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Matching simple modules of condensation algebras

Felix Noeske

Abstract

We revise the matching algorithm of Noeske (LMS J. Comput. Math. 11 (2008) 213–222) and
introduce a new approach via composition series to expedite the calculations. Furthermore, we
show how the matching algorithm may be applied in the more general and frequently occurring
setting that we are only given subalgebras of the condensed algebras which each contain the
separable algebra of one of their Wedderburn–Malcev decompositions.

1. Introduction

In [11], we aimed to provide an algorithmic solution to the following problem, called the
‘matching problem’: let A be a finite-dimensional algebra over a finite field F . Condensing an
A-module V with two different idempotents e and e′, leads to the problem that to compare the
composition series of V e and V e′, we need to match the composition factors of both modules.
In other words, if S is a composition factor of V with Se 6= 0, then just given the composition
factor Se of V e, we have to find the composition factor of V e′ isomorphic with Se′, or prove
that Se′ = 0.

The major obstacle of this task is that we usually cannot compute S explicitly due to
constraints on time and computational resources. In fact the whole idea of condensation
(see [12] for an introduction) is to forego computationally intractable calculations for an
A-module V by analysing the condensed module V e which is for suitably chosen e a much
smaller-dimensional eAe-module, where eAe is the condensed algebra.

The treatment of the matching problem outlined in [11] adheres to this fundamental
paradigm of condensation, but has two shortcomings: for one, while any match produced by
the method of the paper cited is a valid match, it is in general not as easy as stated in [11]
to prove that a match does not exist. To be precise, in [11, Lemma 2.2] the ‘if’ implication is
wrong, as the following example illustrates.

Example 1.1. Let A= F 2×2 be the full matrix ring over a field F , and let e be the
idempotent

[
1 0
0 0

]
. Then v := [0, 1] generates the simple A-module S := F 2, and we have Se 6= 0,

even though 0 = veA 6= vA.

Second, the matching algorithm [11, Algorithm 1] is difficult to apply to condensed algebras
owing to the generation problem (see, for example, [10]): to invoke it as stated in [11], we
need to have a computationally tractable generating set for the condensed algebras available.
In practice, we usually work with just a subalgebra C of eAe generated by a few elements of
eAe. To distinguish C from eAe, we call it the condensation algebra, as all computations are
done with respect to this algebra, that is we usually consider the restricted module V e↓C in
lieu of the eAe-module V e.

The main ingredient to tackle the matching problem successfully are local submodules of V .
Recall that a module is called local if it possesses a unique maximal submodule. If the simple
head of a local submodule is isomorphic to S, then we say that the module is S-local. The
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relevance of local submodules of V to determine structural properties of V has first been
demonstrated in [5], in which certain elements of A are introduced, so-called peakwords (see
[5, § 3]), which serve to provide generators for local submodules. For all further details on
peakwords and their properties, we refer the reader to [5].

Note that peakwords are defined with respect to a faithful A-module. But since any A-module
V is a faithful module for the homomorphic image of A under the representation it affords,
this is not an obstacle: in practice the algebra A is realised as a matrix algebra giving its
representation on V , so fixing V we only consider the image of A.

The paper is structured as follows: in § 2, we correct [11, Lemma 2.2] to Lemma 2.2.
Furthermore, we generalise [11, Lemmas 2.1 and 2.3], and revise the results of [11] to encompass
pathological examples such as Example 1.1. In the process, we revisit the original matching
algorithm and improve its runtime considerably by making use of prior computed composition
series of V e, respectively V e′. With their help, we can replace the costly MeatAxe (see
[3, Section 7.4]) calculations to construct matrix representations of local submodules by a
straightforward membership test of a vector in a subspace. In § 3 we provide a generalisation of
the matching algorithm developed in § 2. The algorithm for condensation algebras (Algorithm 4)
assumes that these algebras are sufficiently large subalgebras of the condensed algebras such
that all simple modules of the latter restrict irreducibly to the former, and no two non-
isomorphic simple modules are isomorphic after restriction. In other words, the condensation
algebras have the ‘same’ simple modules as their enveloping condensed algebras, but we allow
them to have less glue. Such condensation algebras are a common sight in the Modular Atlas
project [9], so that Algorithm 4 has immediate applications (see, for example, [2]). Section 4 is
devoted to illustrating how the matching algorithms proposed in this paper fare when applied
to practical examples. We consider tensor products of simple modules for the sporadic simple
Harada–Norton group, and discuss how our improvements shorten the expected running times
in comparison with the original matching algorithm of [11].

