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On the Composition of
Differentiable Functions

M. Bachir and G. Lancien

Abstract. We prove that a Banach space X has the Schur property if and only if every X-valued weakly

differentiable function is Fréchet differentiable. We give a general result on the Fréchet differentiability

of f ◦ T, where f is a Lipschitz function and T is a compact linear operator. Finally we study, using

in particular a smooth variational principle, the differentiability of the semi norm ‖ ‖lip on various

spaces of Lipschitz functions.

1 Introduction

If X and Y are two Banach spaces and f is a map from an open subset U of Y into
X. We shall say that f is weakly differentiable at the point y0 of U if, for any x∗ in

the dual space X∗, x∗ ◦ f is differentiable at y0. For a positive integer k, we will say
as well that f is weakly Ck, or weakly k times continuously differentiable, if for any
x∗ in X∗, x∗ ◦ f is a Ck function. It is stated in [3] and proved in [7] that a weakly
Ck function is always of class Ck−1. On the other hand, there are examples, as we will

recall later, of nowhere differentiable weakly C1 functions. In Section 2, we will show
that differentiability and weak differentiability are equivalent if and only if the space
X has the Schur property. We recall that a Banach space X has the Schur property
if any weakly convergent sequence in X is norm convergent and that `1 is the most

classical example of an infinite dimensional Banach space with the Schur property.
We now define a few spaces of real-valued functions that will be studied in Sec-

tions 3 and 4.
We denote by Cb(R) the Banach space of all bounded continuous real-valued func-

tions defined on R equipped with the supremum norm ‖ ‖∞.
For 0 < α ≤ 1, Lipαb (R) is the space of all bounded α-Hölder functions equipped

with the complete norm defined by

‖φ‖∞,α = max(‖φ‖∞, ‖φ‖α), ∀φ ∈ Lipαb (R)

where

‖φ‖α = sup
x,y∈R, x 6=y

|φ(x) − φ(y)|

|x − y|α
.

When α = 1, we simply denote this space by Lipb(R) and write ‖φ‖1 = ‖φ‖lip .

If s is a positive integer,
(

C s
b(R), ‖ ‖C s

)

is the Banach space of all C s functions φ

such that φ, φ ′, . . . , φ(s) are bounded on R. The norm ‖ ‖C s is defined by

‖φ‖C s = max(‖φ‖∞, ‖φ
′‖∞, . . . , ‖φ

(s)‖∞).
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Again, let α ∈ (0, 1]. We denote by C
1,α
b (R) the Banach space of all functions in

C1
b(R) such that φ ′ is α-Hölder, equipped with the norm

‖φ‖1,α = max(‖φ‖∞, ‖φ
′‖∞, ‖φ

′‖α).

In Section 3, we use the classical idea that compactness improves the Gâteaux

differentiability of Lipschitz functions into Fréchet differentiability. We apply this
idea to prove the generic Fréchet differentiability of ‖ ‖∞ on the space of Lipschitz
functions on [0, 1] and of ‖ ‖L1 on the space of absolutely continuous functions on
[0, 1]. We also give a general result in Theorem 3.4.

Section 4 is essentially devoted to the study of the differentiability of the semi
norm R defined by R(φ) = ‖φ‖lip on various Banach spaces of Lipschitz functions.
First we give some negative results about its Fréchet differentiability on C1

b(R) and its
Gâteaux differentiability on Lipb(R). Then, we apply the smooth variational princi-

ple of Deville, Godefroy and Zizler [5] and also results of Ghoussoub [6], to obtain
positive statements about its generic Gâteaux differentiability on C1

b(R) and about its

generic Fréchet differentiability on Ck
b(R) for k ≥ 2 or on C

1,α
b (R) for 0 < α ≤ 1.

2 Weakly Differentiable Functions

Our first result can be seen as a converse of the “chain rule” on Banach spaces with
the Schur property.

Theorem 2.1 Let X be a Banach space with the Schur property, U be an open subset

of a Banach space Y and y0 ∈ U . Suppose that f : U → X is weakly differentiable at

y0. Then f is Fréchet differentiable at y0.

Proof We may assume that y0 = 0 and f (0) = 0. For h ∈ Y and x∗ ∈ X∗, we set

(2.1) Φ(h)(x∗) = lim
t→0

t−1(x∗ ◦ f )(th) = D(x∗ ◦ f )(0)h.

