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Diametrically Maximal and Constant
Width Sets in Banach Spaces

Dedicated to the memory of Simon Fitzpatrick

J. P. Moreno, P. L. Papini, and R. R. Phelps

Abstract. We characterize diametrically maximal and constant width sets in C(K), where K is any

compact Hausdorff space. These results are applied to prove that the sum of two diametrically max-

imal sets needs not be diametrically maximal, thus solving a question raised in a paper by Groemer.

A characterization of diametrically maximal sets in ℓ3

1
is also given, providing a negative answer to

Groemer’s problem in finite dimensional spaces. We characterize constant width sets in c0(I), for ev-

ery I, and then we establish the connections between the Jung constant of a Banach space and the

existence of constant width sets with empty interior. Porosity properties of families of sets of constant

width and rotundity properties of diametrically maximal sets are also investigated. Finally, we present

some results concerning non-reflexive and Hilbert spaces.

1 Introduction

Most books and surveys on convexity devote special chapters to convex bodies of
constant width. The existence of such sets has been known for a long time, certainly
since the time of Euler, and the literature concerning finite-dimensional sets of con-

stant width is extensive. For papers before 1983, for instance, the reader can see the
more than 260 items cited in the authoritative survey article by Chakerian and Groe-
mer [4]. The survey by Heil and Martini [14] contains a few additions and a com-
plete account up to 1993. The related concept of diametrically maximal sets (also

known as complete sets) was introduced at the beginning of last century by Meissner.
Though both notions are equivalent in finite dimensional Euclidean spaces, Eggle-
ston showed in his fundamental paper [8] that, even in finite dimensional spaces,
diametrically maximal sets need not have constant width. He also gave one of the

most useful characterizations of diametrically maximal sets, namely the spherical in-

tersection property, later developed by Sallee [24, 25] and others. For recent results
on this topic, the reader is referred to the survey of Martini and Swanepoel [18]. It
was only in the mid-1980s that the first papers dealing with the subject in the more

general infinite dimensional setting appeared. Berhends and Harmand [3] proved,
among other things, that Banach spaces containing a nontrivial pseudoball (a partic-
ular case of a constant width set) necessarily contains a copy of c0. Berhends [2], Payá

Received by the editors July 9, 2004.
The first autor was partially supported by the DGICYT project BFM 2003-06420 and is grateful to

GNAMPA for supporting his stay at Bologna university in the period this work was completed. The second
author is partially supported by GNAMPA-INDAM

AMS subject classification: 52A05, 46B20.
c©Canadian Mathematical Society 2006.

820

https://doi.org/10.4153/CJM-2006-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-033-1


Constant Width Sets in Banach Spaces 821

and Rodriguez-Palacios [21] and the latter author [22, 23] pursued the study of con-
stant width sets and their relation to M-ideals. However, in spite of these pioneering

works, we are quite far from understanding all the close connections between these
notions and the geometry of Banach spaces. Stability, rotundity and porosity prop-
erties of constant width and diametrically maximal sets — some of the questions
we are concerned with in this paper are natural both for the finite and the infinite

dimensional settings.

Our paper is organized as follows. Section 2 is devoted to definitions and basic re-
sults that will be used later, sometimes without explicit mention. In Section 3 we deal
with the problem of constant width sets with empty interior, discussing the connec-

tions with the Jung constant. We characterize diametrically maximal and constant
width sets in c0(I) endowed with the usual norm. Section 4 is devoted to the study of
these concepts in C(K), where K is a compact Hausdorff space, endowed with the sup
norm. We prove that the only convex sets of constant width in these spaces are points

and balls. We characterize diametrically maximal sets and prove that this family is
not closed under sums, thus answering a question of Groemer [13]. In Section 5 we
characterize the diametrically maximal sets of ℓ3

1 (the 3-dimensional space endowed
with the ℓ1 norm) to give a negative answer to Groemer’s question in the finite di-

mensional setting. We prove, however, that the sum of a diametrically maximal set
in ℓ3

1 and a constant width set is again diametrically maximal. This result does not
hold in general, as we show with an (infinite dimensional) example. In Section 6, we
are concerned with the porosity properties of the family of constant width sets in the

case that it is different from the family of all diametrically maximal sets. Section 7
is devoted to rotundity properties of diametrically maximal sets. We prove that they
are uniformly convex when the space is uniformly convex. The last section contains
some final remarks and open questions.

2 Definitions and Basic Results

A finite dimensional bounded closed convex set C is said to be of constant width λ
if the distance between any two parallel supporting hyperplanes of C equals λ. In
an infinite dimensional Banach space X with unit ball B, the definition takes the
following form: for every f ∈ X∗, ‖ f ‖ = 1, we have

(2.1) sup f (C) − inf f (C) = λ.

