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Abstract

Let C be a small category with weak finite limits, and let Flat(C) be the category of flat functors from C
to the category of small sets. We prove that the free exact completion of C is the category of set-valued
functors of Flat(C) which preserve small products and filtered colimits. In case C has finite limits, this
gives A. Carboni and R. C. Magno's result on the free exact completion of a small category with finite
limits.

1991 Mathematics subject classification (Amer. Math. Soc): 03G30, 18B25, 18E10, 18GO5.

Introduction

Let C be a small lex (that is, finitely complete) category. It is well-known that there is
a free-exact completion of C (see [13,4,5,11, 8]). That is, there are an exact category
D and a lex functor F : C —> D such that F has the following universal property:
for any exact category B, the functor F* : Reg(D, B) ->• Lex(C, B) given by the
composition with F is an equivalence of categories; here Reg(D, B) is the category
of regular functors from D to B. The fundamental construction of A. Carboni and
R. C. Magno gives an explicit description of this completion by adding as new objects
the equivalence classes of pseudo-equivalence relations in C and as new arrows the
suitable classes of compatible maps (see [4]). Recently, M. Makkai has shown that
the free exact completion of C is equivalent to f] Filt(Lex(C, Set), Set), the category
of functors from Lex(C, Set) to Set that preserve products and filtered colimits (see
[8, 11]); here Set is the category of small sets.
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144 Hongde Hu [2]

The purpose of this paper is to generalize the above-mentioned result to a small
category C with weak finite limits. The significance of the existence of weak finite
limits for embedding theorems is already indicated in Freyd's early work [7].

For a small category C, let C* = Flat(C) be the category of all flat functors from C
to Set. The categories of the form C* are known to be finitely accessible (see [9, 12]).
In case C has weak finite limits, they are exactly the finitely accessible categories with
small products (see Theorem 1.7). Furthermore, for a category A with small products
and filtered colimits, let A+ = fj Filt(A, Set) be the category of functors from A to
Set that preserve small products and filtered colimits. The fact that, in Set, small
products and filtered colimits commute with finite limits and regular epimorphisms
gives that A+ is Barr-exact. For A = C*, with C having weak finite limits, we prove
that A+ has enough projectives (see Theorem 2.1). The main result of the paper is
formulated in Theorem 4.1. The 'finitary' case of it says that, for any small category
C with weak finite limits, the free exact completion of C is C*+, the category of those
set-valued functors of C* which preserve small products and filtered colimits. In order
to prove freeness, we need to extend the notion of flat functor from set-valued functors
to functors with arbitrary Barr-exact codomain (see Definition 3.1).

This work extends Makkai's work on 'A theorem on Barr-exact categories' and
the author's previous work on 'Dualities for accessible categories', see [11, 8]. The
approach is the same as the one taken in Barr [3] and Makkai [11]. A theorem of Barr
[3] (Proposition 1.2) is used in the proof of our main result (Theorem 4.1).

Throughout the paper the condition 'finite' is traded for 'less than K\ with an
arbitrary regular cardinal number /c.

1. A duality theorem for K -accessible categories with products

Let AC be an infinite regular cardinal. Recall from [7] that an object A of a category
A is said to be /c -presentable if the representable functor A(A, - ) preserves K -filtered
colimits existing in A. A is K-accessible if: (i) A has /c-filtered colimits; (ii) there is
a small subcategory C of A consisting of K -presentable objects such that every object
of A is a /c-filtered colimit of a diagram of objects in C. A category is accessible
if it is K -accessible for some /c. A functor F : A ->• B is AT-accessible if A and B
are /c-accessible categories and F preserves /c-filtered colimits. A functor between
accessible categories is accessible if it is /c-accessible for some /c (see [12]).

The full subcategory of A whose objects are /c -presentable is denoted by \K. Recall
that for a small category D, a functor F : D -> Set is K-flat, if it is a /c-filtered colimit
of representable functors (see [9, 12]). As shown in [12], a category A is K-accessible
if and only if it is equivalent to the category of the form K-Flat(D) with D small; here
/c-Flat(D) is the category of/c-flat functors from D to Set.
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[3] Flat functors and free exact categories 145

A AC-accessible category with products is called weakly locally K-presentable in [1].
For a /c-accessible category A having products, [~[ Fill,. (A, Set) denotes the category
of functors from A to Set that preserve /c-filtered colimits and products.

