ON THE COMMUTATIVITY OF SOME CLASS OF RINGS

ABDULLAH HARMANCI
(Received 14 January 1975; revised 7 July 1975)

1. Introduction

Throughout, R will denote an associative ring with center Z. For elements x, y of R and k a positive integer, we define inductively $[x, y]_{0}=x,[x, y]=$ $[x, y]_{1}=x y-y x,[x, y, y, \cdots, y]_{k}=\left[[x, y, y, \cdots, y]_{k-1}, y\right]$. A ring R is said to satisfy the k-th Engel condition if $[x, y, y, \cdots, y]_{k}=0$. By an integral domain we mean a nonzero ring without nontrivial zero divisors. The purpose of this note is to generalize Theorem 1 in Ikeda-C. Koc (1974) and Herstein (1962) and Theorem 3.1.3 in Herstein (1968). The result is the following:

Theorem. Let k be a fixed nonnegative integer. Suppose R is a ring satisfying
(1) $[x, y, y, \cdots, y]_{k}-[x, y, y, \cdots, y]_{k}^{2} f(x, y) \in Z$ for all $x, y \in R$, where $f(x, y)$ is a polynomial with integer coefflcients which does not depend on x and y,
or
(2) $\left[[x, y, y, \cdots, y]_{k}, z^{m}\right]=0$ for all $x, y \in R$ where m is a fixed positive integer. Then
(i) The commutator ideal $C(R)$ of R lies in the prime radical $P(R)$ of R,
(ii) $[x, y, y, \cdots, y]_{k}^{2}=[x, y, y, \cdots, y]_{k}$ implies $[x, y, y, \cdots, y]_{k}=0$,
(iii) $P(R)$ is locally nilpotent.

2. Lemmata

We begin with
Lemma 1. Let R be a ring such that for each $x, y \in R$ there exists a polynomial $f_{x, y}(x, y)$ with integer coefficients which depend on x and y such that
(3) $[x, y, y, \cdots, y]_{k}-[x, y, y, \cdots, y]_{k}^{2} f_{x, y}(x, y) \in Z$. Then the idempotents of R lie in the center Z of R.

Proof. Let e be a nonzero idempotent in R and x be any element of R. Then $[e x, e]=e x e-e x,[e x, e, \cdots, e]_{k}=(-1)^{k+1}[e x, e], \quad[e x, e, \cdots, e]_{k}^{2}=0$ and $(e x, e, \cdots, e]_{k}-[e x, e, \cdots, e]_{k}^{2} f_{e x, e}(e x, e) \in Z$ imply $[e x, e] \in Z$. Similarly $[x e, e] \in$ Z. Hence $e[e x, e]=[e x, e] e=0$ and $[x e, e] e=e[x e, e]=0$, from which we obtain $e x=x e=e x e$ for all $x \in R$. So $e \in Z$.

Lemma 2. Let R be a prime ring satisfying (3). Then R is an integral domain.

Proof. Suppose $x y=0$ and $x \neq 0$. Let r be any element in R. Then

$$
[y r x, y, y, \cdots, y]_{k}=(-1)^{k+1} y^{k+1} r x \text { and }[y r x, y, y, \cdots, y]_{k}^{2}=0
$$

imply $(-1)^{k+1} y^{k+1} r x \in Z$. By taking the commutator of $(-1)^{k+1} y^{k+1} r x$ and y we obtain $y^{k+2} r x=0$ for all $r \in R$. Hence $y^{k+2} R x=0$. This implies $y^{k+2}=0$ for all y in the right annihilator of x, which is a right ideal. Since R is prime, Lemma 1.1 of Herstein (1969) implies $y=0$. This completes the proof.

Lemma 3. Suppose R is an integral domain satisfying (3). Then the center of R cannot be zero.

Proof. We assume that $Z=(0)$ and obtain a contradiction. If R is commutative then R must be a zero integral domain which is a contradiction since R is a nonzero ring. Suppose R is not commutative. By using the fact that any integral domain satisfying the k-th Engel condition is commutative Herstein (1962), we can find x, y in R such that $a=[x, y, y, \cdots, y]_{k} \neq 0$. Hence $a=a^{2} f_{x, y}(x, y)$ which implies that $a f_{x, y}(x, y)$ is an identity, and so lies in the center which is zero. It follows that $a=0$. This contradiction proves the lemma.

