
′ and �(μ)

it =∑t−1

t
′=1
μ(xit

′) represent the number
of past claims and the sum of past μ values for contract (i, t), respectively. In the special case when
t = 1, there is no past history and we set�(y)

it =�
(μ)
it = 0, which yields αi1 = γi1 = φ. The expected claim

count, given the past history, is given by:

E
[
Yit|yi,(1:t−1), xi,1:t

]=μ(xit)

(
φ +�

(y)
it

φ +�
(μ)
it

)
(3.18)

=μ(xit)

(
αit

γit

)
. (3.19)

Fitting an MVNB model, therefore, amounts to fitting a negative binomial model, where the parame-
ters αit and γit depend on the vehicle’s history. The parameter φ and the regression function μ( · ) can
be estimated by minimizing the deviance loss over the training set. This can be achieved through the
following optimization problem:
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{μ̂, φ̂} = argminμ∈H,φ>0

{
− 1

|Tr|
∑

(i,t)∈Tr

ln

[
�(yit + αit)

yit!�(αit)

]
+ αit ln

[
γit

γit +μ(xit)

]
+ yit ln

[
μ(xit)

μ(xit) + γit

]}
.

(3.20)

Log-linear MVNB regression
If the specification for μ( · ) is the log-linear form, defined in Equation (3.5), the criterion in (3.20)

is convex, and convex optimization can be used to estimate β and φ.

CANN MVNB regression
In the MVNB case, the CANN architecture, as defined in Equation (3.10), can also be used as a

specification for the regression function μ( · ). To incorporate the additional distribution parameters
αit and γit, two additional output neurons are introduced in the network, as depicted in Figure 4. The
distribution parameters αit and γit stem from a common parameter φ > 0, and for the tth contract of
vehicle i, we have αit = φ +�

(y)
it and γit = φ +�

(μ)
it . The neuron representing φ is connected to a network

weight wφ ∈R through the softplus function, i.e., φ = ζ (wφ). An MVNB CANN model can be trained
with backpropagation and gradient descent, as outlined in Algorithm 3.2.1. Notice that for a vehicle i,
the parameter γit depends on the μ parameter values for its past contracts. As the training procedure
of the CANN model is iterative, the estimated μ values change at each iteration. Hence, it is crucial to
update �(μ)

it for each contract (i, t) at every iteration. This updating procedure is carried out in step 2 of
Algorithm 3.2.1.

4. Practical application with telematics data
In this section, we explain how our CANN regression models are applied to our dataset. Additionally,
we describe the application of the log-linear models, which serve as benchmark models in our analysis.

4.1. Log-linear models
The Poisson, negative binomial, and MVNB log-linear models are benchmarks for the Poisson, negative
binomial, and MVNB CANN models. These models incorporate all 11 traditional risk factors from
Table 1, including the real distance driven (although not strictly classified as a traditional risk factor). It
is important to note that the expo variable is used as a covariate rather than as an offset. For each contract
(i, t), these traditional risk factors are denoted by the vector x(trad)

it . Notice that among the 11 traditional
risk factors, 4 are categorical: gender, marital_status, pmt_plan, and veh_use. For these risk
factors, the approach involves initially grouping all rare categories, defined as those representing 5% or
less of the total number of observations, and labeling them as “others.” We then encode them numerically
using dummy encoding. All the resulting traditional covariates are then centered and scaled. Moreover,
commute_distance contains missing values, which we fill in using median imputation.

Unlike neural networks, log-linear models have a hard time learning features directly from raw data.
To put them on an equal footing with the CANN models, we manually engineer features from the telem-
atics data used by these models. These 13 telematics features, described in Table 4, were specifically
engineered from the telematics dataset as risk factors potentially correlated with the claiming risk. For
each contract (i, t), these numerical handcrafted telematics features are denoted by the vector x(hand)

it .
Note that these handcrafted telematics features are also centered and scaled prior to being input into the
log-linear models. The regression function for the μ parameter can thus be written as

