EXPERIMENT TO DETERMINE THE TEMPERATURE STRUCTURE IN THE SOLAR CHROMOSPHERE AND CORONA

C. R. NEGUS

Astrophysics Research Unit, Culham Laboratory, Abingdon, Berks., England

An experiment is in course of preparation at the Astrophysics Research Unit at Culham for flight on a Sun-pointing rocket. It is designed to determine the ionization temperature and electron density as a function of height in the temperature range of about 8×10^4 K to 3×10^6 K by measuring limb to disk intensity ratios of extreme ultraviolet emission lines in the 170 to 850 Å region. The work is an extension of current experiments in which normal-incidence spectrographs are used to determine the structure lower in the chromosphere-corona transition region.

The experiment employs three instruments each having a component lay-out as illustrated in Figure 1. A grazing-incidence mirror, consisting of a paraboloidal sec-

Fig. 1. Experiment to determine limb-disk line intensity ratios.

tion and a hyperboloidal section, forms a solar image on the entrance slit of a grazingincidence, grating spectrograph. The disk spectrum is recorded by two such instruments; one, fitted with an aluminium filter, covers the range 170 to 350 Å and the other, unfiltered, covers the 300 to 850 Å range. The limb spectrum is recorded by a single, unfiltered instrument; to maintain the solar limb on the entrance slit to a few arc-seconds accuracy the position of the double mirror is servo controlled. The geometrical slit width on all three instruments will be 10-15''.

The temperature gradient should be determined over a height range of $\sim 30''$. To determine the atmospheric structure it is necessary to know the transmission function

Space Science Reviews 13 (1972) 668–669. All Rights Reserved Copyright © 1972 by D. Reidel Publishing Company, Dordrecht-Holland of the optical system in the range 170–850 Å. This will be obtained from laboratory measurements of the mirror aberrations at suitable wavelengths and measurements of the in-flight pointing noise. A relative intensity calibration between the instruments, and an absolute intensity calibration of the limb-pointing instrument by the branching ratio method, will be done using a θ -pinch source.

DISCUSSION

B. S. Fraenkel: How much intensity is lost by the two mirrors?

C. R. Negus: We have not measured the reflection efficiency of our double mirror system, although this will be done before flight. At the shortest wavelength ($\lambda \simeq 150$ Å) we would expect to lose about 50 % of the energy from the two reflections, while at longer wavelengths it should be less.

S. R. Pottasch: When will this experiment be flown?

C. R. Negus: It is expected at present that the flight will take place in about 16 months time.

B. Woodgate: What is your detection system?

C. R. Negus: The limb and disk spectra will be recorded photographically.