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1. Introduction

Throughout, R will denote an associative ring with center Z. For elements
x, y of R and k a positive integer, we define inductively [x, y]0 = x, [x, y] =
[ x , y ] , = x y - y x , [x, y , y , • • •, y]k = [[x, y , y , • • - , y ] k _ , , y ] . A r i n g R i s s a i d t o
satisfy the k-th Engel condition if [JC, y, y, • • -, y]k = 0. By an integral domain we
mean a nonzero ring without nontrivial zero divisors. The purpose of this note
is to generalize Theorem 1 in Ikeda-C. Koc (1974) and Herstein (1962) and
Theorem 3.1.3 in Herstein (1968). The result is the following:

THEOREM. Let k be a fixed nonnegative integer. Suppose R is a ring
satisfying

(1) [x,y, y, • • -,y]k - [JC, y, y, • • -,y]lf(x, y ) e Z for all x,yGR, where
f(x, y) is a polynomial with integer coefficients which does not depend on x and
y,

or
(2) [[JC, y, y, • • •, y]k, zm] = 0 for all x,y€iR where m is a fixed positive

integer. Then
(/) The commutator ideal C(R) ofR lies in the prime radical P(R) ofR,
(ii) [x, y, y, • • •, y]l = [x, y, y, • • •, y]k implies [JC, y, y, • • •, y]* = 0,
(Hi) P(R) is locally nilpotent.

2. Lemmata

We begin with

LEMMA 1. Let R be a ring such that for each x,yER there exists a
polynomial fx,,(x, y) with integer coefficients which depend on x and y such that

(3) [JC, y, y, • • •, y]* - [JC, y, y, • • •, y]lfx.y(x, y) G Z. Then the idempotents ofR
lie in the center Z of R.
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PROOF. Let e be a nonzero idempotent in R and x be any element of R.
T h e n [ex, e] = exe - e x , [ex, e, • • - , e ] k = ( - l ) k + ' [ e x , e ] , [ex, e, • • - , e ] l = 0 a n d
( e x , e, • • - , e ] k - [ex, e, • • •, e]2

kftx,e(ex, e ) E . Z i m p l y [ex, e] E Z . S i m i l a r l y [xe, e] G
Z. Hence e[ex, e] = [ex, e]e = 0 and [xe, e]e = e[xe, e] = 0, from which we
obtain ex = xe = exe for all x G R. So e G Z.

LEMMA 2. Lef R be a prime ring satisfying (3). 77ien R is an integral
domain.

PROOF. Suppose xy = 0 and x ^ 0. Let r be any element in R. Then

[yrx,y,y,-••,y]k=(-\)k+'yk+'rx and [yrx, y, y, • • •, y]l = 0

imply ( - \)k*'yk+'rx G Z. By taking the commutator of ( - l)"+lyk+'rx and y we
obtain y"*2rx = 0 for all r G R. Hence yk+2/?x = 0. This implies yt+2 = 0 for all y
in the right annihilator of x, which is a right ideal. Since R is prime, Lemma 1.1
of Herstein (1969) implies y = 0. This completes the proof.

LEMMA 3. Suppose R is an integral domain satisfying (3). Then the center
of R cannot be zero.

PROOF. We assume that Z = (0) and obtain a contradiction. If R is
commutative then R must be a zero integral domain which is a contradiction
since R is a nonzero ring. Suppose R is not commutative. By using the fact that
any integral domain satisfying the k-th Engel condition is commutative
Herstein (1962), we can find x, y in R such that a = [x, y, y, • • •, y ]k / 0. Hence
a = a2fx,y(x,y) which implies that afx.y(x, y) is an identity, and so lies in the
center which is zero. It follows that a = 0. This contradiction proves the
lemma.

LEMMA 4. Let R be an integral domain satisfying (1) with finite center Z.
Then R is commutative.

PROOF. We first note that [xy, x, x, • • -,x]k = x[y, x, x, • • -,x]k and the non-
zero elements Z* of Z form a finite cyclic group with identity 1, say. Then 1 is
also an identity of R. Let x ^ 0 G R. If x is in Z, then x has an inverse. Suppose
x is not in Z. Then we can find at least one y in R such that [y,x] ^ 0. In this
case, if [y,x,x,x]k^0, then

0/^ [xy,x,x, • • -,x)k = x[y,x,x, • • -,x],

x[y,x,x,--,x]l~ [xy,x,x,- -,x]lf(xy, y ) G Z

imply x has an inverse. Suppose [y, x,x, • • •, x]k = 0. Let T denote the subring
of R generated by x and xy. If T satisfies the /c-th Engel condition, it must be
commutative. This leads to [x, y] = 0 since x, xy are in T and T is an integral
domain. This contradiction gives rise to the existence of some a and b in T
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such that [a, b, b, • • •, b]k/ 0. By considering a and b we conclude that x has an
inverse in this case also. So far we have proved that each nonzero element x of
R has an inverse. This shows that R is a division ring. On the other hand, the
division ring R satisfies the polynomial identity

([*, y, y, • • •, y] t - [x, y, y, • • •, y]lf(x, y))z = z([x, y, y, • • •, y]k

Hence R is finite dimensional over its center Z, which is finite Kaplansky
(1948). It follows that R is a finite integral domain. Thus R is commutative by
Wedderburn's theorem.