Lemma 4. Let R be an integral domain satisfying (1) with finite center Z. Then R is commutative.

Proof. We first note that $[x y, x, x, \cdots, x]_{k}=x[y, x, x, \cdots, x]_{k}$ and the nonzero elements Z^{*} of Z form a finite cyclic group with identity 1 , say. Then 1 is also an identity of R. Let $x \neq 0 \in R$. If x is in Z, then x has an inverse. Suppose x is not in Z. Then we can find at least one y in R such that $[y, x] \neq 0$. In this case, if $[y, x, x, x]_{k} \neq 0$, then

$$
\begin{aligned}
& 0 \neq[x y, x, x, \cdots, x]_{k}=x[y, x, x, \cdots, x], \\
& \quad x[y, x, x, \cdots, x]_{k}^{2}-[x y, x, x, \cdots, x]_{k}^{2} f(x y, y) \in Z
\end{aligned}
$$

imply x has an inverse. Suppose $[y, x, x, \cdots, x]_{k}=0$. Let T denote the subring of R generated by x and $x y$. If T satisfies the k-th Engel condition, it must be commutative. This leads to $[x, y]=0$ since $x, x y$ are in T and T is an integral domain. This contradiction gives rise to the existence of some a and b in T
such that $[a, b, b, \cdots, b]_{k} \neq 0$. By considering a and b we conclude that x has an inverse in this case also. So far we have proved that each nonzero element x of R has an inverse. This shows that R is a division ring. On the other hand, the division ring R satisfies the polynomial identity

$$
\begin{aligned}
\left([x, y, y, \cdots, y]_{k}\right. & \left.-[x, y, y, \cdots, y]_{k}^{2} f(x, y)\right) z=z\left([x, y, y, \cdots, y]_{k}\right. \\
- & {\left.[x, y, y, \cdots, y]_{k}^{2} f(x, y)\right) . }
\end{aligned}
$$

Hence R is finite dimensional over its center Z, which is finite Kaplansky (1948). It follows that R is a finite integral domain. Thus R is commutative by Wedderburn's theorem.

Lemma 5. Let R be an integral domain satisfying (1) with an infinite center Z. Then R is commutative.

Proof. Decompose $f(x, y)$ into homogeneous parts $\Sigma_{1}^{n} f_{i}(x, y)$ and let $t_{i}, i=1,2, \cdots, n$, denote the degree of $f_{i}(x, y)$. Since Z has infinitely many elements, we can find $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}, \lambda_{n+1} \in Z$ such that the determinant

$$
D=\left\lvert\, \begin{array}{ccc}
\lambda_{1}^{k+1} & \lambda_{1}^{i_{1}^{2}+2 k+2} \cdots & \lambda_{1 n}^{i_{n}+2 k+2} \\
\lambda_{2}^{k+1} & \lambda_{2}^{t_{1}+2 k+2} \ldots & \lambda_{2 n}^{i_{2}+2 k+2} \\
& 2 & \cdots
\end{array}\right.
$$

is non-zero. For any $\lambda \in Z$, we may replace x and y by λx and λy respectively in (1). Using the fact that $D \neq 0$ and R is an integral domain we obtain $D[x, y, y, \cdots, y]_{k} \in Z$, and so $[x, y, y, \cdots, y]_{k+1}=0$ for all x, y in R. Thus R is commutative because it is an integral domain satisfying the $k+1$-st Engel condition Herstein (1962).

By combining Lemma 2, Lemma 4 and Lemma 5 we obtain Lemma 6
Lemma 6. Every prime ring satisfying (1) is commutative.
Lemma 7. Let R be a prime ring satisfying the polynomial identity (2). Then R is an integral domain.

Proof. Let $x \neq 0, y$ and r be any elements of R such that $x y=0$. From (2) we obtain [$\left.[y r x, y, y, \cdots, y]_{k}, y^{m}\right]=0$ implying $y^{m+k+1} r x=0$ for all r in R. Since R is prime and $x \neq 0$, it follows that $y^{m+k+1}=0$ for all y in the right annihilator of x. Hence $y=0$ by Lemma 1.1 of Herstein (1969).

