SOME RESULTS ON CONFIGURATIONS

JENNIFER WALLIS

(Received 14 May 1969; revised 23 September 1969)
Communicated by B. Mond

A (v, k, λ) configuration is conjectured to exist for every v, k and λ satisfying $\lambda(v-1)=k(k-1)$
and
$k-\lambda$ is a square if v is even,
$x^{2}=(k-\lambda) y^{2}+(-1)^{(v-1) / 2} \lambda z^{2}$ has a solution in integers x, y and z not all zero for v odd.
See Ryser [5, p. 111] for further discussion.
Necessary conditions for the existence of (b, v, r, k, λ) configurations are that

$$
\begin{gathered}
b k=v r \\
r(k-1)=\lambda(v-1) .
\end{gathered}
$$

We write I for the identity matrix and J for the matrix with every element +1 . In the case of block matrices, $(X)_{i j}$ means the matrix whose (i, j) th block is X; for example, $\left(T^{i-j}\right)_{i j}$ is the matrix whose (i, j) th block is T^{i-j}. We define the Kronecker product of two matrices $A=\left(a_{i j}\right)$ of order $m \times n$ and B of any order as the $m \times n$ block matrix

$$
A \times B=\left(a_{i j} B\right)_{i j} .
$$

Theorem 1. There exists a $\left(q\left(q^{2}+2\right), q(q+1), q\right)$ configuration whenever q is a prime.

Takeuchi [7] and Ahrens and Szekeres [1] have proven that Theorem 1 holds for all prime powers q. Our method can be extended to $q=2^{2}, 2^{3}, 2^{4}, 3^{2}, 3^{3}$ or 7^{3}. We include Theorem 1 as our method is entirely different to the others' and closely connected to the proof of Theorem 2.

Theorem 2. $A\left(q\left(k^{2}+\lambda\right), q k, k^{2}+\lambda, k, \lambda\right)$ configuration exists whenever a (q, k, λ) configuration exists and q is a prime power.

Theorem 3. If there exists a matrix N of odd order $v-1$ with zero diagonal and every other element +1 or -1 , such that $N J=J N=0$ and

$$
N N^{T}=(v-1) I_{v-1}-J_{v-1},
$$

then there is a $\left.2(v-1), v, v-1, \frac{1}{2} v, \frac{1}{2}(v-2)\right)$ configuration.

Corollary 4: If v is the order of a skew-Hadamard or n-type matrix (see [8] for definitions) then there is $a\left(2(v-1), v, v-1, \frac{1}{2} v, \frac{1}{2}(v-2)\right)$ configuration.

1. Preliminary remark

We require that there exist $(0,1)$ matrices $R_{i}, 0 \leqq i \leqq q-1, Q$ of order q^{2} and \bar{Q} which is $k q \times q^{2}, k$ an integer less than q, which together with P (defined in (iv) below) satisfy the following conditions
(i) $P R_{j}^{T}=J \times J$
(ii) $\quad R_{i} R_{j}^{T}=J \times J \quad i \neq j$
$\begin{array}{ll}\text { (iii) } & \sum_{i=0}^{q-1} R_{i} R_{i}^{T}=q^{2} I \times I+q(J-I) \times J \\ \text { (iv) } & P=I \times J, \quad P P^{T}=q I \times J \\ \text { (v) } & Q Q^{T}=q I \times I+(J-I) \times J\end{array}$
(vi) $\bar{Q} \bar{Q}^{T}=q I_{k q}+\left(J_{k}-I_{k}\right) \times J$
(vii) $J_{k q} \bar{Q}=k \bar{J}$
(viii) $\bar{Q} J_{q^{2}}=q \bar{J}$.

In formula (1), unless subscripted otherwise, I and J are of order q and \bar{J} is the $k q \times q^{2}$ matrix with every element +1 .

We will show in $\S 3$ some cases where these conditions are satisfied.

2. Constructions

Lemma 5. If $P, a(0,1)$ matrix, is defined as in $(1, i v)$, and if $(0,1)$ matrices $R_{i}, 0 \leqq i \leqq q-1$ satisfying conditions $(1, i, i i, i i i)$ exist then there exists a $\left(q^{2}(q+2), q(q+1), q\right)$ configuration.