Clearly, Φ(h) is linear on X∗. Let (tn) be a sequence of real numbers tending to 0.
By assumption, we have that for any x∗ in X∗, the sequence

(

t−1
n (x∗ ◦ f )(tnh)

)

n≥0

is bounded in R. Then it follows from the Banach-Steinhaus Theorem that the se-
quence

(

t−1
n f (tnh)

)

n≥0
is bounded in X. This implies that Φ(h) is continuous on X∗

and therefore is an element of X∗∗.
Then, equation (2.1) means that Φ(h) is the weak∗ limit of t−1 f (th) as t tends to 0.

Since X has the Schur property, it is a weakly sequentially complete Banach space. So

Φ(h) ∈ X.
We now claim that Φ : Y → X is linear. Indeed, it follows easily from the Hahn-

Banach Theorem that otherwise there would exist x∗ ∈ X∗ such that D(x∗ ◦ f )(0) is
not linear.

Let us now fix x∗ in X∗. We have that

sup
‖h‖≤1

|Φ(h)(x∗)| = sup
‖h‖≤1

|D(x∗ ◦ f )(0)h| = ‖D(x∗ ◦ f )(0)‖Y ∗ < +∞.
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So we can use again the Banach-Steinhaus Theorem to get that Φ is a bounded linear
operator from Y into X.

Finally, we have by assumption that ‖h‖−1
(

f (h)−Φ(h)
)

tends weakly to 0 as ‖h‖
tends to 0. Using again that X has the Schur property, we obtain that

lim
h→0

‖h‖−1‖ f (h) − Φ(h)‖ = 0.

Thus Φ is the Fréchet derivative of f at 0.

As a corollary, we obtain the following:

Corollary 2.2 Let X be a Banach space with the Schur property, U be an open subset

of a Banach space Y and f be a function from U into X. Then, the following assertions

are equivalent:

(i) f is a C1 function.

(ii) f is a weakly C1 function.

Proof We only need to show that (ii) implies (i). So let us assume that (ii) holds. By
Theorem 2.1, we already know that f is Fréchet differentiable on U and that for any
x∗ in X∗, D(x∗ ◦ f ) = x∗ ◦ D f on U .

Assume now that D f is not continuous at some point y of U . Then there exist

ε > 0, (yn)n≥0 ⊂ U so that limn→∞ ‖yn − y‖ = 0 and (hn)n≥0 ⊂ Y with ‖hn‖ = 1
satisfying

(2.2) ∀n ≥ 0
∥

∥

(

D f (yn) − D f (y)
)

hn

∥

∥

X
> ε.

But we have by assumption that for any x∗ ∈ X∗

lim
n→∞

‖x∗ ◦ D f (yn) − x∗ ◦ D f (y)‖Y ∗ = 0.

This implies that
(

D f (yn) − D f (y)
)

hn tends weakly to 0. Since X has the Schur

property, this is in contradiction with (2.2).

The above corollary can be extended to the case of C k functions.

Corollary 2.3 Let X be a Banach space with the Schur property, U be an open subset

of a Banach space Y and f be a function from U into X. Let k be a positive integer and

assume that f is weakly Ck. Then f is a Ck function.

Proof The proof will be done by induction. So let us assume that the statement is
true for k ∈ N and that f is weakly Ck+1. Since the proof is very similar to the previous

ones, we will only outline its main steps.
By [7] or by the induction hypothesis, we already know that f is C k. First we have

to show that for any y in U , Dk f is Fréchet differentiable at y. As usual, we assume
for convenience that y = 0 and Dk f (0) = 0.
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For h = (h1, . . . , hk+1) ∈ Y k+1 and x∗ ∈ X∗, we denote

Ψ(h)(x∗) = lim
t→0

t−1(x∗ ◦ Dk f )(th1)(h2, . . . , hk+1) = Dk+1(x∗ ◦ f )(0)(h1, . . . , hk+1).

Following the argument in the proof of Theorem 2.1 we show that for any h in Y k+1,

Ψ(h) ∈ X and that Ψ is (k + 1)-linear and continuous from Y k+1 into X. Then, using
the Schur property we deduce that Ψ = Dk+1 f (0).

Finally, one can easily adapt the proof of Corollary 2.2 in order to show that Dk+1 f

is continuous on U .

We will now show that the composition property described in Theorem 2.1 is a
characterization of the Schur property. More precisely, we have:

Proposition 2.4 Let X be a Banach which does not have the Schur property. Then there

is a Lipschitz function f : [−1, 1] → X which is not differentiable at 0, but such that for

any open neighborhood U of f (0) in X and any function g : U → R differentiable at

f (0), g ◦ f is differentiable at 0.