μ
(
x(trad, hand); β

)= exp
(〈x(trad, hand), β〉) , (4.1)
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Figure 4. CANN architecture for the MVNB specification. The MLP’s preactivation output value a(4)
1

is added to the log-linear model’s preactivation output value 〈x, β〉 before being transformed with the
softplus function ζ ( · ) to obtain the μ value of the negative binomial distribution of Equation (3.17).
The φ value is obtained by transforming a real-valued parameter wφ through the softplus function. To
obtain α, the sum of past claims �(y) is added to the φ parameter, while for γ , the sum of past μ values
�(μ) is added to the same φ parameter. The resulting distribution parameters μ, α, and γ are then
compared to the ground truth y using negative binomial deviance loss. The architecture shown employs
a 3-hidden-layer MLP but can be customized with any number of layers.

where x(trad, hand) is the concatenation of x(trad) and x(hand). The parameters estimated on the training set
are shown in a table that can be found on the project’s GitHub repository (see (see Duval, 2023).
Notably, when using telematics information, the estimated φ parameter in the MVNB log-linear model is
higher. A higher φ value brings the correcting factor in Equation (3.19) closer to one, indicating reduced
importance on past experience when telematics features are used. This underscores the relevance of the
engineered telematics features.
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Algorithm 2: Parameter estimation procedure – MVNB CANN model

4.2. CANN models
For the CANN regression models, we extract low-level descriptor vectors that are specifically designed
to accurately describe the driving patterns within a particular contract, at least with the dataset we have.
We expect the MLP component within the CANN models to learn meaningful high-level features from
these low-level vectors. The hope is that the learned features in the hidden layers will be more relevant
than the handcrafted features of Table 4. Each contract (i, t) is described by the following descriptor
vectors, which provide a summary of its telematics information:

x(h)
it = (

x(h)
it,1, . . . , x(h)

it,24

) ∈R
24,

x(d)
it = (

x(d)
it,1, . . . , x(d)

it,7

) ∈R
7,
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Table 4. Handcrafted telematics features extracted from the telematics dataset.

Feature name Description
avg_daily_nb_trips Average daily number of trips
frac_expo_evening Fraction of evening driving1

frac_expo_fri_sat Fraction of driving on Friday and Saturday
frac_expo_mon_to_thu Fraction of driving on Monday to Thursday
frac_expo_night Fraction of night driving2

frac_expo_noon Fraction of midday driving3

frac_expo_peak_evening Fraction of evening rush hour driving4

frac_expo_peak_morning Fraction of morning rush hour driving5

max_trip_max_speed Maximum of the maximum speed of the trips
med_trip_avg_speed Median of the average speeds of the trips
med_trip_distance Median of the distances of the trips
med_trip_max_speed Median of the maximum speeds of the trips
prop_long_trip Proportion of long trips (>100km)
120h–0h.
20h–6h.
311h–14h.
417h–20h Monday to Friday.
57h–9h Monday to Friday.

x(a)
it = (

x(a)
it,1, . . . , x(a)

it,14

) ∈R
14,

x(m)
it = (

x(m)
it,1 , . . . , x(m)

it,16

) ∈R
16,

x(k)
it = (

x(k)
it,1, . . . , x(k)

it,10

) ∈R
10.

• The elements in vector x(h)
it represent the fraction of driving during each of the 24 h of the day.

Therefore, x(h)
it,j is the fraction of driving during the jth h of the day for contract (i, t).

• The elements in vector x(d)
it represent the fraction of driving during each of the 7 days of the

week. Therefore, x(d)
it,j is the fraction of driving during the jth day of the week for contract (i,

t). Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday are denoted by j =
1, 2, 3, 4, 5, 6, 7, respectively.

• The elements in vector x(a)
it represent the fraction of trips made in different average speed slots.

For instance, x(a)
it,j denotes the fraction of trips made at an average speed between 10(j − 1) and

10j kilometers per hour.
• The elements in vector x(m)

it represent the fraction of trips made in different maximum speed
slots. For instance, x(m)

it,j denotes the fraction of trips made where the maximum speed reached
falls between 10(j − 1) and 10j kilometers per hour.

• The elements in vector x(k)
it represent the fraction of trips made in different distance slots. For

instance, x(k)
it,j denotes the fraction of trips between 5(j − 1) and 5j kilometers.

