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Euclidean Rings of Algebraic Integers

Malcolm Harper and M. Ram Murty

Abstract. Let K be a finite Galois extension of the field of rational numbers with unit rank greater

than 3. We prove that the ring of integers of K is a Euclidean domain if and only if it is a principal ideal

domain. This was previously known under the assumption of the generalized Riemann hypothesis for

Dedekind zeta functions. We now prove this unconditionally.

1 Introduction

An integral domain R is said to be Euclidean if there exists a map φ : R \ {0} → N

such that given any a, b ∈ R, there exist q and r such that a = bq + r with either r = 0

or φ(r) < φ(b). Any such ring is a principal ideal domain (PID).

If R is the ring of integers of an algebraic number field, then clearly a necessary

condition for R to be Euclidean is that R be a PID. That this condition is also suf-

ficient whenever the quotient field of R is not an imaginary quadratic field is a re-

markable prediction of the generalized Riemann hypothesis (GRH) and is a beautiful

theorem of Weinberger [W]. Such a result, together with its connection to a number

field version of the Artin primitive root conjecture was first signaled in a paper of

Samuel [S]. In that paper, Samuel discusses the situation with quadratic extensions

of Q . After reviewing a general criterion of Motzkin [M] for a ring to be Euclidean,

he applies it to the context of quadratic fields.

This criterion is easily described. Let A0 = {0} and define inductively An to be

the set of elements r of R having the property that every residue class modulo r has

a representative in A j for some j < n. Thus, A1 consists of the unit group of R.

Motzkin’s criterion is that R is Euclidean if and only if R =

⋃∞
n=0 An.

Motzkin used his criterion to prove that of the nine imaginary quadratic fields of

class number one, only five of them are Euclidean and for these fields, the norm map

serves as the function φ. In contrast, Samuel’s work [S] made the exciting prediction

that any ring of integers of a real quadratic field of class number one is Euclidean, but

not necessarily for the absolute value of the norm map serving as φ. In particular,

Samuel conjectured that Z[
√

14] is Euclidean this being the quadratic field of smallest

discriminant whose nature was unresolved.

We refer the reader to Lenstra’s paper [L] for both the historical developments

and applications of these ideas in the more general context of function fields over

finite fields where the GRH is known and the analog of Weinberger’s theorem can be

proved unconditionally.

In an earlier paper [H], the first author proved that Z[
√

14] is Euclidean without

the use of the generalized Riemann hypothesis. More generally, he proved that if K is
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a real quadratic field and OK its ring of integers whose discriminant is less than 500,

then OK is Euclidean if and only if OK has class number one. In the same paper, he

also determined all the cyclotomic fields whose ring of integers is a Euclidean domain.

In this paper, we generalize the work of Harper [H] to a larger context that in-

cludes the abelian case. Our methods originate in the papers of Gupta, K. Murty and

R. Murty [GMM] where the first attempt was made to make Weinberger’s results un-

conditional using the earlier work [GM] on Artin’s primitive root conjecture. Their

work studied the ring OK,S of S-integers where S was a finite set of places that in-

cluded the infinite places and required |S| ≥ max(5, 2[K : Q]−3) to be applicable in

the Euclidean context. A novel idea was injected into the method by Clark and Murty

[CM] in 1995. This idea allowed one to discover new Euclidean rings of integers of

totally real Galois extensions K over Q with [K : Q] ≥ 4. Thus, at that time, the case

of Z[
√

14] was still elusive.

In [H], a variant of the Motzkin criterion was discovered, which when combined

with the lower bound sieve results of previous works on the problem, along with a

clever use of the large sieve inequality, finally led to the applicability of the method to

the quadratic field context.

The goal of this paper is to prove:

Theorem 1 Let K/Q be a finite Galois extension with unit rank r > 3. Then OK is

Euclidean if and only if OK is a PID.

As a corollary, we deduce:

Corollary Let K/Q be a finite Galois extension of degree > 8. Then OK is Euclidean if

and only if OK is a PID.

Indeed, if r1 and r2 denotes the number of real and complex embeddings of K

respectively, we have r > (r1 + 2r2 − 2)/2 = (n − 2)/2 so that r > 3 whenever n > 8

and r1 > 0. If r1 = 0, then r = r2 − 1 > 3 whenever n > 8.

The proof of this theorem involves many important ideas. In addition to the

Motzkin criterion described above, the generalization of the Bombieri-Vinogradov

theorem to algebraic number fields as developed by K. Murty and R. Murty [MM]

plays a vital role. Their generalization has two versions, one which is uncondi-

tional and another which assumes the Artin holomorphy conjecture for the Artin

L-functions that intervene. Undoubtedly, we feel that there is great scope for fur-

ther improvements. In particular, it should be possible to sharpen the theorem to

allow r = 3. This is possible in the abelian case thanks to a theorem of Bombieri,

Friedlander and Iwaniec [BFI] extending the range of applicability of the Bombieri-

Vinogradov theorem beyond the usual limit of x1/2 in the lower bound sieve method.