Proof Since X does not have the Schur property, there is a weakly null normalized
sequence (xn)n≥0 in X. We define f by f (0) = 0, f (2−n) = 2−nxn, f is affine on each
interval [2−(n+1), 2−n] and f is an even function.

Let t = u2−n + (1 − u)2−(n+1) and t ′ = u ′2−n + (1 − u ′)2−(n+1), with u and u ′ in

[0, 1]. Then

(2.3) ‖ f (t)− f (t ′)‖ = |u−u ′| ‖2−nxn−2−(n+1)xn+1‖ ≤ 3|u−u ′|2−(n+1)
= 3|t−t ′|.

So f is 3-Lipschitz on each interval [2−(n+1), 2−n].
Furthermore, for p < n:

(2.4) ‖ f (2−p) − f (2−n)‖ ≤ 2−p + 2−n ≤ 3|2−p − 2−n|.

Using the triangular inequality, one can easily deduce from (2.3) and (2.4) that f is
3-Lipschitz on [−1, 1].

Now, for t ∈ [2−(n+1), 2−n], there is u ∈ [0, 1] such that t = u2−n +

(1 − u)2−(n+1)
= (1 + u)2−(n+1). Then, for any x∗ ∈ X∗:

(2.5) t−1(x∗ ◦ f )(t) = (1 + u)−1
(

2ux∗(xn) + (1 − u)x∗(xn+1)
)

.

Since (xn)n≥0 is weakly null, it is clear from the above equation that for any x∗ in X∗,

x∗ ◦ f is differentiable at 0 and (x∗ ◦ f ) ′(0) = 0. Then it follows easily from the fact
that f is Lipschitz that for any real valued function g which is differentiable at 0, g ◦ f

is differentiable at 0 and (g ◦ f ) ′(0) = 0.
Finally, if f was differentiable at 0, we would have f ′(0) = 0. But this is in con-

tradiction with the fact that for any n, ‖2n f (2−n)‖ = 1.

We will finish this section with a related open question. Let us say that a Banach
space X has the near Radon-Nikodỳm property (in short near RNP) if every weakly
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C1 function f from R into X has a point of differentiability. Our problem is to char-
acterize the Banach spaces with the near RNP. Let us just give some elementary

information concerning this question.
It follows from the Mean Value Theorem and the Banach Steinhaus Theorem,

that a weakly C1 function from R into X is locally Lipschitz. So a Banach space with
the Radon-Nikodỳm property has the near RNP. However, the converse is not true.

Indeed there exists a subspace S of L1, constructed by J. Bourgain and H. P. Rosenthal
in [4], without the Radon-Nikodỳm property but with the Schur property. Then, it
follows from our Corollary 2.2 that S has the near RNP.

On the other hand, as we already mentioned in the introduction, there are Banach

spaces without the near RNP. The space c0 is probably the simplest example. Indeed,
let f : R → c0 be given by f (t) =

(

fn(t)
)

n≥1
, where

∀p ∈ N, f2p−1(t) =
cos pt

p
and f2p(t) =

sin pt

p
.

Then f is a well known example of a weakly C1 but nowhere differentiable function
(see [7] for instance).

We do not know any space not containing c0 and without the near RNP.

3 Fréchet Smoothness Through Compact Operators

We start with the following elementary lemma:

Lemma 3.1 Let X, Y and Z be three Banach spaces and let T be a compact linear

operator from X into Z. Assume that a locally Lipschitz function f from an open subset

U of Z into Y is Gâteaux differentiable at Tx for some x in X. Then the function f ◦ T

is Fréchet differentiable at x.

Proof It is known and easy to see that a locally Lipschitz function is so called

Hadamard differentiable at some point x if and only if this function is Gâteaux differ-
entiable at x. Therefore f is Hadamard differentiable at Tx. In other words, for every
compact Hausdorff subset K of Z,

lim
t→0

sup
k∈K

‖ f (Tx + tk) − f (Tx) − t〈D f (Tx), k〉‖Y

|t|
= 0

In particular, for K = TBX , we obtain,

lim
t→0

sup
h∈BX

‖ f ◦ T(x + th) − f ◦ T(x) − t〈D f (Tx) ◦ T, h〉‖Y

|t|
= 0

This implies that f ◦ T is Fréchet differentiable at x.