Notation-wise, throughout the paper A is a finite-dimensional algebra over a finite field, V
is a finite-dimensional, faithful A-module, S is a simple A-module and e ∈A an idempotent
with Se 6= 0. Furthermore, e′ ∈A is another idempotent.

2. Match making

This section mimics [11, § 2], but generalises the older results. In particular, the new Lemma 2.2
incorporates Example 1.1 into our matching framework. We formulate an improved matching
algorithm with Algorithm 3 to match Se to a composition factor of V e′, and detail the steps
necessary to overcome the problems posed by examples such as Example 1.1. As was stated
in [11] and we illustrate in § 4, in practical cases the runtime of the old algorithm is dominated
by the MeatAxe computations involving the construction of an Se′-local submodule of V e′ and
the subsequent calculations needed to determine the isomorphism type of its head. Here we
are able to provide a new approach which precludes these costly computations.

Lemma 2.1. Let f ∈ eAe be an idempotent. Then f is an S-primitive idempotent in A if and
only if it is an Se-primitive idempotent in eAe. Furthermore, if w ∈ V e such that it generates
an Se-local eAe-submodule of V e, then w also generates an S-local A-submodule of V .

Proof. The first claim is immediate: as f ∈ eAe we have ef = fe= f , so fAf is local if and
only if feAef is local, and since Sf = Sef the idempotent f is S-primitive in A if and only if
it is Se-primitive in eAe.

If weAe is Se-local there is an Se-primitive idempotent f ∈ eAe such that weAe= veAe
for some v ∈ V ef = V f . As we= w this implies w ∈ vA. By the first claim, vA is an S-local
submodule of V . Suppose that w ∈ rad(vA). Then wAe is a proper submodule of vAe, as Se 6= 0
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and condensation is exact. But we have wAe= weAe= veAe= vAe, as v ∈ V e. Therefore,
wA= vA and wA is S-local. 2

Lemma 2.2. Let v ∈ V such that vA is S-local, and e′ ∈A an idempotent. Then there is a
w ∈ vA such that we′A= vA if and only if Se′ 6= 0.

Proof. The A-module generated by v + rad vA is isomorphic to S. Therefore it is immediate
that if we′A= vA then the A-module generated by we′ + rad we′A= we′ + rad vA is also
isomorphic to S, and hence Se′ 6= 0. For the converse observe that if e′ does not annihilate
S, then we′ /∈ rad wA for some generator w of vA, and thus we′A= vA. 2

Lemma 2.3. Let e′ ∈A be an idempotent and v ∈ V e such that veAe is an Se-local module.
There is a w ∈ veAe such that we′eAe= veAe, if and only if See′e 6= 0. If See′e 6= 0, then
Se′ 6= 0 and we′Ae′ is an Se′-local module.

Proof. Let we′eAe= veAe. Then weAe= veAe, as by w ∈ V e we have we′eAe= wee′eAe,
so that veAe= we′eAe is contained in weAe which by the hypothesis is a submodule of
veAe. Consequently, w ∈ weAe= veAe⊆ vA and v ∈ veAe= weAe⊆ wA, such that wA= vA,
and vA is S-local by Lemma 2.1. In particular, we have we′ ∈ wA= vA. Suppose that
we′ ∈ rad(vA). Then we′A is a proper submodule of vA, and applying e we obtain the
inequality (vA)e
 (we′A)e≥ we′eAe= veAe= vAe, a contradiction. Hence, we′A= vA is an
S-local module. Now, the hypothesis we′eAe= veAe also gives that wee′e /∈ rad(veAe), that is
(w + rad(veAe)) · ee′e 6= 0, so that See′e 6= 0. Obviously, this implies that e′ does not annihilate
S. So we′Ae′ is Se′-local, as claimed. For the converse observe that by See′e 6= 0 there is a
w ∈ veAe such that wee′e= we′e /∈ rad(veAe). Hence, we′eAe= veAe, as claimed. 2

In order to match a composition factor Se of V e with Lemma 2.3 to a composition factor of
V e′, we need to find a generator of an Se-local submodule L such that its image under e′e still
generates the Se-local L. As Example 1.1 shows, we may need to test a full basis for the simple
head of L to this effect, that is if we are given a basis for the unique maximal submodule of L,
and extend this basis to a basis of L, then all of the basis vectors not lying in rad L will need
to be tested.