Recall from [2] that a category is exact if it has finite limits and stable quotients
of equivalence relations. A functor between exact categories is regular if it preserves
finite limits and quotients of equivalence relations. The notions of K-Barr-exact
category and K-regular functor are introduced in [11], for K any infinite regular
cardinal. They are a natural generalization of the notions of exact category and
regular functor.

DEFINITION 1.1. ([11]) A category D is K-Barr-exact if it is exact, has K-limits, and
satisfies the principle of < K dependent choices (DCK): let a be an ordinal less than
K, and let F = (Ap, f^Y : Ap —> AY)Yip<a be an inverse diagram of type a in D such
that

(i) fp+i.0 is a regular epi, for every fi with fi + 1 < a; and
(ii) the restriction F | < fi of F to the domain consisting of all ordinals y < fi is

a limit diagram: Ap is a limit of F | < fi (F restricted to ordinals < fi) with
limit projections fptY : Ap —»• AY(y < fi), for every limit ordinal fi < a.

Then every fpiY is a regular epi, for all y < fi < a.

A functor between K-Barr-exact categories is K-regular, if it preserves all regular
epis and all K-limits. *r-Reg(B, D) denotes the category of K-regular functors from B
toD.

The following result will be used in Section 4. The result is due to M. Barr for the
case K = Xo (see [3]).

PROPOSITION 1.2. ([11, Proposition 6.3]) Let D be a small K-Barr-exact category.
Then for any functor M : D -> Set preserving K-limits, there are N e KTReg(D, Set)
and a regular monomorphism M —> N in LK (D, Set), the category of functors from
D to Set that preserve K-limits. Therefore, M is the domain of an equalizer of a pair
ofmorphisms in K-Reg(D, Set).

We now Let C to be a small category with weak /c-limits.

PROPOSITION 1.3. The category /c-Flat(C) is K-accessible with products.

PROOF. The K -accessibility of /c-Flat(C) is given by [12, Proposition 2.1.4]. To
show that K-Flat(C) has products, we only need to check that K-Flat(C) is closed
under products in (C, Set).

Let {Ft : C - • Set),€/ be a small set of Ac-flat functors. Note that a functor F is
/c-flat if and only if the category e l ( f ) of elements of F is K -filtered (see [9, 12]). We
will verify that el(Af), with M = F].€ / F,, is /c-filtered since each el(F,) is K-filtered.
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Let K be a graph of size less than /c, and let

G: K — • el(M)

be any diagram with G(£) = (Ck, {x,,t)ie/) a n d each xiik in F,(Ck). Since el(F,) is
/c-filtered there are £>, and a cocone

(A* : */,* e fi(Ct) -> v,- € Fi(Di))^K

for some y,- € F , (A) , so that ^(A*)(>'/) = * a f° r e a c n k e K. Since C has weak
fc-limits, there are C e C and a cone (g* : C —y Ck)k€K in C such that each fik factors
through gk for all k e K. Hence we obtain a cocone

(gk : (Xi,k) eM(Ck)^c& M(C))keK

w i t h c = (y,),e /.

PROPOSITION 1.4. ([8, Proposition 5.5]) Let A. be a K-accessible category with
small products. Then for any functor F in J~[FiltK(A, Set), there are a K-presentable
object A in A and a regular epimorphism r\ : \(A, —) -> F . Moreover, every
F e\\ FihV (A, Set) is the codomain of a coequalizer of a pair ofmorphisms between
representable functors.