We will now describe two natural applications of this lemma. Let us first denote
by µ the Lebesgue measure on [0, 1], by

(

L1[0, 1], ‖ ‖L1

)

the space of µ-integrable
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functions with its natural norm and by AC[0, 1] the space of all absolutely contin-
uous functions on [0, 1]. We equip this space with the complete norm ‖ ‖AC de-

fined by ‖φ‖AC = ‖φ‖L1 + ‖φ ′‖L1 . The space
(

C[0, 1], ‖ ‖∞
)

is the space of all
continuous functions on [0, 1] with the supremum norm and Lip[0, 1] is the space
of all Lipschitz functions on [0, 1] equipped with the complete norm ‖φ‖∞,1 =

max
(

‖φ‖∞, ‖φ‖lip

)

.

First, we have

Proposition 3.2 The function N : Lip[0, 1] → R defined by N(g) = ‖g‖∞ is gener-

ically Fréchet differentiable in (Lip[0, 1], ‖ ‖∞,1)

Proof It is well known that the supremum norm ‖ ‖∞ is Gâteaux differentiable at
f ∈ C[0, 1] if and only if | f | attains its unique maximum at some point of [0, 1]. On
the other hand, by Ascoli-Arzela Theorem, the canonical embedding from Lip[0, 1]
into C[0, 1] is a compact operator. Using Lemma 3.1, the norm ‖ ‖∞ is Fréchet

differentiable on (Lip[0, 1], ‖ ‖∞,1) at f ∈ Lip[0, 1] if the function | f | attains its
unique maximum at some point x of [0, 1] (the converse is also true and can be easily
checked). But the set of Lipschitz continuous functions f on [0, 1] such that | f | at-
tains its unique maximum at some point, is dense in (Lip[0, 1], ‖ ‖∞,1). This implies

that the norm ‖ ‖∞ is Fréchet differentiable on a dense subset of (Lip[0, 1], ‖ ‖∞,1).
Since ‖ ‖∞ is a convex continuous function, we obtain that ‖ ‖∞ is generically
Fréchet differentiable on (Lip[0, 1], ‖ ‖∞,1).

Remark This is a particular case of results in [1], where the approach is to use vari-
ational principles instead of compactness.

As another consequence of Lemma 3.1 we obtain

Proposition 3.3 The function M : AC[0, 1] → R defined by M(g) = ‖g‖L1 for all

g ∈ AC[0, 1], is Fréchet differentiable at f ∈ AC[0, 1] if and only if µ
(

{x : f (x) =

0}
)

= 0. Moreover M is generically Fréchet differentiable on AC[0, 1].

Proof The argument being similar, we just outline the main steps. The norm ‖ ‖L1 is
Gâteaux differentiable at f ∈ L1[0, 1] if and only if µ

(

{x : f (x) = 0}
)

= 0. It is also

clear that if f in AC[0, 1] is such that µ
(

{x : f (x) = 0}
)

> 0, then M is not Gâteaux
differentiable at f . On the other hand, the canonical embedding from AC[0, 1] into

L1[0, 1] is a compact operator. So the conclusion follows again from Lemma 3.1, the
convexity of M and the density of the set

{

g ∈ AC[0, 1] : µ
(

{x : g(x) = 0}
)

= 0
}

in AC[0, 1].

We now turn to a general result:

Theorem 3.4 Let Y be a Banach space with the Radon-Nikodỳm Property and Z be a

separable Banach space. Let X be a Banach space and suppose that there exists a compact

operator T from X into Z such that TX is dense in Z. Then

(i) The set TX is not Aronszajn null in Z.
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(ii) For every locally Lipschitz function f : Z → Y , there exists a subset B of Z which

is Aronszajn null and such that f ◦ T is Fréchet-differentiable at every point of

T−1(Z \ B).

As an immediate corollary, we have

Corollary 3.5 Let (Z, ‖ ‖Z) be a separable Banach space and (X, ‖ ‖X) be a Banach

space such that X is a dense subspace of Z. Suppose that the canonical embedding i : X →
Z is compact. Then for every locally Lipschitz function f : (Z, ‖ ‖Z) → R, the restriction

f|X
: (X, ‖ ‖X) → R is Fréchet-differentiable at every point of a subset A of X which is

not Aronszajn null in Z.

The assertion (i) of Theorem 3.4 is a general and probably well known fact, that
we state now and prove for the sake of completeness.

Proposition 3.6 Let X be a Banach space, Z be a separable Banach space and T be a

continuous linear operator from X into Z. If TX is dense in Z, then TX is not Aronszajn

null in Z.

Proof We will actually show that TX is not cube null, which is an equivalent state-
ment (see [2] for the definitions of these notions and the proof of their equivalence).