These descriptor vectors capture specific aspects of the driving patterns, such as hourly, weekly,
average speed, and maximum speed distribution, providing valuable information for the MLPs. Since
MLPs can only accept vectors as input, we concatenate these five vectors into a global telematics
vector:

x(tele)
it = (

x(h)
it , x(d)

it , x(a)
it , x(m)

it , x(k)
it

)
. (4.2)

We incorporate this telematics vector into the MLP component of the CANN models, together with the
traditional risk factors x(trad), enabling interactions between telematics and traditional inputs. In contrast,
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the log-linear part of the CANN models only includes the traditional risk factors due to the difficulty of
processing low-level information. The regression function for the μ parameter can thus be written as

μCANN (x(trad, tele); β, θ
)= ζ

{〈xtrad, β〉 + a(L−1)(xtrad,tele; θ)
}

. (4.3)

where x(trad, tele) is the concatenation of x(trad) and x(tele).
The CANN models are trained using the torch library in the R programming language, using mini-

batch gradient descent with 256 observations per batch. The optimizer we use to perform gradient
descent is the Adam optimizer, which is a fairly popular choice for training neural networks. Additionally,
we use the reduce-on-plateau learning rate scheduler, which dynamically adjusts the learning rate based
on the model’s performance, automatically reducing it when the improvement plateaus, allowing for bet-
ter optimization and convergence during training. For the MLP component of our CANN models, we opt
for 3 hidden layers (L = 5) with 128, 64, and 32 hidden units, respectively (n1 = 128, n2 = 64, n3 = 32).
Please note that the number of hidden layers and units per layer are hyperparameters that typically require
tuning. However, due to our computational constraints, we limit our investigation to this specific archi-
tecture, which we believe is a reasonable choice given our input vector’s size. We choose the rectified
linear unit as the activation function φ( · ) used in the hidden layers as it is a widely accepted standard
choice. Additionally, we add batch normalization and dropout layers in between fully connected layers,
which contribute to network stabilization and regularization. Note that a batch normalization layer is
present directly after the input layer, which means that the inputs are normalized before entering the
network. Batch normalization applies a normalization transformation to the input of a layer by subtract-
ing the mini-batch mean and dividing by the mini-batch standard deviation. By maintaining a stable
mean and variance throughout the network, it can mitigate the vanishing or exploding gradients prob-
lem, enabling more effective and efficient training. The dropout layers, on the other hand, serve as a
regularization technique that helps prevent overfitting. During training, dropout randomly sets a frac-
tion of the hidden units of a given hidden layer to zero at each iteration, which forces the network to learn
redundant representations and reduces the reliance on specific features. This regularization technique
improves the model’s ability to generalize well to unseen data.

4.3. CANN hyperparameter tuning
To maximize the performance of our CANN models, we use grid search for hyperparameter tuning,
with the average loss observed on the validation dataset Va as our optimization criterion. Additionally,
we incorporate a regularization technique known as “early stopping” to determine the best number
of epochs. This approach allows us to prevent overfitting and select the optimal number of epochs
based on the lowest average loss achieved during training. We focus on three key hyperparameters:
l_start, denoting the initial learning rate used in the reduce-on-plateau learning rate scheduler; p,
which represents the probability of dropout in the dropout layers; and factor, indicating the factor
by which the learning rate is multiplied upon reaching a plateau. A plateau is the point where there is
no observed improvement in the validation loss for two consecutive epochs. Overall, we compute the
average validation loss for all 45 combinations derived from the following hyperparameter values:

• l_start: 0.00001, 0.00005, 0.0001, 0.0005, 0.001
• p: 0.2, 0.3, 0.4.
• factor: 0.3, 0.4, 0.5

Remember that the network parameters in the classical components of the CANN models are initial-
ized with the maximum likelihood estimators of the corresponding log-linear model, which is why we
use relatively small learning rates. At the initialization stage, the network already produces reasonable
predictions, reducing the need for large gradient descent steps. Considering the relatively small size of
our networks, which are less prone to overfitting, we use rather small dropout probabilities p, all below
or equal to 0.4. For the factor hyperparameter, three rather standard values (0.3, 0.4, and 0.5) are
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Table 5. Optimal CANN models’ performance on the validation set

Specification Average validation loss Number of epochs
Poisson 0.2352 35
Negative binomial 0.2351 35
MVNB 0.2349 35

tested. The validation loss for each of the 45 combinations and the three specifications is presented in
Table S1. It is worth noting that each model is trained for 30 epochs, and as early stopping is employed,
the displayed average validation loss is based on the optimal number of epochs, which can be less than 30.