The method to compute such a complementary basis holds in a broader context, so that we
assume e= 1 for the moment. The starting point is an ascending composition series

0 = U0 � U1 � · · ·� Ul = V, (C)

and a basis BC of V which is adapted to this composition series, that is BC is obtained by
successively extending a basis Bi−1 of Ui−1 to a basis of Ui for i= 1, . . . , l. A peakword ω ∈A
gives rise to the Fitting decomposition V = kerV (ω∞)⊕ imV (ω∞) (we denote by ω∞ a suitably
large power of ω such that its kernel is maximal) relative to the endomorphism of V induced
by ω (see [5, § 3]). We define πkerV (ω∞) to be the vector space projection of V onto the direct
summand kerV (ω∞).

Now Algorithm 1 produces the set of generators sought: the sub-basis Bi of BC chosen in
line 1 spans a submodule of V which contains S exactly once in its head. Therefore, all v′

projected in line 3 lie in the same one-dimensional subspace of kerV (ω∞), and a non-zero v′

generates an S-local submodule of V . By our choice, v′A≤ Ui and rad(v′A)≤ Ui−1, such that
a basis for the radical of v′A is contained in Bi−1. Line 5 is easily achieved using the MeatAxe
by spinning v′ modulo the basis Bi−1 (see [4, Algorithm 2.1.19] or [3, p. 231]). As a basis
of rad(v′A) is contained in Bi−1, this way we obtain its extension to v′A, giving a full set of
representatives of a basis for the factor v′A/ rad(v′A) in the process.

Applying Algorithm 1 yields an additional benefit. By working with an ascending
composition series of V , we have some control over the size of the S-local submodule whose
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Algorithm 1 Computing generators of an S-local submodule
Input: The kernel kerV (ω∞) of an S-peakword ω, a basis BC adapted to a composition

series (C).
Output: A full set of representatives BS of a basis of the radical factor of an S-local submodule

of V .
1: Choose a member Ui of (C) of minimal dimension such that Ui/Ui−1

∼= S.
2: repeat
3: Compute v′ := πker ω∞ (v) for v ∈ Bi \ Bi−1

4: until v′ 6= 0
5: Extend Bi−1 to a basis B′ of v′A+ Ui−1.
6: return BS := B′ \ Bi−1

generators we determine: in choosing Ui minimal in line 1 we attempt to choose the S-local
module contained therein as small as possible.

The problem of projecting onto kerV (ω∞) in line 3 of Algorithm 1 can also be solved with
the MeatAxe, and the program clean in particular (see [4, Algorithm 2.1.13] or [3, p. 223]).
Given a semi-echelonised basis of a subspace W of a vector space V and a vector v ∈ V , the
program clean performs Gaussian elimination on v with respect to the pivots of the semi-
echelonised basis. In particular, clean can test whether v lies in W , as in this case v will be
reduced to the zero vector, and can then also express v in the given basis of W by returning
the vector of coefficients used in the Gaussian elimination. Given V = U ⊕W a decomposition
into direct sums of vector spaces, we can project v onto U by repeated calls of clean as stated
in Algorithm 2. The correctness of Algorithm 2 follows immediately from the fact that the
coefficient vector κBU

(πU (v)) expressing πU (v) with respect to the basis BU is identical to the
coefficient vector κB′

U
(v′) expressing the cleaned v with respect to the cleaned basis B′U .

Algorithm 2 Projecting onto a direct summand
Input: Semi-echelonised bases BU = {u1, . . . , ud} of U and BW of W with V = U ⊕W , a

vector v ∈ V .
Output: The projection of v onto U , i.e. πU (v).