PROOF. Let B be a small full subcategory of A consisting of K -presentable objects
so that every object of A is a /c-filtered colimit of a diagram of objects in B. Given
a functor F e Y\^K(^, Set), for every B e B, let us enumerate all elements of
F(B) as (a?)i€jB with JB an ordinal number. Consider the small product r[fl6B^/B

in A. The product is the colimit of a /c-filtered diagram ({BS)S£S, (as, : Bs -*• B,)s<t)
with colimit injections < es : Bs -> YIBZB ^h >^s and with Bs in B. Let K be the
join of all JB, and let (ak)k€K be the set of elements of the join of all F(B), B e B.
Since F preserves products, then F(J\B(.BBJB) = Y[BehF(B)Jl>, and F maps the
product projections nk : \\B^BJ" -»• B to the projections in Set. Hence there is
a e F(]~[B EB ^ / S )

 s u c n m a t F(nk)(a) = ak, for all k e K. Also note that since F
preserves /c-filtered colimits, the morphisms F(es) : F(BS) -*• F([\B£BBJB) make
F(Y\B<EBBJB) a /c-filtered colimit of the diagram ({F(BS))S&S, {F(as,))s<t) in Set.
Thus there is s e 5 and some c e F(BS) such that F(es){c) = a. It follows that

F(nk o es)(c) = ak, for every k e K.

We use A for Bs. The Yoneda lemma gives a natural transformation rj : A(A,—) — •
F with »7,4 (idA) = c. For every B € B, we have that ?jB is surjective in Set. Since
every object of A is a /c-filtered colimit of objects in B, and A is /c-presentable, it
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[5] Flat functors and free exact categories 147

is easy to see that r)A, is surjective for all A' € A. \\ Filt* (A, Set) is exact and the
inclusion f ] F n \ ( A , Set) —> (A, Set) is regular; in the latter category, t] is a regular
epimorphism means that rjA' is surjective for all A' e A. We conclude that rj is a
regular epimorphism in f ] Filt^A, Set).

We have established that every F e J~[ Filt^ (A, Set) admits a regular epimorphism
from a representable functor A(A, —) to F, with A e B . Thus we have a coequalizer
diagram r

G ' A(A, - ) - F

Using the previous argument again, we obtain a regular epimorphism e : A(B, - )
—*• G with fieB, and r; a coequalizer of the morphisms ( / o e, g o e) between the
representable functors A(A, —) and A(B, —).

COROLLARY 1.5. For A in Proposition 1.4, f ] F u \ ( A , Set) is small K-Barr-exact.

PROOF. The smallness of [ l F n \ ( A , Set) follows from the smallness of AK, by
Proposition 1.4.

COROLLARY 1.6. For any K-accessible category A with products, A0/ has weak

K -limits.

PROOF. Let G : / ->• A°f be a K-diagram, and let v : A°f -+ n F i l t * ( A , S e t )
be the restricted Yoneda embedding. Since ]~[FiuV(A, Set) has K-limits, we let
{pi : M —> A(Aj, —)},e/ be the projections of lim(j o G). From Proposition 1.4,
we obtain some A e AK and a regular epi e : A(i4, —) —>• M. For any cone
(<7, : A(B, —) —> A(i4,-, —)),-e/ with B e AK, by the projectivity of A(B, —), there is a
morphism t : A(B, —) —> A(A, —) such that qt = (p, oe)ot for all ^,. We conclude
that A°f has weak K -limits from the Yoneda lemma.

The following duality theorem for K -accessible categories with products is now
obtained easily.

THEOREM 1.7. A category is K-accessible and has products if and only if it is
equivalent to the category of the form K -Flat(C), for some small category C with weak
K-limits.

PROOF. For a ACT-accessible category A, one already has the equivalence A ~
/c-Flat(Af) (see [12]). Thus, Theorem 1.7 follows from From Proposition 1.3 and
Corollary 1.6.
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COROLLARY 1.8. ([1, Theorem 1.6]) An accessible category A has products if and
only if it has weak colimits.

PROOF. Let A be K -accessible. If A has weak colimits, then A* has weak Ac-colimits,
thus A has products. Conversely, if A has products, for any regular cardinal A. > K , we
have a regular cardinal k' > k such that A is ^.'-accessible (see [12, Theorem 2.3.10]).
Thus, Av has weak A.'-colimits. Consequently, A has weak colimits.

2. Canonical a:-flat functors on a small category with weak K -limits

For any small category C with weak K-limits, by Proposition 1.3, /c-Flat(C) is
K-accessible with products. We denoted /c-Flat(C) by C*. Let \\ Filt^C*, Set) be the
category of all functors from C* to Set that preserve A:-filtered colimits and products;
it is denoted by C*+.