As can be seen, for all learning rates higher than 0.00001, the minimum average validation loss is
achieved after a very small number of epochs, indicating that the network learns too quickly. Although
the negative binomial and MVNB models perform best at a learning rate of 0.0001, we believe that with
more epochs, we could achieve a lower average loss with a learning rate of 0.00001. This is particularly
true since the average losses are quite similar for lr_start = 0.00001 and lr_start = 0.0001. When
examining the first nine rows of Table S1, it becomes apparent that the factor hyperparameter has a
negligible effect on the validation loss. On the other hand, the p hyperparameter only seems to have an
impact on the validation loss for the Poisson model, performing best when p = 0.4. Although the dropout
rate does not significantly affect the performance for both the negative binomial and MVNB models,
we also choose p = 0.4 for these two models since the best performance is achieved at a high number of
epochs (29 and 30 epochs, respectively). This suggests that with more epochs, there is potential for fur-
ther performance improvement. Therefore, we select lr_start = 0.00001, factor = 0.3, and p = 0.4
as the hyperparameters for all three specifications. We train the models again on the training set, this
time for 100 epochs. The performance of the three models on the validation set is displayed in Table 5.
As can be seen, all 3 specifications require 35 epochs to minimize the average validation loss.

5. Analysis
5.1. Performance assessment on the testing set
After carefully tuning the hyperparameters of our CANN models, we have at hand promising claim
count models that are now nearing implementation. The next crucial step is to estimate their generaliza-
tion capabilities accurately. We assess the models’ generalization performance using the testing set Te,
which has remained untouched until now. Using this independent dataset, we can estimate the models’
predictive performance on unseen data points and determine their suitability for real-world applications.

We perform a comparative analysis between the CANN and the log-linear benchmark models, which
allows us to evaluate our CANN models’ relative performance and effectiveness against established
approaches. In addition to log-linear models using telematics handcrafted features, we also assess the
performance of log-linear models using telematics information in the form of the global telematics vector
of Equation (4.2). These models have access to exactly the same information as the CANN models and
therefore allow an alternative insightful comparison.

In order to fully grasp the value of telematics data, we also evaluate the performance of all 6 models
(Poisson, negative binomial and MVNB log-linear and CANN models) without telematics, using only
the 11 traditional risk factors as inputs. In the CANN models, the MLP component therefore only com-
prises the 11 traditional risk factors. This analysis helps us understand the contribution of telematics
information in improving the predictive power of the models.

Finally, we also explore a variant of the training procedure for CANN models in which the parameters
in the log-linear component β are fixed, meaning they are not trainable. While this approach may result
in reduced performance, it offers the benefit of preserving interpretability while still capturing signals
that may have been overlooked by the log-linear component. For these three models (Poisson, negative
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Table 6. Performance of the baseline
model on the testing set

Scoring rule Baseline model
Poisson deviance 0.3682
Logarithmic score 0.2470
Squared error 0.0697

binomial, and MVNB), we choose to initialize the parameters β with coefficients from the MVNB
log-linear model, as these are estimated considering time dependence between contracts.

All 18 models are trained on the learning set, and their performance is evaluated on the testing set.
To assess the performance, we employ three different scoring rules, namely the Poisson deviance, the
logarithmic score, and the squared error. For each scoring rule, we compute the average value on the
testing set. To assess the magnitude of the achieved performance, we begin by calculating the average
scoring rule values for a baseline model. This baseline model is defined as a homogeneous Poisson log-
linear model, where the estimation of the mean (and variance) parameter μ is estimated by the average
number of claims per contract observed in the learning set:

μ̂= 1

|{Tr, Va}|
∑

(i,t)∈{Tr ,Va}
yit. (5.1)