1: Clean BU with BW to obtain B′U .
2: Clean v with BW to obtain v′.
3: Clean v′ with B′U to obtain κ= κB′

U
(v′).

4: Return
∑d

i=1 κiui.

With Algorithm 3 we formulate a revised version of the original matching algorithm [11,
Algorithm 1] which addresses the need to consider more than just one generator of an Se-local
submodule, if we are trying to match Se. To prepare the input for Algorithm 3 a precomputation
finds an Se-peakword ω ∈ eAe (see [5] for details on a peakword search) and semi-echelonised
bases for the direct summands of the fitting decomposition V e= kerV e(ω∞)⊕ imV e(ω∞) it
induces. Then a run of Algorithm 1 provides us with the input basis for our matching algorithm.

The steps of Algorithm 3 given in the lines 2–5 mirror the approach of [11, Algorithm 1]: we
zig-zag between the two module categories of eAe and e′Ae′ by projecting a generator v of our
implicitly chosen Se-local submodule first with e′ onto V e′ and then with e back onto V e. Once
we obtain ve′e ∈ veAe in line 5, we have to check whether ve′e still generates veAe. Instead
of determining the dimension of the eAe-module ve′eAe, as is suggested in [11, Algorithm 1],
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Algorithm 3 Matching a composition factor
Input: A complementary basis BSe of generators of an Se-local submodule of V e output by

Algorithm 1, a database DB of representatives of the isomorphism types of composition
factors of V e′.

Output: The Se′ in DB which matches Se, or fail if the match fails.
1: for v ∈ BSe do
2: Embed v into V .
3: Project v onto V e′, obtaining ve′ ∈ V e′.
4: Embed ve′ into V .
5: Project ve′ onto V e, giving ve′e ∈ V e.
6: if ve′e /∈ rad(veAe) then
7: Determine the module Se′ in DB isomorphic to the head of ve′Ae′.
8: return Se′.
9: end if

10: end for
11: return fail.

we can achieve the same effect more efficiently as follows: recall that in order to produce BSe

we have worked with a basis of V e which is adapted to a composition series (C) found by the
MeatAxe. As we have presented in Algorithm 1, and using the notation in place, we have veAe
contained in Ui and rad(veAe) contained in Ui−1 for some i ∈ {1, . . . , l}. Therefore, cleaning
ve′e with the sub-basis Bi−1 answers this question. The vector ve′e lies in the radical of veAe
if and only if the cleaned vector is zero.

The original algorithm next determined the head of ve′Ae′ as detailed in [8], and tested it for
isomorphism with the entries of a database of isomorphism types of composition factors of V e′.
However, we can determine the head of ve′Ae′ with much less effort: consider more generally
an A-module V with composition factor S, and the composition series (C) of V . Then given
an S-local submodule L of V , there is a minimal i ∈ {1, . . . , l} such that L≤ Ui. As the head
of L is isomorphic to S, we have Ui/Ui−1

∼= S. So, taking a basis adapted to a composition
series of V e′, allows us to determine the isomorphism type of the simple head of ve′A′e′ by
working up along the ascending composition series of V e′ and cleaning ve′ in each step. Once
ve′ reduces to zero, we can immediately derive the isomorphism type of the head of ve′Ae′

from our current position in the composition series.
If the algorithm has run through all vectors of the basis BSe, and we were unable to find

a match, it returns fail. This can happen for two reasons: there is no match for the simple
module considered, because the idempotent e′ annihilates S. Or we also have Se′ 6= 0, but
See′e= 0, that is our test sample of vectors used to find a match is too small. We are unable to
detect, for example, whether e and e′ act orthogonally on S in the sense that 0 6= Se⊆ S(1− e′)
(or, alternatively, 0 6= Se′ ⊆ S(1− e)).

Unfortunately, our approach renders these two cases indistinguishable: by adhering to the
paradigm of condensation to avoid costly and usually infeasible computations in the original
module V , the only vectors which we project with e′ lie in V e. Hence, if ee′e annihilates Se,
then we cannot find a match of Se among the composition factors of V e′, even though it might
exist. In fact, as Example 1.1 indicates, to decide ultimately whether or not Se′ = 0, we would
have to determine a basis for the head of an S-local submodule of V , and project it entirely
with e′. Of course, this renders the usage of condensation ad absurdum.