Let (xn)n≥1 ⊂ X such that
∑

‖xn‖X < ∞, the vectors Txn are linearly indepen-
dent and their linear span is dense in Z. We now define U from Q = [0, 1]N into Z

by

U (t) =

∑

n≥1

tnTxn, for any t = (tn)n≥1 ∈ Q.

Since X is complete and T is continuous, we clearly have that U (Q) ⊂ TX. This

shows that TX is not cube null.

Proof of Theorem 3.4 Since Z is a separable space, Y is a space with the Radon-
Nikodỳm Property and f : Z → Y is locally Lipschitz, it follows from Theorem 6.42.

in [2] (different versions of this theorem were proved independently by Aronszajn,
Christensen and Mankiewicz) that the set B on which f is not Gâteaux differentiable
is Aronszajn null. Then Lemma 3.1 implies that f ◦T is Fréchet differentiable at every
point of {x ∈ X : Tx ∈ Z \ B}.

Observe that the assumptions of Corollary 3.5 are satisfied for X = AC[0, 1] and

Z = L1[0, 1] and for X = Lip[0, 1] and Z = C[0, 1]. So in the above cases every
Lipschitz function on X which can be extended to a Lipschitz function on Z has
points of Fréchet differentiability. It is of particular interest when X is not an Asplund
space, which is the case in these situations.
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4 Spaces of Differentiable Functions on the Real line

Let us recall that the supremum norm ‖ ‖∞ is generically Fréchet differentiable on

a large class of spaces of bounded continuous functions, like
(

Lipb(R), ‖ ‖∞,1

)

or
(

C1
b(R), ‖ ‖C1

)

(see [1]). As a consequence, we get for instance that the norm ‖ ‖C1

is generically Fréchet differentiable on the open subset of C1
b(R):

O = {φ ∈ C1
b(R) : ‖φ‖∞ > ‖φ ′‖∞}.

In this section, we investigate the differentiability of the semi norm R given by
R(φ) = ‖φ‖lip on various Banach spaces of Lipschitz functions defined on the real

line. Notice that, by the Mean Value Theorem, the restriction of R is defined on C 1
b(R)

by R(φ) = ‖φ ′‖∞.

We start with a negative result on the Fréchet differentiability of this function.

Proposition 4.1 The function R is nowhere Fréchet differentiable on C1
b(R).

Proof First we choose, as we may, an even function b in C1
b(R) with support in

[−1, 1], increasing on [−1, 0] such that ‖b‖∞ = b(0) = 1 and 1 ≤ ‖b‖C1 =

‖b ′‖∞ ≤ 2.

Consider now φ in C1
b(R). We will prove that R is not Fréchet differentiable at φ.

We pick t in (0, 1) such that tR(φ) < 1
4

and x0 in R satisfying

|φ ′(x0)| ≥ (1 − t2)R(φ).

Assume for instance that φ ′(x0) = |φ ′(x0)|. Then there exists δ ∈ (0, 1) so that

∀x ∈ [x0 − δ, x0 + δ] φ ′(x) ≥ (1 − 2t2)R(φ).

Now, for x in R, we set h(x) = tδb( x−x0

δ ). Easy computations show that t ≤
‖h‖C1 = ‖h ′‖∞ ≤ 2t . Notice that there is y0 in (x0 − δ, x0) and z0 in (x0, x0 + δ) such
that h ′(y0) = −h ′(z0) = ‖h‖C1 . Then we have

R(φ + h) + R(φ− h) − 2R(φ) ≥ (φ ′ + h ′)(y0) + (φ ′ − h ′)(z0) − 2R(φ)

≥ 2‖h‖C1 − 4t2R(φ) ≥ 2t
(

1 − 2tR(φ)
)

≥ t ≥
‖h‖C1

2
.

Since R is convex, this concludes our proof.

We now show that the situation is even worse on Lipb(R).

Proposition 4.2 The function R is nowhere Gâteaux differentiable on Lipb(R).
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Proof Let f ∈ Lipb(R). We will prove that R is not Gâteaux differentiable at f . We
may assume that R( f ) = 1. We need to introduce a few auxiliary functions. For

s < t ∈ R, we set

∆s,t ( f ) =
f (t) − f (s)

t − s
.

For ε > 0 and x ∈ R, we denote

D(x, ε) = {(s, t) ∈ (x − ε, x + ε) × (x − ε, x + ε) : s < t},

D+(x, ε) = {(s, t) ∈ (x, x + ε) × (x, x + ε) : s < t},

D−(x, ε) = {(s, t) ∈ (x − ε, x) × (x − ε, x) : s < t}.