The average scoring rule values for this baseline model on the testing set are reported in Table 6. We
can then evaluate the performance of each of the six models in terms of percentage improvement over
the baseline model, as shown in Table 7. As can be seen, our CANN models consistently outperform
their respective log-linear benchmark models across all scoring rules, indicating that the MLP com-
ponent of the CANN architecture effectively captures signals that have been missed by the log-linear
part. The improvement in prediction performance offered by CANN models obviously comes with
computational costs. For the Poisson specification, the log-linear model using handcrafted telematics
features had a training duration of 20 s, while the CANN model required about 24 min to complete 35
epochs. Furthermore, longitudinal models, including the MVNB CANN model, provide a substantial
improvement over cross-sectional models, indicating that traditional and telematics data alone cannot
fully capture the extent of the dependence between observations. This supports the use of longitudinal
specifications, as they can capture dependence induced by unobserved variables. CANN models trained
with fixed β parameters perform similarly to their trainable counterparts. Because CANN models using
fixed β values are more interpretable and faster to train, we recommend using them over their coun-
terpart with trainable parameters in the log-linear component. Lastly, it is worth noting that log-linear
models using the global telematics vector are worse than those using handcrafted telematics features,
indicating that they have a hard time learning from such detailed low-level data.

As highlighted in the works of Wüthrich (2022) and (2020), one limitation of neural networks is
their lack of the balance property. This property, which GLMs satisfy (provided that the canonical link
function is used), ensures that the sum of predicted values matches the sum of actual values. This is
indeed highly desirable in pricing models, as it ensures that premiums adequately cover the expected
loss costs. Table 8 displays the sum of predicted and actual values on both learning (in-sample) and
testing (out-of-sample) sets for CANN models using telematics. As can be seen, the models overshoot
the premiums by about 7% for in-sample predictions and about 3.5% for out-of-sample predictions.
This is an issue for pricing because premiums that are too high may lead to adverse selection. While
our focus is primarily on comparing models based on the quality of individual predictions, it is essential
for pricing models that are actually used in practice to meet the balance property. Fortunately, several
techniques (see Wüthrich, 2020, 2022 and Denuit et al., 2021) are available to address this balance issue
in neural networks, including in CANN models.
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Table 7. Performance comparison of the CANN models and their corresponding log-linear benchmark
model on the testing set. The percentages denote the improvement in the scoring rule compared to the
baseline model

No telematics With telematics

Log-linear model Log-linear CANN CANN
Scoring Log-linear CANN (handcrafted model (global model model
rule model model features) telematics vector) (trainable β) (fixed β)

Poisson

Poisson deviance 5.23% 5.53% 5.68% 5.35% 5.78% 5.77%
Logarithmic score 3.90% 4.12% 4.23% 3.99% 4.31% 4.30%
Squared error 2.10% 2.26% 2.30% 2.07 % 2.38 % 2.38%

Negative binomial

Poisson deviance 5.24% 5.58% 5.68% 5.36% 5.81% 5.81%
Logarithmic score 3.99% 4.24% 4.31% 4.08% 4.41% 4.41%
Squared error 2.10% 2.27% 2.30% 2.07% 2.37% 2.37%

MVNB

Poisson deviance 5.36% 5.65% 5.79% 5.47% 5.90% 5.90%
Logarithmic score 4.07% 4.27% 4.38% 4.15% 4.46% 4.46%
Squared error 2.13% 2.29% 2.34% 2.08% 2.41% 2.42%

Table 8. Comparison of the sum of predicted values and the sum of actual values for CANN models
using telematics

Model Sum of predicted values (1) Sum of actual values (2) (1)/(2)
In-sample (learning set)

Poisson CANN 6618 6184 107.0%
Negative binomial CANN 6630 6184 107.2%
MVNB CANN 6622 6184 107.1%

Out-of-sample (testing set)

Poisson CANN 1592 1538 103.5%
Negative binomial CANN 1594 1538 103.6%
MVNB CANN 1595 1538 103.7%

5.2. Permutation feature importance and PDPs
One substantial drawback of neural networks is their difficulty of interpretation. However, researchers
have developed tools to shed light on the inner workings of these black box algorithms. Two particularly
useful tools in this context are permutation feature importance and PDPs.