A couple of remarks on the implementation and behaviour of Algorithm 3 are in order.
Experience shows that in applications such as the Modular Atlas project [9] in whose context
the matching problem arose, the original algorithm [11, Algorithm 1] performs very well.
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We found that it is sufficient to just consider a single element of kerV e(ω) to produce a valid
match. So in order to expedite the matching process, an implementation of Algorithm 3 should
first follow the strategy of [11, Algorithm 1], and only if a match cannot be made, follow up
by producing and checking the basis BSe. Of course, the improvements we have made which
allow for a quicker calculation in lines 6 and 7 of Algorithm 3 should also be used if we are
following the strategy of [11, Algorithm 1]. If we are unable to find a match because See′e= 0
it may still be that Se′ee′ 6= 0, so that if fail is returned we can rerun the algorithm on the
unmatched composition factors of V e′ to find a match in V e. If this still does not produce a
match we have to use further information such as the multiplicities of the composition factors,
for example, to prove Se′ = 0 or match Se.

3. Matching in condensation algebras

In practice, it is difficult to apply the matching algorithm, as we seldom have a generating
system for the condensed algebra at hand, but instead are forced to work with the condensation
algebra. Recall that given an algebra A and an idempotent e ∈A, we call eAe the condensed
algebra of A, and given a1, . . . , ar ∈A we call C := 〈ea1e, . . . , eare〉 the condensation algebra,
that is the unital subalgebra of eAe generated by the condensed elements.

Of course, in general C differs greatly from eAe to the extent that little to no information
regarding V or V e may be gained by considering V e↓C . In practice, however, experience shows
that usually a small set of elements chosen arbitrarily in eAe gives rise to a condensation algebra
which if not equal to the condensed algebra contains the separable algebra of a Wedderburn–
Malcev decomposition of eAe (see [1, Thoerem 72.19]). In other words, C is sufficiently large in
the sense that all simple eAe-modules restrict irreducibly to C, and two non-isomorphic simple
eAe modules remain non-isomorphic after restriction.

In fact, an inert generating E set as stated in [10, Theorem 2.7], which is too large to be
of immediate computational use, yields such a condensation algebra: we choose a small subset
E ′ ⊆ E and let C := 〈E ′〉. Then we calculate an ascending composition series of V e↓C with the
MeatAxe, and record a basis of V e which exhibits the composition series found: with respect to
this basis matrices giving the action of elements of C on V e are block diagonal lower triangular
such that the blocks are matrix representations of the composition factors in standard basis,
that is isomorphic composition factors give identical block matrices. Then to verify that C
is sufficiently large we determine the action of the remaining generators of eAe on V e in
the basis computed, and check that the block-diagonal structure is preserved, as well as that
non-isomorphic composition factors remain non-isomorphic.

Therefore, we assume that our condensation algebras contain the separable algebra of a
Wedderburn–Malcev decomposition of the respective condensed algebras. The purpose of this
section is to formulate a matching algorithm for such condensation algebras. We maintain our
general setup and let T := Se↓C be the simple C-module corresponding to Se via restriction.
Furthermore, let C′ ≤ e′Ae′ be a sufficiently large condensation algebra.

We begin by introducing the theoretical underpinning which allows us to refer to our results
on condensed algebras from § 2. As restriction from eAe to C is exact, the first statement is
immediate.

Lemma 3.1. Let veAe be an Se-local module for some simple A-module S. Then if vC is a
local module, it is T -local.

We obtain the following analogy to Lemma 2.1.

Lemma 3.2. Let f ∈ C be an idempotent. Then f is T -primitive if and only if it is
Se-primitive as an idempotent in eAe. Hence, if ω ∈ C is a T -peakword it is an Se-peakword
in A.
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Proof. The first claim follows from adjointness: for any simple eAe-module S′e we have
HomeAe(feAe, S′e)∼= HomC(fC, T ′) if T ′ is the simple C-module isomorphic to S′e↓C . So by
our hypothesis f is T -primitive if and only if it is Se-primitive in eAe. By [5, Theorem 3.4],
the stable kernel of a T -peakword on a C-module U is Uf for some T -primitive idempotent
f ∈ C, which by the preceding is Se-primitive as an idempotent in eAe. 2

In order for Algorithm 3 to work with condensation algebras, we need to replace the equality
condition of Lemma 2.3 which is based on condensed algebras. Since condensation algebras are
in general proper subalgebras of the condensed algebras, we have to take into account that the
element ee′e ∈ eAe maps v to an element w := ve′e ∈ veAe not necessarily lying in vC. Since
we have a composition series of V e↓C at our disposal, we exploit the information it provides.