Such a result is not available in the non-abelian context and so our result stands with

the strict inequality at present. Still, by injecting ideas utilised in Theorem 2 (below),

especially the notion of admissible primes, one can hope to make further improve-

ments. This we hope to develop in future research.

As is well-known, the Euclidean algorithm plays an important role in the study of

bounded generation of arithmetic groups. We state that one can apply our theorem

to this study, and refer the reader to the exposition of K. Murty [KM].
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2 Variation of Motzkin’s Criterion

In [H], Harper discovered a variation of Motzkin’s criterion applicable to rings of

integers of algebraic number fields. This can be described as follows.

First we define the notion of admissible sets of primes as described by Clark and

Murty [CM]. Let K be an algebraic number field, OK its ring of integers. We suppose

that OK is a PID. Let π1, . . . , πs ∈ OK be distinct non-associate primes. We say

{π1, . . . , πs} is an admissible set of primes if for all β = πa1

1 · · ·πas
s with ai non-

negative integers, every coprime residue class (mod β) can be represented by a unit

of OK . As noted in [CM], to check if {π1, . . . , πs} is admissible, it suffices to check

that every coprime residue class (mod π2
1 · · ·π2

s ) can be represented by a unit of OK .

Now let B0 be the monoid generated by the unit group and an admissible set of

primes (which could be empty). For n ≥ 1, inductively define Bn as the set of all

primes π of OK such that every non-zero residue class modulo (π) has a representa-

tive in Bn−1 ∪ B0. Thus, B1 is the set of primes π such that every residue class mod π
is represented by an element of B0. The fundamental result in [H] is:

Proposition 1 Suppose OK is a PID. If all the primes of OK lie in
⋃∞

n=0 Bn, then OK is

Euclidean.

A key innovation in the argument of Harper [H] was the following application of

the large sieve inequality.

Proposition 2 Suppose that OK is a PID. Let Bn(x) denote the cardinality of the set of

elements in Bn whose norm is less than or equal to x. If

B1(x) � x

log2 x
,

then OK is Euclidean.

It is this last proposition that simplfies the earlier approaches to the study of Eu-

clidean rings of algebraic integers. Indeed, in the proofs below we apply the lower

bound sieve to establish Proposition 2.

3 Preliminaries

We record in this section various theorems from the literature which will be needed

in the proofs.

Proposition 3 ([MM]) Let K/Q be a finite Galois extension with group G. Let C be a

conjugacy class of G, and a, q be positive integers with 1 ≤ a < q, (a, q) = 1. Denote

by πC (x, q, a) the number of primes p ≤ x such that p ≡ a(mod q) with Artin symbol

(p, K/Q) ∈ C. There exist numbers δ(C, q, a) ≥ 0 such that for any ε > 0 and A > 0,

we have
∑

q≤Q

max
(a,q)=1

max
y≤x

|πC (y, q, a) − δ(C, q, a)π(y)| � x

(log x)A
,

with Q = xα−ε where α ≤ min(2/|G|, 1/2) and the summation is over q such that

K ∩ Q(ζq) = Q . (Here, π(y) denotes the number of primes p ≤ y.)
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This is the basic result of [MM]. However, as remarked in Section 7 of that paper,

some improvements can be made (see, in particular Theorem 7.3 and Section 7.4).

Proposition 4 ([MM, p. 269]) With the same setting as in Proposition 3, let A be any

abelian subgroup of G with A∩C 6= φ. Let d = [G : A]. Then, we may take Q = x1/η−ε

in Proposition 3 with

η =

{

d − 2 if d ≥ 4

2 if d ≤ 4.

Moreover, we may replace d above by d∗ where

d∗
= min

H
max

ω
[G : H]ω(1)

where the minimum is taken over all subgroups H satisfying the two conditions

• H ∩C 6= φ and
• for every irreducible character ω of H and any non-trivial Dirichlet character χ, the

Artin L-series L(s, ω ⊗ χ) is entire.

The maximum above is over all irreducible characters of H. In particular, if Artin’s

holomorphy conjecture is true for K/Q , then we may take d∗
= maxχ χ(1) where the

maximum is over all irreducible characters of G.

Proposition 5 (Application of the Lower Bound Sieve) Let K/Q be a finite Galois

extension and set

t = max
m

{m : K ⊇ Q(ζm)}.