Permutation feature importance is a model-agnostic technique that computes an importance score for
each input (or variable) in a supervised learning algorithm. It achieves this by randomly permuting the
values of a specific input while holding the other inputs constant and observing the resulting effect on the
model’s performance. By comparing the original model’s performance with the permuted performance,
we can determine the variable’s importance relative to the chosen performance metric. Suppose we have
a trained model and a holdout sample for evaluation purposes. We can initially score the model on this
sample and measure its performance using a chosen metric, such as the average loss. Let us denote the
average loss obtained with the original holdout sample as �original. To assess the importance of input j in
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Figure 5. Importance scores of the 20 most important variables obtained for the MVNB CANN model.

the prediction process, we randomly shuffle the values of input j in the holdout sample and rescore the
model. This process yields a new average loss, denoted as �(j)

permuted, where the superscript j indicates that
input j has been permuted. If input j is indeed important for the model’s prediction, the permuted average
loss �(j)

permuted is expected to be greater than the original average loss �original. This suggests that permuting
the values of input j has a detrimental effect on the model’s performance. To obtain an importance score
for input j, we can compute the difference between the permuted average loss and the original average
loss, resulting in the feature importance score FIj:

FIj = �
(j)
permuted − �original.

To obtain a more reliable estimate of the importance score, this procedure can be repeated a certain
number of times for input j, creating a distribution of the increase or decrease in the average loss. The
whole procedure can then be repeated for all inputs. In Figure 5, the importance scores of the 20 most
important variables for our best model, the MVNB CANN, are visualized using boxplots. Please note
that the names used for the telematics inputs in Figure 5 differ from the introduced notation. However,
a translation table is provided in Table A.1 of Appendix A to clarify the correspondence between the
names used and the introduced notation. Each boxplot represents the distribution of the 100 impor-
tance scores assigned to a specific input obtained by shuffling and assessing the model 100 times. The
performance metric used is the deviance loss (up to a factor 2). The analysis reveals interesting find-
ings regarding the claim count model. As can be seen, the top 5 most important variables are from our
set of 11 traditional risk factors. Notably, veh_age, distance, and expo play a significant role in the
model’s performance. When it comes to telematics inputs, those related to maximum speed demonstrate
a substantial impact on the model’s performance. Particularly, vma_16, representing the fraction of trips
made at a maximum speed exceeding 150 kilometers per hour, stands out as the most important input.
In general, the fraction of trips made at high maximum speeds, such as vma_14, vma_15, and vma_16,
proves to be valuable for predicting claims. Additionally, it is interesting to observe that h_22 and h_2,
which represent the fraction of driving during night hours, contribute substantially to the assessment
of risk. Importantly, the gender variable, often used by insurers as a risk factor, is rendered useless in
the presence of telematics inputs. It ranks as the 70th most important variable (not showed in Figure 5),
indicating its insignificance in the model’s predictive power.
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PDPs are valuable tools for understanding the relationship between a specific input variable and the
output of a supervised learning model. PDPs are also model-agnostic, meaning they can be applied to
different types of models. They provide insights into how changes in a particular input variable influence
the model’s predictions while keeping all other variables at fixed values. In other words, they illustrate
the marginal effect of an input variable on the predicted outcome. To compute a PDP for a specific input
variable j, the process involves the following steps. First, a grid of values is defined to cover the entire or
plausible range of the variable’s values. Next, while holding all other variables fixed, the input vector in
the holdout dataset is sequentially replaced with each value from the defined grid. Subsequently, predic-
tions are obtained using the trained model on the modified holdout dataset for each value. By plotting the
input variable values on the x-axis and the corresponding average prediction on the y-axis, the resulting
PDP visually showcases the relationship between the input variable and the model’s predictions.
Figure S1 displays the PDPs of the eight most important telematics inputs in the MVNB CANN model.
The plots reveal that the risk, expressed as the expected number of claims, appears to increase in a linear
fashion with the proportion of trips made at high maximum speeds, indicated by the input variables
vma_14, vma_15, and vma_16. Additionally, there appears to be a positive linear association between
the expected number of claims and the proportion of driving taking place during nighttime hours,
specifically between 9 p.m. and 10 p.m. (h_22) and between 1 a.m. and 2 a.m. (h_2). It is important to
emphasize that when interpreting PDPs, caution must be exercised, as the procedure assumes that the
input variables are independent of each other. In particular, the interpretation of the PDPs related to the
fraction of driving on Tuesdays (p_2) is challenging due to the correlation between the proportions of
driving on different days of the week. For instance, if an insured individual drives in smaller proportions
on Tuesdays, they will systematically drive in larger proportions on other days of the week.