To this end let 0 = U0 < U1 < . . . < Ul = V e↓C be a composition series of C-modules.
Furthermore, let i ∈ {1, . . . , l} be minimal such that Ui/Ui−1

∼= T . Take v ∈ Ui such that vC
is a T -local submodule by using Algorithm 2 to project Ui onto a T -peakword kernel. We
now work up along the composition series and clean w with a basis for every submodule to
determine the submodule Uj , j ∈ {1, . . . , l}, containing w. In this notation three possible cases
arise.

Remark 3.3. (1) If w ∈ Uj for some j < i, then by the minimality of i the C-module wC
has no composition factor isomorphic to T , so in particular there is no homomorphism mapping
wC onto T . By adjointness, Se does not appear in the head of wC ⊗C eAe. Hence, weAe cannot
be Se-local, so w ∈ rad(veAe).

(2) If w ∈ Ui, but not in Ui−1, then wC maps onto T . Let f ∈ C be a T -primitive idempotent.
There is a c ∈ C such that the element vcf generates the simple fCf -module Uif , and therefore
wc′f = vcf for some c′ ∈ C. From this vC = vcfC ≤ wC follows, so veAe= weAe.

(3) If w ∈ Uj for some j > i, then vC may be a submodule of wC, giving veAe= weAe.
Otherwise vC � wC and wC � vC as w /∈ Ui. We can check whether vC ≤ wC by the following:
we spin up w modulo Ui−1 and clean v with Ui−1 + wC. This yields an exhaustive search for
elements in Ui \ Ui−1. If we find such an element we are done, as this generates a submodule
of wC containing vC.

Remark 3.3 enables us to verify veAe= weAe by testing for the sufficient condition whether
or not vC is a submodule of wC without computing an explicit basis for either vC or wC.
Furthermore, since we allow C to be a proper subalgebra of eAe this condition is also less
restrictive than to impose the condition vC = wC. Note that the special treatment of case (3)
is necessary, as wC may not be a local module. This is in contrast to the uniform approach
just entailing successive cleanings we were able to use for condensed algebras in § 2. If we find
in case (3) that neither vC ≤ wC nor wC ≤ vC, then the information provided is inconclusive,
as C differs too greatly from eAe.

We now propose Algorithm 4 to match a composition factor of V e↓C to a composition factor
of V e↓C′ . The strategy employed is the same as in Algorithm 3, only this time we are calculating
within C- and C′-modules. The difference to Algorithm 3 occurs in lines 6–18: by Remark 3.3
the condition if true gives veAe= ve′eAe, which by Lemma 2.3 gives that Se′ 6= 0, and therefore
also T ′ := Se′↓C′ 6= 0. Also, ve′Ae′ is an Se′-local submodule of V e′, and by Lemma 3.1, if ve′C′
is a local module, then it is T ′-local. In this case in lines 7–10 we can match T to T ′. But,
owing to the fact that ve′C′ may not be a local module, we cannot simply clean ve′ using a
C′-composition series of V e′↓C′ to determine the head of ve′C′. So in line 9 of Algorithm 4 we
need to construct the module ve′C′ and compute its head as detailed in [8].

A smooth run of this matching process may be hindered in two ways: if we arrive in the
exceptional case (3) of Remark 3.3 and find vC � wC and wC � vC, we need to restart the
matching program with additional generators for C. Also, in the scenario that ve′C′ is not
local, we have found that C′ 6= e′Ae′, and need to provide additional generators for C′.
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Algorithm 4 Matching a composition factor for condensation algebras
Input: A complementary basis BT of generators of a T -local submodule of V e↓C output by

Algorithm 1, a database DB of representatives of the isomorphism types of composition
factors of V e′↓C′ .