Proof. It is easily seen that this triplet satisfies the necessary conditions for (v, k, λ) configurations.

Let S be the $q^{2}(q+2)$ block matrix given by

$$
S=\left[\begin{array}{llllllll}
0 & P & R_{0} & R_{1} & \cdots & R_{q-3} & R_{q-2} & R_{q-1} \\
R_{q-1} & 0 & P & R_{0} & \cdots & R_{q-4} & R_{q-3} & R_{q-2} \\
& \vdots & & & & & \vdots & \\
R_{0} & R_{1} & R_{2} & R_{3} & \cdots & R_{q-1} & 0 & P \\
P & R_{0} & R_{1} & R_{2} & \cdots & R_{q-2} & R_{q-1} & 0
\end{array}\right]
$$

then

$$
\begin{aligned}
S S^{T} & =I_{q+2} \times\left\{P P^{T}+\sum_{i=0}^{q-1} R_{i} R_{i}^{T}\right\}+\left(J_{q+2}-I_{q+2}\right) \times q J \times J \\
& =q^{2} I_{r}+q J_{r}
\end{aligned}
$$

where $r=q^{2}(q+2)$.
Every element of s is 0 or 1 so s is the incidence matrix of a $\left(q^{2}(q+2), q(q+1)\right.$, q) configuration.

Lemma 6. If there exists a $(0,1)$ matrix \bar{Q} satisfying the conditions $(1, v i, v i i$, viii) and $a(q, k, \lambda)$ configuration exists then there exists $a\left(q\left(k^{2}+\lambda\right), q k, k^{2}+\lambda, k, \lambda\right)$ configuration.

Proof. $A(q, k, \lambda)$ configuration exists, so

$$
\lambda(q-1)=k(k-1)
$$

hence it is easily verified that the five numbers satisfy the necessary conditions for (b, v, r, k, λ) configurations.

Let V be the incidence matrix of the (q, k, λ) configuration. Then A defined by

$$
A^{T}=\left[I_{k} \times V, \bar{Q}, \bar{Q}, \cdots, \bar{Q}\right]
$$

(\bar{Q} occuring λ times), has k non-zero elements in every row and $\lambda q+k=k^{2}+\lambda$ non-zero elements in each column. Now

$$
\begin{aligned}
A^{T} A & =I_{k} \times V V^{T}+\lambda \bar{Q} \bar{Q}^{T} \\
& =(k-\lambda+\lambda q) I_{k q}+\lambda J_{k q} \\
& =k^{2} I_{q k}+\lambda J_{k q}
\end{aligned}
$$

so A is the incidence matrix of the required configuration.
Proof of Theorem 3. Since N has zero diagonal and every other element +1 or $-1, C$ and D defined (with I and J of order $v-1$) by

$$
\begin{aligned}
& C=\frac{1}{2}(N+I+J) \\
& D=\frac{1}{2}(N-I+J)
\end{aligned}
$$

are $(0,1)$ matrices. Now

$$
C C^{T}+D D^{T}=\frac{1}{2}\left(N N^{T}+I+(v-1) J\right)=\frac{1}{2} v I+\frac{1}{2}(v-2) J
$$

and

$$
\begin{gathered}
J C=\frac{1}{2} v J=C J \\
J D=\frac{1}{2}(v-2) J=D J .
\end{gathered}
$$

We define ω_{v}, ω_{b} and e to be the vectors of v, b and $(v-1)$'s respectively and A^{T} by

$$
A^{T}=\left[\begin{array}{ll}
D & C \\
e & 0
\end{array}\right]
$$

A is $2(v-1) \times v$, and

$$
\begin{aligned}
\omega_{v} A^{T} & =\frac{1}{2} v \omega_{b}, \quad A^{T} \omega_{b}^{T}=(v-1) \omega_{v}^{T} \\
A^{T} A & =\left[\begin{array}{cc}
D & C \\
e & 0
\end{array}\right]\left[\begin{array}{cc}
D^{T} & e^{T} \\
C^{T} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
D D^{T}+C C^{T} & \frac{1}{2}(v-2) e^{T} \\
\frac{1}{2}(v-2) e & v-1
\end{array}\right] \\
& =\frac{v}{2} I_{v}+\frac{v-2}{2} J_{v}
\end{aligned}
$$

So A is the incidence matrix of a $\left(2(v-1), v, v-1, \frac{1}{2} v, \frac{1}{2}(v-2)\right)$ configuration.