6. Conclusions
In this study, we presented three claim count regression models leveraging telematics data in the form
of trip summaries. Our models are based on the CANN architecture, specifically designed to address
actuarial problems and harness rich and complex information such as data provided by telematics tech-
nology. One key aspect of our work is the integration of a longitudinal specification into the CANN
framework. This integration allows us to effectively capture the time dependence between insurance
contracts, which is important for accurately modeling claim counts. The superior results obtained with
longitudinal models suggest that residual dependencies remain even after incorporating traditional and
telematics data. This underscores the preference for longitudinal models, even when considering telem-
atics information. While we specifically tested the implementation of the MVNB distribution in the
CANN framework, it is important to note that the approach can be readily extended to other longitu-
dinal distributions, such as the beta negative binomial distribution, detailed in Turcotte and Boucher
(2023). Furthermore, our findings highlight the importance of telematics inputs related to the maximum
speed reached during trips in the claim count models. With PDPs, we found that claim frequency is pos-
itively correlated with the fraction of trips made at high maximum speeds. Overall, the new approaches
developed in this article represent a significant advancement in accurately modeling claim counts and
enhancing the performance of predictive models in the context of UBI. Remarkably, the CANN regres-
sion models consistently outperform traditional log-linear models using handcrafted telematics features,
as demonstrated by the superior performance across three performance metrics. These results are further
supported by the use of a proper machine learning methodology that effectively prevents data leakage
and mitigates the risk of producing falsely optimistic results. All the code necessary to replicate the
analysis is available on the project’s GitHub repository (see Duval, 2023).

While the available telematics data have been instrumental in improving our claim count models, we
believe that further improvement can be achieved with access to richer data. For instance, if second-by-
second data or additional information such as harsh acceleration/braking and distracted driving were
accessible, we believe the performance could be further improved. Depending on the data format, dif-
ferent types of neural networks, such as CNN and RNN, could be used as the network component in the
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CANN models. Additionally, we acknowledge that with more time and computational power, a more
comprehensive fine-tuning process of the CANN models could yield even better results than what we
achieved. Notably, we were constrained in adjusting the number of hidden layers and units in the MLP
components of the CANN models due to time and computational limitations. Moreover, a more advanced
tuning method, beyond the grid search approach used in this study, could be employed to optimize model
performance. Finally, it would be interesting to conduct further research investigating the impact of using
a longitudinal model on telematics variables. It is expected that the importance of certain telematics vari-
ables would decrease when considering past claim history, as this historical data can provide insights
into the claiming risk of an insured.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2024.4
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A. Telematics Input Names Translation

Table A.1. Telematics inputs names translation

Introduced Notation
notation in the plots Description
x(h)

it,1 h_1 Fraction of driving between midnight and 1 a.m.
x(h)

it,2 h_2 Fraction of driving between 1 a.m. and 2 a.m.
...

...
...

x(h)
it,24 h_24 Fraction of driving between 11 p.m. and midnight

x(d)
it,1 p_1 Fraction of driving on Mondays

x(d)
it,2 p_2 Fraction of driving on Tuesdays
...

...
...

x(d)
it,7 p_7 Fraction of driving on Sundays

x(a)
it,1 vmo_1 Fraction of trips with average speed between 0 and 10 kph

x(a)
it,2 vmo_2 Fraction of trips with average speed between 10 and 20 kph
...

...
...

x(a)
it,14 vmo_14 Fraction of trips with average speed exceeding 130 kph

x(m)
it,1 vma_1 Fraction of trips with maximum speed between 0 and 10 kph

x(m)
it,2 vma_2 Fraction of trips with maximum speed between 10 and 20 kph
...

...
...

x(m)
it,16 vma_16 Fraction of trips with maximum speed exceeding 150 kph

x(k)
it,1 d_1 Fraction of trips with distance between 0 and 5 km

x(k)
it,2 d_2 Fraction of trips with distance between 5 and 10 km
...

...
...

x(k)
it,10 d_10 Fraction of trips with distance exceeding 45 km
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