We can now define:

u f (x) = lim
ε→0

sup
(s,t)∈D(x,ε)

|∆s,t ( f )|,

v f (x) = lim
ε→0

sup
(s,t)∈D(x,ε)

∆s,t ( f ),

w f (x) = lim
ε→0

sup
(s,t)∈D(x,ε)

−∆s,t ( f ),

v+
f (x) = lim

ε→0
sup

(s,t)∈D+(x,ε)

∆s,t ( f ),

w+
f (x) = lim

ε→0
sup

(s,t)∈D+(x,ε)

−∆s,t ( f ).

We define similarly v−f (x) and w−
f (x).

One can easily show that for any x in R,

u f (x) = max
(

v f (x),w f (x)
)

,

v f (x) = max
(

v+
f (x), v−f (x)

)

, and

w f (x) = max
(

w+
f (x),w−

f (x)
)

.

It is also clear that u f is bounded, upper semi continuous (u.s.c.) and that ‖u f ‖∞
= R( f ).

First we will assume that u f does not attain its supremum. Since u f is u.s.c., it
implies that there exists a sequence (xn) in R such that u f (xn) tends to R( f ) = 1 and
|xn| tends to +∞. By using some symmetry arguments and extracting a subsequence,
we may assume without loss of generality that

∀n ∈ N, xn+1 > xn + 2 and u f (xn) = v+
f (xn).

Then, for each n in N, we can pick sn < tn in (xn, xn + 1) so that ∆sn,tn
( f ) tends

to 1. Once this is done, we choose εn > 0 such that

∀n ∈ N, [xn, xn + εn] ∩ [sn, tn] = ∅ and

∞
∑

n=1

2εn ≤ 1.
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We now build a continuous, piecewise affine function h, with constant slope equal
to 1 on each interval (xn − εn, xn + εn), which is equal to 0 on (−∞, x1 − ε1] and

constant on each [xn + εn, xn+1 − εn+1]. Clearly, h ∈ Lipb(R) and ‖h‖∞,1 = 1.
Moreover, for any t ∈ (0, 1) and any n in N we have

v+
f +th(xn) = v+

f (xn) + t and ∆sn,tn
( f − th) = ∆sn,tn

( f ).

So for any t in (0, 1), R( f + th) = 1 + t and R( f − th) ≥ 1. It follows that R is not
Gâteaux differentiable at f .

Secondly, we will assume that u f admits a maximum at some point x0 in R. For

symmetry reasons, we may assume that 1 = R( f ) = u f (x0) = v+
f (x0). Then, there is

a strictly decreasing sequence (sn)n≥0 in (x0, x0 + 1) which is tending to x0 and such
that ∆s2n+1,s2n

( f ) tends to R( f ) = 1. We denote by an the midpoint of [s2n+1, s2n].
Notice that ∆an,s2n

( f ) and ∆s2n+1,an
( f ) also tend to 1.

We need to introduce a “hat” function φ defined by φ = 0 on (−∞,−1], φ(x) =

x + 1 for x in [−1, 0] and φ is even. Then, for ε > 0 and x ∈ R, we denote φε(x) =

εφ(x/ε). Notice that for any ε ∈ (0, 1), ‖φε‖∞,1 = R(φ) = 1.
Now we define

h(x) =

∞
∑

n=0

φ s2n−s2n+1
2

(x − an).

Again, h ∈ Lipb(R) and ‖h‖∞,1 = 1. Then, for any t ∈ (0, 1) and any n in N:

∆s2n+1,an
( f + th) = ∆s2n+1,an

( f ) + t and ∆an,s2n
( f − th) = ∆an,s2n

( f ) + t.

It follows that for any t ∈ (0, 1), R( f + th) = R( f − th) = 1 + t . Thus R is not
Gâteaux differentiable at f .

Up to a few symmetry arguments, we have considered all the possible situations
and therefore shown that R is nowhere Gâteaux differentiable on Lipb(R).

Remark This proof, which of course works as well on Lip[0, 1], shows the impor-

tance in Corollary 3.5 of the assumption that the function on X has a Lipschitz ex-
tension to Z.