We consider the evaluation functor

evc : C — • F i M C ' . S e t ) .

Since C* is the free K-filtered colimit completion of Cop (see [9, 12]), the functor

/ : FilUC*, Set) ^ (C*\ Set)

induced by the opposite Yoneda embedding Y' : Cop —> /c-Flat(C) is an equivalence.
Let / ' be the quasi-inverse of / , then evc = / ' o Y; here Y : C -> (Cop, Set) is the
Yoneda embedding. Hence evc is full and faithful. For every C e C, since evc(C)
preserves products, so evc induces a functor

ec : C -+ C*+.

For every C e C, note that ec (C) is projective in C*+. From Proposition 1.4, we have

THEOREM 2.1. For every small category C with weak K -limits, the evaluation

functor ec has the following properties :

(i) ec is full and faithful;
(ii) ec(C) is projective in C*+,for any C e C;

(iii) for each F e C*+, there are C e C and a regular epimorphism r\ : ec(C) —>•
F in C*+.

COROLLARY 2.2. The functor ec is dense.

PROOF. From [3, Theorem 14] or [8, Proposition 5.3].
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[7] Flat functors and free exact categories 149

PROPOSITION 2.3. The functor

Z : K-Reg(C*+, Set) —* (C, Set)

M i—>• M o ec

is full and faithful, and its essential image consists of the K -flatfunctors from C to Set,
that is, we have an equivalence

K-Reg(C*+, Set) ~ /c-Flat(C).

PROOF. From [8, Proposition 5.8] and Theorem 2.1.

3. /c-flat functors

In this section, B denotes a /e-Barr-exact category. We identify C with its image
under ec in Theorem 2.1. The inclusion functor C —> C*+ is denoted by /, so the
equivalent conditions of Theorem 2.1 are satisfied by /.

DEFINITION 3.1. Let C be an arbitrary category, and B a K-Barr-exact category. A
functor F : C —>• B is called K-flat if, for any K -diagram G : / —*• C, there is a cone
(ft : D -*• G(i))iei on G such that F(f) = p,• o k for all / e / and the morphism
k : F{D) —*• lim F o G is a regular epi; here the morphisms p, are limits projections.

REMARK 3.2. (i) In the case that C is small and B is the category Set, it is easy to
check that Definition 3.1 is equivalent to the original concept whereby F is /c-flat if
and only if it is a /c-filtered colimit of representable functors.

(ii) In the case that C is small with K-limits, a functor between C and B preserves
K-limits if and only if it is K-flat. The necessary condition of this statement is trivial,
the proof of the sufficient condition will be given by Theorem 4.1 (see Corollary 4.3).

We now assume that C is a small category with weak K-limits. We use K-Flat(C, B)
to denote the full subcategory of (C, B) whose objects are /c-flat functors. We have

PROPOSITION 3.3. ec of Theorem 2.1 is K-flat.

PROOF. From Theorem 2.1.

PROPOSITION 3.4. For any K-Barr-exact category B, if M e /c-Reg(C*+, B) then

M o ec € *r-Flat(C, B).

PROOF. From Definition 3.1 and Proposition 3.3.
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THEOREM 3.5. Every K-flatfunctor F : C —> B has a left Kan extension Fl along
I and F\ preserves regular epimorphisms; here I is the inclusion mentioned in the
beginning of the section.

PROOF. For the existence of Fl, by the dual of [10, Theorem X.3.1], it suffices to
show that the composite FoP:l/C'—>C-*-B has a colimit in B for each C" e C*+,
where P is the projection (C, C —> C) M> C. Since C" e C*+, according to Theorem
2.1, we can take a regular epimorphism e : A —> C" with A in C, and let

D

be the kernel pair of e; so e is the coequalizer of («', u'). Let d : S —v D be a regular
epimorphism, then e is a coequalizer of the morphisms (w' O d,v' O d). Denote u' od
by M, and i/ O d by u. Consider the category E as follows.

Let i : E —»• / / C be the inclusion. We have

LEMMA 3.6. / is final.