LEMMA 5. Let R be an integral domain satisfying (1) with an infinite center
Z. Then R is commutative.

PROOF. Decompose f(x,y) into homogeneous parts 1"fi(x,y) and let
ti,i = 1,2, • • - ,« , denote the degree of f(x,y). Since Z has infinitely many
elements, we can find A,,A2, • • • ,A, ,A,*,£Z such that the determinant

k + l \ f, + 2*+2 > I +2»+2
I A 1 . . . A in

* + l v l.+2k+2 > I +2*+2
-2 A 2 ' ' ' A 2"

D =
12

2

k + l « >, + 2*+21 k + l > I, + 2*+2 . I +2k+2
\n*\ An + I ' ' ' An"+l

is non-zero. For any A G Z, we may replace x and y by A* and Ay respectively
in (1). Using the fact that D/0 and R is an integral domain we obtain
D[x, y, y, • • •, y]k G Z, and so [x, y, y, • • •, y]k + , = 0 for all x, y in R. Thus R is
commutative because it is an integral domain satisfying the /c + l-st Engel
condition Herstein (1962).

By combining Lemma 2, Lemma 4 and Lemma 5 we obtain Lemma 6

LEMMA 6. Every prime ring satisfying (1) is commutative.

LEMMA 7. Let R be a prime ring satisfying the polynomial identity (2).
Then R is an integral domain.

PROOF. Let x^ 0, y and r be any elements of R such that jcy = 0. From (2)
we obtain [[yrx, y, y, • • -,y]k, ym] = 0 implying ym+k+'rx = 0 for all r in R. Since
R is prime and xj^ 0, it follows that ym+k+l = 0 for all y in the right annihilator
of x. Hence y = 0 by Lemma 1.1 of Herstein (1969).

LEMMA 8. Let R be a prime ring satisfying (2). Then R is commutative.

PROOF. From the preceding Lemma it follows that R is an integral domain.
Then Posner's theorem, [Theorem 5.6 of McCoy (1964)] implies that R can be
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embedded in a division ring R' satisfying the same identity as does R. The
division ring R' satisfying (2) is commutative [Lemma 2, Ikeda-C. Koc (1974)].
Hence R is commutative, since it is a subring of R'.

3. Proof of the theorem

Let P be any prime ideal of R. Then the prime ring RIP is commutative by
Lemmas 6 and 8. Hence each commutator [x, y] = 0 and so the commutator
ideal C(R) lies in P. Since P is an arbitrary prime ideal, C(R) lies in the prime
radical P(R), thus proving (i). Since P(R) is a nil ideal [Theorem 4.21 McCoy
(1964)], to prove (ii) it is enough to show that JC' = 0 implies x is in P(R). For
this, assume x' = 0. The commutative prime ring RIP does not contain nonzero
nilpotent elements. So x lies in each prime ideal and therefore in P(R), thus
proving (ii). We have just proved C(R) is in P(R). It is well known that P(R)
lies in the Jacobson radical J(R) of R. If [x,y,y,---,y]l = [x, y, y, • • •, y]k, then
[JC, y, y, • • -, y]k would be an idempotent in J(R) implying that [x,y,y,---,y]k =
0 which proves (iii). Since P(R) is nil and satisfies a polynomial identity, it is
locally nilpotent [Theorem 5, Kaplansky (1948)].

4. Examples

The existence of a polynomial satisfying (3) with not necessarily integral
coefficients which depend on a pair of elements of R need not imply the
commutativity of R, even if R is a division ring. Therefore, some restrictions
on the polynomial or on its coefficients are necessary in the hypothesis of the
Theorem:

EXAMPLE 1. Let R denote the ring of real quaternions and for each
x, y €E R, we define

if U , y ] ^ 0

if [x,y] = 0

In R, (3) is satisfied by k = 1 and fx.y(x,y) defined above, which depends on x
and y but does not have integral coefficients. Indeed R is not commutative.

To fix the polynomial as in (1) again need not, in general, imply the
commutativity of the ring:

EXAMPLE 2. Let R denote the subring of the ring of all 3 x 3 matrices over
the Galois field GF(2) generated by el2, el3, e23 (or e21, e31, e32) where eih ij = 1,2,3,
denotes the matrix with 1 at the (/,/) entry and zeros elsewhere. It is readily
verified that [x, y]2 = 0 and xy = 0 or ei3(e3i) and e,3(e3i)EZ. Hence (1) is
satisfied by any polynomial and k - 1. But R is indeed non-commutative.
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