Let η be as in Proposition 4 with C = 1. Then, the number of primes p ≤ x such

that p splits completely in K and such that for every prime ` with `|(p − 1)/t we have

` > x1/2η−ε, is

� x

log2 x
.

Proposition 6 (Gupta-Murty [GM]) Let K be an algebraic number field. Let M be a

monoid in OK and for p coprime to the elements of M, denote by fM(p) the order of M

mod p. If M contains r multiplicatively independent elements, then

#{p : fM(p) ≤ Y} � Y (r+1)/r.

4 The Abelian Case

We begin with Lemma 4 of [H].

Proposition 7 Suppose OK is a PID and contains a set of s admissible primes. Let r be

the rank of O×
K modulo torsion and define t = max{d ′ : ζd ′ ∈ K}. If r + s ≥ 3 and if

there are a and k ∈ Z satisfying

(1) gcd(a, k) = 1;

(2) gcd(a − 1, k) = t; and

(3) p ≡ a(mod k) implies there is a prime p of K with norm p,

then OK is Euclidean.
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We will use this proposition to establish the following:

Theorem 2 Let K/Q be abelian of degree n with OK a PID that contains s admissible

primes. Let r be the rank of the unit group. If r + s ≥ 3, then OK is Euclidean.

Proof Let t be as in Proposition 7. We count the number of primes p ≤ x such that

p splits completely in K and p does not split completely in Q(ζ`t ) for `|t . Let k be

the conductor of K. Since K/Q is abelian, this means that there is a set S of residue

classes mod k such that p splits completely in K if and only if p ≡ a(mod k) with

a ∈ S. Since Q(ζt ) is contained in K, we have a ≡ 1(mod t). We want to show that

there is an a in S satisfying the conditions of Proposition 7, namely gcd(a− 1, k) = t .

To do this, it suffices to show that there is a positive density of primes p which split

competely in K but not in Q(ζ`t ) for `|t for these primes will satisfy gcd(p−1, k) = t .

If we let K`t = KQ(ζ`t ), then the number of primes in our count is

∑

δ|t

µ(δ)π(Ktδ , x)

where π(L, x) is the number of primes p ≤ x splitting completely in L. Since the

degree of Ktδ over Q is nδ as is easily checked, we have by the Chebotarev density

theorem, that the quantity in question is

∼
∑

δ|t

µ(δ)
π(x)

nδ
=

π(x)

n

φ(t)

t
,

which is a positive proportion. This completes the proof.

5 Proof of the Main Theorem

We want to use Proposition 2 to show that OK is Euclidean. Let B1(x) count the num-

ber of primes π with norm less than x for which we have O×
K (mod π) = (OK/π)×.

It suffices to show that

B1(x) � x

log2 x
.

By Proposition 5, the number of primes π which split completely in K with p =

NK/Q (π) ≤ x having the property that any prime ` dividing p − 1 is either greater

than x1/2η−ε or a divisor of t , (where t , η are defined in Proposition 5) is

� x

log2 x
.

For p sufficiently large, we already know that t divides the order of the image of

O×
K mod π since the group of roots of unity injects into (OK/π)×. By virtue of the

constraint on p guaranteed by Proposition 5, no prime dividing t can divide the

index of the image. Thus, the only possible prime divisors of the index are greater
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than x1/2η−ε which means that if the index is not 1, then the size of the image is less

than x1−1/2η+ε. By Proposition 6, the number of such primes is

O(x(1−1/2η+ε)(1+1/r)) = o(x/ log2 x)

whenever η < (r + 1)/2. We apply Proposition 5. We determine η of Proposition 4 as

follows. Let G = Gal(K/Q) and let A be an abelian subgroup of G. Set d = [G : A].

If d ≤ 4, we can take η = 2 so we need r > 3. If d ≥ 4, we can take η = d − 2, and

we need d − 2 < (r + 1)/2 which means we need to ensure r > 2d − 5. This is the

case if G has an abelian subgroup of order e ≥ 4, since

r = r1 + r2 − 1 ≥ r1 + 2r2 − 2

2
=

n − 2

2
>

2n

e
− 5 = 2d − 5.

Thus, we may assume every prime divisor of |G| = n is ≤ 3. Hence, n = 2a3b. If

b ≥ 2, G has a subgroup of order 9 and again by the above argument we are done.

If a ≥ 2, we are also done. The only case left is if n divides 6. As the abelian case

was dealt with in the previous section, the only case to treat is the non-abelian case of

n = 6. But in this case, we have Artin’s conjecture on the holomorphy of non-abelian

L-series, so that we may take η = 2 in Proposition 4. Thus, r > 3 is allowed and the

proof is complete.
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