So, our first motivation now will be to study the Gâteaux differentiability of R on
C1

b(R).
If D(R) is a Banach space of differentiable functions, then, for x in R, we denote

by δ ′x the linear functional defined by δ ′x(φ) = φ ′(x) for all φ ∈ D(R). We also denote

by ε the signe function defined on R \ {0}.
Our main result is

Theorem 4.3

(a) The semi norm R is generically Gâteaux differentiable on
(

C1
b(R), ‖ · ‖C1

)

. More

precisely, the set of points of Gâteaux differentiability of R is G = {φ ∈ C1
b(R) : |φ ′|

admits a strong maximum} which is a dense Gδ subset of C1
b(R). For φ ∈ G, the

derivative of the semi norm R at φ is ε
(

φ ′(x0)
)

δ ′x0
where x0 ∈ R is the point where

the function |φ ′| attains its strong maximum.
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(b) The norm ‖ ‖C1 of C1
b(R) is generically Gâteaux differentiable on C1

b(R).

Thus, as the regularity of the function space gets better, so does the regularity of R.
In fact, our methods will also yield some results on the Fréchet differentiability of R

on spaces of functions with higher order of smoothness.

Theorem 4.4 Let 0 < α ≤ 1 and s ∈ N such that s ≥ 2. For X = C s
b(R) or

X = C
1,α
b (R), R is Fréchet differentiable on {φ ∈ X : |φ ′| admits a strong maximum}

which is a dense Gδ subset of X and the derivative of R is given by the same formula.

Before proceeding with the proof of the above theorems, we have to recall some
useful background. The origin of the main tool of our proof goes back to a paper of

Deville, Godefroy and Zizler [5] who proved a smooth variational principle based on
the Baire category theorem. In [6], Ghoussoub, generalizes this result to an abstract
class of function spaces. The Lemma 4.8 that we establish below can be viewed as a
new application of these works. The following definitions and Theorem 4.7 are taken

from [6]. We also refer to the survey paper of Deville and Ghoussoub in [8].

Let (X, d) be a metric space and
(

A(X), γ
)

be a metric space of real valued func-
tions defined on X. For any subset F of X, we denote by AF(X) the class of functions

in A(X) that are bounded above on F. For φ ∈ AF(X), and t > 0, we define the slice

S(F, φ, t) of F by:

S(F, φ, t) =
{

x ∈ F : φ(x) > sup
F

φ− t
}

.

Definition 4.5 The space (X, d) is said to be uniformly A(X)-dentable if for every
non-empty set F ⊂ X, every φ ∈ AF(X), and every ε > 0 there exists ψ ∈ AF(X)
such that γ(φ, ψ) ≤ ε and t > 0 such that S(F, ψ, t) has diameter less than ε.

Then we associate to the metric space (X, d), the space X̃ = X × R equipped with
the pseudo-metric

d̃
(

(x, λ), (y, µ)
)

= d(x, y).

We denote by Ã(X̃) the class of all functions φ̃ on X̃, with φ ∈ A(X), where φ̃ is
defined by φ̃(x, λ) = φ(x) −λ. We equip Ã(X̃) with the distance γ̃(φ̃, ψ̃) = γ(φ, ψ).

Definition 4.6 Let (X, d) be a metric space. We say that the metric space
(

A(X), γ
)

is admissible if the three following conditions hold:

(i) There exists K > 0 such that γ(φ, ψ) ≥ K sup{|φ(x) −ψ(x)| : x ∈ X} for all φ,
ψ ∈ A(X).

(ii)
(

A(X), γ
)

is a complete metric space.

(iii) The product space (X̃, d̃) is uniformly Ã(X̃)-dentable.
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Theorem 4.7 (Ghoussoub [6]) Let
(

A(X), γ
)

be an admissible class of functions on

a complete metric space (X, d). Let f : X → R ∪ {+∞} be a bounded below, lower

semicontinuous function with non empty domain. Then the set

{φ ∈ A(X) : f − φ attains a strong minimum on X}

is a dense Gδ subset of A(X).

With these results in hand, we can now prove the following lemma:

Lemma 4.8 Let f : R → R ∪ {+∞} be a bounded below lower semicontinuous func-

tion with non empty domain. Then for any positive integer s, the set

{φ ∈ C s
b(R) : f − φ ′ attains a strong minimum on R}.

is a dense Gδ subset of C s
b(R).

The same conclusion holds for the spaces C
1,α
b (R), with α ∈ (0, 1].

Proof We only give the proof for the space C s
b(R). The other cases are similar.

So let us consider the space A(R) = {φ ′ : φ ∈ C s
b(R)}. We equip this space with

the complete norm ‖φ ′‖A(R) = ‖φ‖C s for all φ ∈ C s
b(R) such that φ(0) = 0. By

Theorem 4.7, it is enough to show that the space A(R) is admissible.