Output: The T ′ in DB which matches T , or fail if the match fails.
1: for v ∈ BT do
2: Embed v into V .
3: Project v onto V e′, obtaining ve′ ∈ V e′.
4: Embed ve′ into V .
5: Project ve′ onto V e, giving ve′e ∈ V e.
6: if vC ≤ ve′eC then
7: Compute the head H of ve′C′.
8: if H is simple then
9: Determine the module T ′ in DB isomorphic with H.

10: return T ′.
11: else
12: print More generators for C′ are needed.
13: return fail
14: end if
15: else
16: print More generators for C are needed.
17: return fail
18: end if
19: end for
20: return fail.

4. Practical performance

Condensation finds a major application in computational representation theory of finite groups
and in the Modular Atlas project [9] in particular. For this reason we focus on the condensation
of tensor products V ⊗F W of modules V and W for some group algebra A= FG, where G is a
finite group. There are efficient algorithms available to achieve this goal for specific idempotents
e and e′ (see [6, 7]), that is algorithms which determine the action of an element in eAe on
(V ⊗F W )e while adhering to the paradigm of condensation to avoid explicit calculations in
V ⊗F W . In particular, these algorithms entail methods to project any vector v ∈ V ⊗F W
onto ve without evaluating e, and hence facilitate projection with e and e′ at the heart of
our matching algorithm. As for these efficient projections the modules have to be given with
respect to a special basis of V ⊗F W , we need to be able to change these bases from one to
the other before projection is possible. By the very nature of this basis change, we are forced
to perform calculations in the uncondensed module and cannot conform to the paradigm of
condensation. In our case of tensor products, however, we are in a benign situation: using
the natural isomorphism of V ⊗F W and HomF (V ∗, W ) the necessary basis changes can be
realised as basis changes in the tensor factors. Thus, working under the basic assumption that
the tensor factors are computationally manageable the same holds true for the basis changes.
See also [11] for details how this fundamental problem of our algorithm may be circumvented
for permutation modules.

We choose not to discuss the peakword search part of the precomputations necessary to
enable our matching algorithms. Current peakword search methods are randomised in the
sense that a word generator produces pseudo-random elements in the algebra which are then
checked for peakword properties. Therefore different runs of a peakword search may produce
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different peakwords and the outcome depends very much on the strategy of the word generator
used. Thus, while a peakword search may contribute substantially to the total running time of
the matching process, we only consider the computations in Algorithms 3 and 4 in comparison
to their corresponding steps in [11, Algorithm 1].

We return to our old example from [11]: the tensor product V := 1331 ⊗ 87781 for the
simple sporadic Harada–Norton group in characteristic 3, so let G= HN and F =GF (9). The
idempotents e and e′ used are the trace idempotents of the subgroups 23.22.26 and 52.5.52,
which are normal in the ninth, respectively tenth, maximal subgroup of G (see [2] for details).
Condensation gives a 567-dimensional eFGe module V e which possesses the composition
factors

11, 11, 11, 11, 11, 12, 8, 8, 9, 9, 261, 261, 262, 138, 138, 173

and a 438-dimension e′FGe′-module V e′ with composition factors

1′, 3′, 3′, 7′, 7′, 8′1, 8
′
1, 8
′
1, 8
′
2, 8
′
2, 8
′
3, 8
′
3, 8
′
3, 8
′
4, 16′, 16′, 16′, 16′, 89′, 96′, 96′.

Running the matching algorithms on a modern (at the time of writing) machine with an Intel
Core i7 870 processor at 2.93 GHz finds the matches

12↔ 1′, 8↔ 7′, 261↔ 8′2, 262↔ 8′4, 138↔ 96′, 173↔ 89′.