PROOF. Firstly, / / / is non-empty, for any f : C -+ C with C e C . Indeed, by the
projectivity of C, there is a morphism IU : C ^ A such that f = e o w.

To show that / / i is connected, let m, n be any two morphisms in / / / . Then we
only need to consider the following three cases.

Case 1: m,n : f —»• e, that is, eom = eon = f. Since («', u') is the kernel pair
of e, there is a unique morphism Ic' : C -> D such that m = u' o k' and « = i/ o £'.
By the projectivity of C we obtain a morphism & : C -> S with k' = d ok. Thus
m = u o k and n = v o k, that is, M : & —> m and v : ^ —>• n; here k : f —*• e o u is in

C a s e 2 : m , n : f - + e o u , t h a t i s , e o u ' o d o m = e o v ' o d o n = f. S i n c e

(«', u') is the kernel pair of e, there is a unique morphism k' : C ->• D such that
u' o d o m = u' o k' and v' o d o n = v' o k'. By the projectivity of C, we have a
morphism£ : C —»• 5 with/: = do&'. We conclude that M O m — uokandvon = vok.
Thus, we have four morphisms u : m -+ u o k, « : i t - > « o i , v : n —>• v o k and
w : it —>• u o jt, joining m to /z.

Case 3: m : f ->• e and n : f -> e o u. By the projectivity of C, there is a
morphism m' : f -*• e o u such that m = uorri, because u is regular epi. Thus, we
have morphisms m', n : / ^ c o « . That / / i is connected now follows from the Case
2. This completes the proof of that / / i is connected.
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[9] Flat functors and free exact categories 151

We continue the proof of Theorem 3.5. Since / is final, according to [10, Theorem
IX.3.1], to prove that F! exists, we only need to show that the pair of morphisms
(F(«), F(V)) has a coequalizer in B.

Let (p,q) be the product projections of F(A)Y\F(A), and let € : F(S) ->
F(A) f] F(A) be the unique morphism so that F(u) = poe and F(v) = q oe. Since
B is Ac-Barr-exact, e has a factorization € = y ox with y : Q -*• F(A) f\ F(A) mono
and x : F(S) ->• Q regular epi, for some Q e B .

LEMMA 3.7. y is an equivalence relation on F(A).

PROOF, (i) (Reflexivity) The diagonal A : F(A) -> F(A) ]~[ F(A) factors through

y-
Let k' : A —> D be the morphism so that idA = u' o k' = v' o k'. Since 5 is

projective, one obtain a morphism k : A -^ S with k' = d o k, hence we have that
/dA = H O / : = UO&. It follows that

idp(A) = F(u) o F(k) — p o y o x o F(k) = q o y o x o F(k).

C o n s e q u e n t l y , A = y o (x o F(k)).

(i i) ( S y m m e t r y ) T h e r e e x i s t s a m o r p h i s m t : Q -> Q s u c h t h a t poy — qoyot

a n d qoy — poyot.

Let (7Ti, n2) be the product projections of A f ] ^ , and let m : D -> A f ] 1̂ be
the induced morphism of («', v'). Since the kernel pair of a morphism always yields
an equivalence relation, there exists n : D —> D such that Ti\om = 7i2omon
and 7r2 o m = n\ o m o n. Since c? : S —»• £) is regular epi, by the projectivity of
S, there is a morphism ri : S -> 5 such that n o d = d o n'. Thus, we have that
7ti o m o d o n' = 7i2 o m o d and 7i2omodon'=^7t\omod, that is, H o n ' = «

and v on' = u. Applying F to the above equalities, then F(M) O F(n') = F(u) and
o F(n') = F(M). We obtain that

p o j o x o F(n') = f̂ o y o x and q o y o x o F(n') = p o y o x.

Let (/. 8) be the kernel pair of x. Then,

p o y o x o F ( n ' ) o f = q o y o x o f = q o y o x o g = p o y o x o F ( n ' ) o g .

Similarly,
q o y o x o F (n ' ) of=qoyoxo F (n ' ) o g.