3. Matrices satisfying condition (1)

We shall show that (1) can be satisfied for all primes q and that matrices Q and \bar{Q} can be found for q any prime power. These facts together with lemmas 5 and 6 complete the proofs of Theorems 1 and 2.

In this section T will be used for the circulant matrix of order q given by
(2)

$$
T=\left[\begin{array}{ccccccc}
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
& \vdots & & & & \vdots & \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0
\end{array}\right]
$$

3.1 The case of q prime

Choose q block matrices R_{i} of order $q^{2}, 0 \leqq i \leqq q-1$, thus

$$
R_{i}=\left[\begin{array}{lllll}
I & T^{i} & T^{2 i} & \cdots & T^{(q-1) i} \\
T^{(q-1) i} & I & T^{i} & \cdots & T^{(q-2) i} \\
\vdots & & & & \vdots \\
T^{i} & T^{2 i} & T^{3 i} & \cdots & I
\end{array}\right]=\left(T^{(m-s) i}\right)_{s m}
$$

and let

$$
Q=\left[\begin{array}{lllll}
I & I & I & \cdots & I \\
I & T & T^{2} & \cdots & T^{q-1} \\
I & T^{2} & T^{2 \cdot 2} & \cdots & T^{(q-1) 2} \\
\vdots & & & & \vdots \\
I & T^{q-1} & T^{2(q-1)} & \cdots & T^{(q-1)(q-1)}
\end{array}\right]=\left(T^{(i-1)(j-1)}\right)_{i j}
$$

and

$$
\bar{Q}=\left[\begin{array}{lllll}
I & I & I & \cdots & I \\
I & T & T^{2} & & T^{q-1} \\
I & T^{2} & T^{2 \cdot 2} & \cdots & T^{(q-1) 2} \\
\vdots & & & & \vdots \\
I & T^{k-1} & T^{2(k-1)} & \cdots & T^{(q-1)(k-1)}
\end{array}\right]
$$

We now verify that these matrices satisfy the conditions (1). Note that $J T^{i}=J$ for all i, so (i), (vii) and (viii) are immediate.
(ii) $\quad R_{i} R_{j}^{T}=\left(\sum_{m=0}^{q-1} T^{(m-s) i} T^{(n-m) j}\right)_{s, n}$

$$
\begin{aligned}
& =\left(\sum_{m=0}^{q-1} T^{m(i-j)+n j-s i}\right)_{s, n} \\
& =\left(\sum_{r=0}^{q-1} T^{r}\right)_{s, n}=(J)_{s, n}=J \times J \quad \text { for } i \neq j
\end{aligned}
$$

(iii) $R_{i} R_{i}^{T}=\left(\sum_{m=0}^{q-1} T^{(m-s) i} T^{(n-m) i}\right)_{s, n}$

$$
\begin{aligned}
& =\left(q T^{(n-s) i}\right)_{s, n} \\
& =q R_{i}
\end{aligned}
$$

$$
\sum_{i=0}^{q-1} R_{i}=\left[\begin{array}{cccc}
q I & J & \cdots & J \\
J & q I & \cdots & J \\
\vdots & & & \vdots \\
J & J & \cdots & q I
\end{array}\right]=q I \times I+(J-I) \times J
$$

so the result follows.
(v) $Q Q^{T}=\left(\sum_{m=1}^{q} T^{(i-1)(m-1)} T^{-(m-1)(j-1)}\right)_{i j}$

$$
=\left(\sum_{m=1}^{q} T^{(m-1)(i-j)}\right)_{i j}
$$

then if $i=j$ we have $\sum_{m=1}^{q} I=q I$, and if $i \neq j$, we have $\sum_{m=1}^{q} T^{(m-1)(i-j)}=J$, which gives the result.
(vi) This follows since we have chosen \bar{Q} as the first $k q$ rows of Q.