Lemma 8. Let R be a prime ring satisfying (2). Then R is commutative.
Proof. From the preceding Lemma it follows that R is an integral domain. Then Posner's theorem, [Theorem 5.6 of McCoy (1964)] implies that R can be
embedded in a division ring R^{\prime} satisfying the same identity as does R. The division ring R^{\prime} satisfying (2) is commutative [Lemma 2, Ikeda-C. Koc (1974)]. Hence R is commutative, since it is a subring of R^{\prime}.

3. Proof of the theorem

Let P be any prime ideal of R. Then the prime ring R / P is commutative by Lemmas 6 and 8. Hence each commutator $[x, y]=0$ and so the commutator ideal $C(R)$ lies in P. Since P is an arbitrary prime ideal, $C(R)$ lies in the prime radical $P(R)$, thus proving (i). Since $P(R)$ is a nil ideal [Theorem 4.21 McCoy (1964)], to prove (ii) it is enough to show that $x^{\prime}=0$ implies x is in $P(R)$. For this, assume $x^{t}=0$. The commutative prime ring R / P does not contain nonzero nilpotent elements. So x lies in each prime ideal and therefore in $P(R)$, thus proving (ii). We have just proved $C(R)$ is in $P(R)$. It is well known that $P(R)$ lies in the Jacobson radical $J(R)$ of R. If $[x, y, y, \cdots, y]_{k}^{2}=[x, y, y, \cdots, y]_{k}$, then $[x, y, y, \cdots, y]_{k}$ would be an idempotent in $J(R)$ implying that $[x, y, y, \cdots, y]_{k}=$ 0 which proves (iii). Since $P(R)$ is nil and satisfies a polynomial identity, it is locally nilpotent [Theorem 5, Kaplansky (1948)].

4. Examples

The existence of a polynomial satisfying (3) with not necessarily integral coefficients which depend on a pair of elements of R need not imply the commutativity of R, even if R is a division ring. Therefore, some restrictions on the polynomial or on its coefficients are necessary in the hypothesis of the Theorem:

Example 1. Let R denote the ring of real quaternions and for each $x, y \in R$, we define

$$
f_{x, y}(x, y)=\left\{\begin{array}{cc}
{[x, y]^{-1}} & \text { if }[x, y] \neq 0 \\
0 & \text { if }[x, y]=0
\end{array}\right.
$$

In R, (3) is satisfied by $k=1$ and $f_{x . y}(x, y)$ defined above, which depends on x and y but does not have integral coefficients. Indeed R is not commutative.

To fix the polynomial as in (1) again need not, in general, imply the commutativity of the ring:

Example 2. Let R denote the subring of the ring of all 3×3 matrices over the Galois field GF(2) generated by e_{12}, e_{13}, e_{23} (or e_{21}, e_{31}, e_{32}) where $e_{i j}, i j=1,2,3$, denotes the matrix with 1 at the (i, j) entry and zeros elsewhere. It is readily verified that $[x, y]^{2}=0$ and $x y=0$ or $e_{13}\left(e_{31}\right)$ and $e_{13}\left(e_{31}\right) \in Z$. Hence (1) is satisfied by any polynomial and $k=1$. But R is indeed non-commutative.

References

S. A. Amitsur (1957), 'A generalisation of Hilsert's nullstellensatz', Proc. Amer. Math. Soc. 8. 649-656.
S. A. Amitsur (1955), 'On rings with identities', J. London Math. Soc. 30, 464-470.
I. N. Herstein (1962), 'Sugli Anelli Soddis, ad una Cond. di Engel', Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 32, 177-180.
I. N. Herstein (1968), 'Non-commutative', New York.
I. N. Herstein (1969), 'Topics in ring theory', Chicago.
M. Ikeda-C. Koc (1974), 'On the commutator ideal of certain rings', Arc. der Math. 25, 348-353.
N. Jacobson (1964), 'Structure of Rings’, Amer. Math. Soc. Coll. Publ.
I. Kaplansky (1948), 'Rings with a polynomial identity'. Bull. Amer. Math. Soc. 54, 575-580.
N. H. McCoy (1964). 'The Theory of Rings', MacMillan.

Department of Mathematics
Hacettepe University
Ankara
Turkey.