It follows that yoxo F(n') o / = y ox o F{n')og from the product projections (p, q).
But y is mono, so x o F(n') o / = x o F(n') o g. Since (/, g) is the coequalizer of x,
there is a unique morphism t : g —»• 2 such that f o JC = JC o Fin'). It is easily seen
that r is as required.
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(iii) (Transitivity) For the pullback diagram of p o y and q o v
p°y

Q » F(A)

the morphism S — ((p o y) o a, (q o y) o b) : P —>• F(A) J~[ F(A) factors through y.
Let (j,w : U —*• F(S)) be the pullback of F(u) and F(u). There is a unique

morphism a : U —> P such that x oz = boa and x o w = a o a. Then a is a regular
epi. In fact, let b' : Ux -> F(5) and x, : f/i -> P be the pullback of x and b and let
x2 '• U2 -*• P and a' : U2 —>• F(S) be the pullback of a and x. Since x is regular epi
so are X] and x2. Let Xj and xj be the pullback of Xi and x2, then b' o X2 and <a' o xj is
the pullback of F(u) and F(v). Therefore a = xx o x2 = x2 o x[. That a is regular
epi follows from the fact that xx and x2 are regular epi.

Since F is /c-flat, from Definition 3.1, there are two morphisms s, t : V —*• S in
C with « O J = D O / such that F(s) = z o /3 and f(t) = w o f} for some regular epi
£ : F(V) ->• C/ in B. Thus, a o jg : F(V) -^ F is a regular epi in B.

Note that (u1, v') is an equivalence relation on A, let
u'

D * A

V

D

be the pullback diagram of u' and v'. Thus, the morphism c = (u' oc2, v' oci) : T —•

A f ] A factors d&c = m or' for some r ' : T —>• D ; here m is given in the proof of the

symmetry. Since « O J = D O ( , that is, u' o d o s = v' o d o t, there exists a unique

morphism d' : V -+ T such that dos = c^od' and d o t = c2 o d'. By the projectivity

of V, we have r : V —>• 5 with d or = r' o d'. Since

u' o d ot = u' o c2 o d' = 7ti o c o d'

= 7t\ o m o r' o d' = u' o d o r,

t h e n u o t = u o r. S i m i l a r l y D O S = t o r . A p p l y F t o t h e a b o v e e q u a l i t i e s , t h e n

F(u) oF(t) = F(u) o F(r) and F(v) o F(s) = F(v) oF(r). Since F(u) = poyox
and F(v) = ^ o v o x, it follows that

p o v o x o F(r) = p o j o x o F(t) = poyoxowofi — poyoaoao/3

and f̂ o y o x o F(r) = q oyoboao ft. Let (/', g') be the kernel pair of a o £. Then,

p o j o i o F(r) of' = poyoxo F(r) o g',

q o y o x o F(r) of' = qoyoxo F(r) o g .
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It follows that y o x o F(r) o f = y o x o F(r) o g' as p and q are projections and
x o F{r) o f = x o F(r) o g' by the fact that y is mono. Since a o B is the coequalizer
of / ' and g' there is a unique morphism r) : P —>• (2 s u c n m a t r)oaoB=xo F(r).
Thus poyoa = poyorj and qoyob = qoyor). Consequently <S = y o ??.

We now turn to the proof of Theorem 3.5. Since B is K-Barr-exact, every equival-
ence relation is effective, so (p o y, q o y) has a coequalizer. Since F ( M ) = /? o y o x
and F(i>) = q o y o x,\i follows that (F(u), F(y)) has a coequalizer as x is regular
epi. This completes the proof of the existence of F\.

From the above proof, we see that F ! takes any regular epi with domain in C into
regular epi. Indeed, given a regular epi e : P —> Q in C*+, we take a regular epi
d : C —>• P with C e C. Since F(e) o F(d) is a regular epi, so is F(e).

REMARK 3.8. From the proof of Theorem 3.5, we see that the left Kan extension
F! of Theorem 3.5 preserves the coequalizer of the kernel pair of any regular epi. We
will study such functors in a forthcoming paper.