Using the strategy of [11, Algorithm 1] augmented with a computation of a set of generators for
the local modules occurring (Algorithm 1) this takes about 5–7.5 s either way. Most of the time
is spent on performing the basis changes to facilitate an easy projection with the idempotents.
This makes up for about 3.5 s of running time for one match. The remaining time goes into the
standard MeatAxe calculations within the condensed modules, namely determining dimensions
of submodules, computing the heads of local modules, and their matrix representations. The
calculation of an exhaustive set of generators for the chosen local submodules is almost
negligible: even for the larger composition factors it clocks in at most 3/10 of a second. However,
in the case that we cannot find a match (and for which we know that a match does not exist,
see [2]), the algorithm loops over as many generators for a local module as is given by the
dimension of its simple head. For each of these vectors basis changes are conducted, thus
giving us the output fail after about d× 3.5 s, where d is the dimension of the composition
factor. Applying the algorithms proposed in this paper, eliminates one spinning procedure in
the case of condensation algebras, and even all further head and action calculations in the
case that we know to work with the full condensed algebras. In the latter case the algorithm’s
running time is almost exclusively spent on the basis changes.

The dominance of the basis changes in the matching calculation of the preceding example
is misleading: the condensations of the tensor product 1331 × 87781 give comparatively low-
dimensional modules (438, respectively 567) in relation to the dimension of one of the
composition factors (8778). Hence, it is not surprising that calculations within the condensed
modules proceed much quicker than calculations within the tensor factors. However, the future
applications of the matching algorithms in the Modular Atlas project cannot be expected to
follow this example. In fact, as condensation is applied to push the boundary of the possible
in computational representation theory, the goal is to invoke a matching algorithm for a large

Table 1. Comparison of matching times.

S Gens eAe old eAe C

10 6.5 17 208.8 22.8 132.1
34 13.1 163.0 29.4 139.4

231 51.1 716.4 67.5 574.0
702 94.4 2 348.5 110.7 1 666.9

1 333 596.5 4 619.0 612.9 3 795.0
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condensed tensor product whose dimension exceeds the dimension of its factors. In this case,
the calculations conducted in the condensed modules become the bottleneck of matching, so
our improvements aim to mitigate this problem.

For a demonstration, we consider the tensor product V := 3344⊗ 3344 for G in
characteristic 3. As a condensation subgroup we choose a subgroup of index 2 in the normal
subgroup 23.22.26 of the ninth maximal subgroup of G. Now we obtain a condensed module
V e of dimension 11 248. For illustrative purposes, we match from V e to itself. Since the basis
changes in the projection steps of the matching process become trivial this way, we conduct
arbitrary basis changes with random matrices in their place to still obtain a good estimate of
the general running time. Thus, the time spent on changing bases to project one vector back
and forth is in the worst case about 15.8 s in this example.

We exemplify the different algorithms’ running times by matching the composition factors
10, 34, 231, 702, and 1333 of V e. The computation times needed in seconds are given in Table 1.
In this table the column labelled by ‘Gens’ gives the time taken to compute a set of generators
for an Se-local module, the column ‘eAe old’ gives the times of the match using the strategy
of [11, Algorithm 1], the column ‘eAe’ gives the running time of Algorithm 3 and the column
‘C’ gives the times of Algorithm 4.

From Table 1 we see that as the dimension of the composition factor to be matched increases,
the proportion of time the algorithms spend on performing basis changes is reduced. In fact,
while basis changes are performed at the constant time of about 16 s, the remaining calculations
quickly dominate the overall running time. If we are working with condensed algebras, so that
Algorithm 3 may be applied, we avoid the majority of the MeatAxe calculations in the condensed
module, explaining the speed-up we see when comparing columns ‘eAe old’ and ‘eAe’. Not
having full condensed algebras, but only condensation algebras, allows us to avoid some of the
calculations performed in the old algorithm. As the table indicates, these savings will become
more substantial as the dimension of the composition factors and also the condensed module
increases.

Note that not only the size of the composition factors contributes to the overall running
time, but also the structure of the module as a whole: if the matching of a composition factor
is enabled through a large local submodule a long running time will reflect this. The excessively
long time the original algorithm spends in matching 10 exhibits this fact, and also demonstrates
the benefit of our new approach that we choose a local submodule of small dimension via a
composition series (see Algorithm 1). There are 10 occurrences of 10 as a factor in a composition
series of V e, and the old algorithm simply takes the first vector in the kernel of a peakword
for 10. As Table 1 shows this leads to a 10-local submodule which is larger than necessary and
therefore increases the duration of all subsequent calculations drastically.

Acknowledgement. The author is indebted to Jürgen Müller for bringing Example 1.1 to
his attention.
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