As we just mentioned, A(R) satisfies the condition (ii) of Definition 4.6. It also

clearly fulfills condition (i). Thus it remains to show that the product space R̃ =

R × R is uniformly Ã(R × R)-dentable.

So, let ε ∈ (0, 1) and let β ∈ C s−1
b (R) be a positive bump function on R such that

supp(β) ⊂ [−ε/2, ε/2], ‖β‖C s−1 = ε and β(0) = ‖β‖∞. Now, let V ∈ Ã(R × R)
be a function which is bounded above on a closed subset F of R × R. It follows from

the definition of Ã(R ×R), that there exists φ ′ ∈ A(R) such that V(x, t) = φ ′(x)− t

for all (x, t) in R × R. Let now (x0, t0) ∈ F be such that

φ ′(x0) − t0 > sup
F

V −
β(0)

2
.

Then we consider the functions h and W defined by h(x) =
∫ x

0
β(t − x0)dt for all

x ∈ R and W(x, t) = φ ′(x) + h ′(x) − t for all (x, t) ∈ R × R.

Notice that h ′(x) = β(x − x0). In particular h ′(x) = 0 whenever |x − x0| ≥ ε/2
and h ′(x0) = β(0). On the other hand,

‖W − V‖
Ã(R×R) = ‖h ′‖A(R) = ‖h‖C s = ε.

We can now consider the following non empty slice of F:

S =

{

(x, t) ∈ F : W(x, t) > sup
F

W −
β(0)

2

}

.
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If (x, s) ∈ F and |x − x0| ≥ ε/2, then h ′(x) = 0 and (x, s) cannot belong to S. It
follows that the diameter of S for d̃ is at most ε. This proves the uniform dentability

of Ã(R × R).

We now turn to the proofs of the main results of this section.

Proof of Theorem 4.3 We start with the assertion (a). Let G = {φ ∈ C 1
b(R) : |φ ′|

admits a strong maximum}. It is standard to show that G is a Gδ subset of C1
b(R).

One can for instance prove, following [5], that

G =

∞
⋂

n=1

{

φ ∈ C1
b(R), ∃x ∈ R : |φ ′(x)| > sup

|y−x|>1/n

|φ ′(y)|
}

.

Let now G ′
= {φ ∈ C1

b(R) : φ ′ has a strong maximum} and G ′ ′
= {φ ∈ C1

b(R) :
−φ ′ has a strong maximum}. It follows from Lemma 4.8 that G ′ and G ′′ are dense
Gδ subsets of C1

b(R). Consider now O ′
= {φ ∈ C1

b(R) : sup
R
φ ′ > sup

R
−φ ′} and

O ′′
= {φ ∈ C1

b(R) : sup
R
φ ′ < sup

R
−φ ′}. It is clear that O ′ and O ′′ are open

in C1
b(R), that O ′ ∪ O ′′ is dense in C1

b(R) and that G = (G ′ ∩ O ′) ∪ (G ′ ′ ∩ O ′′).
Therefore G is also dense in C1

b(R).

In order to prove that G coincides with the set of the points of Gâteaux differentia-
bility of R one only has to imitate the proof of the fact that the set of points of Gâteaux

differentiability of ‖ ‖∞ on Cb(R) is {φ ∈ Cb(R) : |φ| admits a strong maximum}.
Of course, the formula for the derivative is part of the argument.

We will now prove the assertion (b). We know from [1] that the supremum norm:
φ 7→ ‖φ‖∞ is Fréchet differentiable on a dense Gδ subset G1 of

(

C1
b(R), ‖ ‖C1

)

and
we proved above that the semi norm φ 7→ ‖φ ′‖∞ is Gâteaux differentiable on a dense

Gδ subset G2 of
(

C1
b(R), ‖ ‖C1

)

. On the other hand, it is easy to see that the closed
subset F = {φ ∈ C1

b(R) : ‖φ‖∞ = ‖φ ′‖∞} has an empty interior. It implies that
the norm ‖ ‖C1 = max(‖φ‖∞, ‖φ

′‖∞) is Gâteaux differentiable at every point of
(G1 ∩ G2) \ F, which is a dense Gδ subset of

(

C1
b(R), ‖ ‖C1

)

.

Proof of Theorem 4.4 The argument is very similar to the previous one. Let us
just indicate that the improvement on the smoothness of R relies essentially on the
generic Fréchet differentiability of ‖ ‖∞ on C s−1

b (R) or Lipαb (R) (see [1]).
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