4. Exact completion of weak-lex categories

THEOREM 4.1. Let C be a small category with weak K-limits. Then the canonical
functor ec '• C —> C*+ has the following universal property which characterizes it as
the free K-Barr-exact completion ofC

(i) For any K-Barr-exact category B, the functor

S : K-Reg(C*+, B) - • *>Flat(C, B)

M h-> M o ec

induced by ec is an equivalence of categories.
(ii) The quasi-inverse of the equivalence E o/(i) takes a K -flat functor F : C —»• B

to its left Kan extension F\ along eC-

PROOF. The fullness and faithfulness of £ follows from the properties described in
Theorem 2.1; for details, see the proof of [8, Proposition 5.8]. We now prove that £ is
surjective on objects. Since E is full and faithful, by [10, Corollary X.3.3], it suffices
to show that for any /c-fiat functor F : C -> B, F has a left Kan extension F ! of F
along ec, and F! is K-regular. The existence of F ! was shown in Theorem 3.5. Since
F! preserves regular epimorphisms, it remains to show that F! preserves /c-limits.

Without loss of generality, we may assume that B is small, since both of C and
C*+ are essentially small. For any K-regular functor M : B -> Set, the composite
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M o F : C - > Set is /c-flat; by Proposition 2.3, we have a unique factorization
MoF

C Set

with (M o F)\ K-regular. Also, note that F = F\ o ec. By the uniqueness of the
factorization, we conclude that M o F ! is /c-regular.

For any B e B, we will show that B(fi, —) o F\ preserves K-limits. Firstly, for
any K-regular functor M, the composite M o F\ preserves K-limits (it is K-regular!).
Secondly, every B(B, —) is the domain of an equalizer of a pair between K-regular
functors from B into Set from Proposition 1.2, and from the fact that limits are
computed pointwise in LK(B, Set), we conclude that B(B, —)oF\ preserves K -limits.
Therefore, F ! preserves K -limits.

REMARK 4.2. In order to prove Theorem 4.1, we only use the properties of ec of
Theorem 2.1. Therefore, for a /c-Barr-exact category D, we have that, if there is a
functor F : C -> D such that the properties (i), (ii) and (iii) of Theorem 2.1 are
satisfied by F, then D is a /c-Barr-exact completion of C. Consequently, these are
necessary and sufficient conditions describing the free /c-Barr-exact completion of C.

COROLLARY 4.3. Let Cbea small category with K-limits. A functor F : C -> B is

K-flat if and only if it preserves K-limits.

PROOF. If F is v-flat, from Theorem 4.1, F = F\ o eC- Since both of ec and F\
preserve K -limits, so does F.

The following result is an immediate consequence of Theorem 4.1. For K = Ko,
this result was proved in [4].

COROLLARY 4.4. Let C be a small category with K-limits. Then the canonical
functor ec : C ->• f]FiltK(LK(C, Set), Set) preserves K-limits, and ec has the uni-
versal property of a free K-Barr-exact completion: for any K-Barr-exact category B,
every functor F : C —>• B preserving K-limits can be uniquely {up to isomorphism)
factorized as p

C > B

G
C*+

with a K-regular G.
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Let C*# = f ] Acc(C*, Set) be the category of accessible functors from C* to Set
that preserve products. The evaluation functor ec : C ->• C*# is clearly /c-flat. By [8,
Proposition 6.5], C*# is complete and exact. We have

PROPOSITION 4.5. Let C be a small category with weak K-limits. Then the functor

T : LR(C*#, Set) - • K-Flat(C, Set)

induced by ec is an equivalence; here LR(C*#, Set) is the category of regular functors
from C*# to Set that preserve small limits.

PROOF. Since C* is K -accessible with products, according to [8, Theorem 6.1(iii)],
the evaluation functor r)C. : C* -> LR(C*#, Set) is an equivalence. Butidc* = Tor)C.,
hence T is an equivalence.

THEOREM 4.6. The evaluation functor

€C : C - * C*#

has the following universal property: C*# is complete and exact, and for any exact D
with small limits, the functor

E c : LR(C*#, D) - • K-Flat(C, D)

M \-+ M o €c

induced by ec is an equivalence of categories; here LR(C*#, D) is the category of
regular functors from C*# to D that preserve small limits.

PROOF. The proof of the theorem is analogous to that of Theorem 4.1.
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