3.2 The case of q a prime power

In this case, unless stated otherwise, I, J are of order q.
It is known that a $\left(q^{2}+q+1, q+1,1\right)$ configuration exists whenever q is a
prime power. If we form the incidence matrix of this configuration then we may rearrange its rows and columns until the following matrix is obtained:

$$
A=\left[\begin{array}{lll}
1 & e & 0 \\
e^{T} & 0 & I \times e \\
0 & I \times e^{T} & N
\end{array}\right]
$$

where $e=[1,1, \cdots, 1]$ is of size $1 \times q$ and N is of size p^{2}.
Now $A A^{T}=p I_{r}+J_{r}$, where $r=p^{2}+p+1$, and

$$
A A^{T}=\left[\begin{array}{lll}
q+1 & e & e \times e \\
e^{T} & q I+J & (I \times e) N^{T} \\
e^{T} \times e^{T} & N\left(I \times e^{T}\right) & I \times J+N N^{T}
\end{array}\right]
$$

so
(a) N is of order q^{2};
(b) $N N^{T}=q I \times I+J \times J-I \times J=q I \times I+(J-I) \times J$;
(c) $N\left(I \times e^{T}\right)=J^{\prime}$ where J^{\prime} is of size $q^{2} \times q$.

This last condition implies that if N is partitioned into q^{2} block matrices N_{i} then each block matrix N_{i} has exactly one element in each row and column. Now rearrange the columns of N keeping the first $q+1$ rows of A unaltered until the first row of block matrices in the partitioned N are all I_{q} and similarly alter the rows of N keeping the first $q+1$ columns of A unaltered until the first column of block matrices in the partitioned N are all I_{q}. Then this new matrix obtained from N satisfies all the conditions for the matrix Q. We again choose \bar{Q} to consist of the first $k q$ rows of Q.

3.3 The case of q certain prime powers

We have not been able to derive enough information from the matrix N to ensure the existence of the matrices R_{i} when q is a general prime power. However, as noted in the introduction, we can construct these matrices for the following value of q :

$$
2^{2}, 2^{3}, 2^{4}, 3^{2}, 3^{3}, 7^{2}
$$

The methods used do not generalize.

4. Remarks on numerical results

The block designs given by Theorem 2 with $k>4$ all have $r>20$, and are outside the range of the tables in [2], [3], [4] and [6]. Consequently it is hard to check whether individual designs are new. We observe, however, that the existence of a ($16,6,2$) configuration yields a design with parameters (608, 96, 38, 6, 2); this is the multiple by 2 of the design $(304,96,19,6,1)$ which is listed as unknown
by Sprott [6]. Also the (11,6,3) configuration yields a (429, 66, 39, 6, 3) configuration, which is a multiple by 3 of a $(143,66,13,6,1)$ design. The solution of the latter design in [4] does not appear to have arisen as one of a series of designs. We note in passing that Hall [3] mistakenly lists (143, 66, 13, 6, 1) as 'solution unknown'.

Theorem 3 yields a $(34,18,17,9,8)$ configuration, which was previously unknown according to [6]. It also gives a $(26,14,13,7,6)$ configuration, which was already known but was completely omitted from Hall's list, as well as a number of apparently new configurations with $r>20$.

References

[1] R. Ahrens and G. Szekeres, 'On a combinatorial generalization of 27 lines associated with a cubic surface', J. Australian Math. Soc. 10 (1969), 485-492.
[2] R. A. Fisher and F. Yates, Statistiol Tables for Biological, Agricultural, and Medical Research, 2nd ed. (Oliver and Boyd Ltd., London, 1943).
[3] Marshall Hall Jr., Combinatorial Theory (Blaisdell, Waltham, Mass, 1967).
[4] C. Radhaskrishna Rao, 'A study of BIB designs with replications 11 to 15 ', Sankhyä, 23 (1961) 117-127.
[5] H. J. Ryser, Combinatorial Mathematics (Carus Monograph No. 14, Wiley, New York, 1963).
[6] D. A. Sprott, 'Listing of BIB designs from $r=16$ to 20', Sankhyā, Series A, 24 (1962), 203204.
[7] K. Takeuchi, 'On the construction of a series of BIB designs', Rep. Stat. Appl. Res., JUSE 10 (1963). 48.
[8] Jennifer Wallis, 'Some (1, -1) matrices', J. Combinatorial Theory, (to appear).
University of Newcastle
New South Wales 2308