Note that (2.1) is the same as saying that sup f (C −C) = λ for all such f . The latter
form would lead one to suspect that C−C must be the ball λB. This is indeed the case
in finite dimensions, and it is almost the case in infinite dimensions. Namely, Payá
and Rodriguez-Palacios have shown the following [21]: suppose that C is a bounded

closed convex set of positive diameter λ = sup{‖x − y‖ : x, y ∈ C}; then the
following are equivalent:

(i) C −C is dense in the ball λB,
(ii) C −C contains the interior of λB,
(iii) C is of constant width λ.
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This elementary result is a bit deeper than it looks; the proof of the implication “(i)
implies (ii)” utilizes some of the same machinery used to prove the closed graph

theorem. The above proposition almost shows that a set C has constant width 1 if
and only if the unit ball can be decomposed in the form B = C −C . Of course, if C is
compact (e.g., if X is finite dimensional), then C is of constant width 1 (if and) only
if C −C = B, a classical result. More generally, this is the case

(a) if X is reflexive, since C −C is closed in that case;
(b) if X is any dual space.

(Indeed, a constant width set C is weak∗ compact since, as will be seen below, it is
an intersection of balls, therefore C − C is weak∗ compact hence norm closed.) It

is worth remarking that when X is not reflexive, there is always an equivalent norm
‖ · ‖ and a constant width set C (under the new norm) such that C −C is not closed.
Obviously, if X is a dual space, then ‖ · ‖ cannot be a dual norm. We postpone the
proof of this fact to the last section.

In Euclidean space, there are a number of notions equivalent to constant width,
the most important being the notion of diametrically maximal set. Denoting the
diameter of a bounded set C by diam C , we say that C is diametrically maximal if

diam
(

C ∪ {x}
)
> diam C

for every x /∈ C . This concept appears in the literature under different names: com-
plete, diametrically complete, entire. It is a simple application of the separation the-
orem that in every Banach space X, sets of constant width are diametrically maximal.

Eggleston [8] proved that the converse is valid when dim X = 2 and that it fails for
certain spaces of dim X = 3. Using standard arguments from Banach space theory
it can be proved that, actually, dim X = 2 if and only if, for every equivalent norm,
diametrically maximal sets have constant width. (We include the proof of this result

in the last section.) The difference between sets of constant width and diametrically
maximal sets is also sharply drawn in Example 4.6, where it is shown that there exists
a diametrically maximal set C such that C −C is contained in a closed hyperplane. If
this set were of constant width, C −C would contain a ball.

Eggleston also gave a fundamental characterization: a set C with diam C = d is
diametrically maximal if and only if it has the spherical intersection property, that is,
if and only if

C =

⋂

x∈C

(x + dB),

a fact that is readily verified in any normed linear space. It is interesting to note that if

there is F ⊂ C such that
⋂

x∈F(x + dB) = C and diam C = d, then C is diametrically
maximal. Indeed, if y /∈

⋂
x∈F(x + dB), there is x ∈ F ⊂ C such that ‖x − y‖ > d, so

diam(C ∪ {y}) > d.
A reader who has never come across these concepts may wonder why a set of con-

stant width is not a ball. The answer is easy: it is a ball provided it is (centrally)
symmetric. More generally, a diametrically maximal set is a ball if (and only if) it

is symmetric. For the sake of completeness, we will prove the sufficiency. Let C

be a diametrically maximal set and assume that it is symmetric with respect to the
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origin (otherwise we consider a translation carrying the center of symmetry to the
origin). Consider r = sup{‖x‖ : x ∈ C}. Clearly, C ⊂ rB and we just need to

check that the inclusion is in fact an equality. Since for every n ∈ N there is xn ∈ C

such that ‖xn‖ > r − 1/n and −xn ∈ C , we conclude that diam C ≥ 2r. Since
diam(rB) = 2r = diam C , C ⊂ rB and C is diametrically maximal, this means that
rB = C .

3 Interior of Diametrically Maximal Sets

In a finite dimensional space X, a diametrically maximal set C which is not a single

point has always nonempty interior. Indeed, the cases dim X = 1 and dim X = 2 are
easy since, in these spaces, diametrically maximal sets have constant width. For the
general case we proceed by induction. Assume that the result is true for the n-dimen-
sional case. If C ⊂ R

n+1 has empty interior then, since C is convex, it lies in an

n-dimensional subspace Y . Notice that C is also diametrically maximal in Y and
hence, by hypothesis, has nonempty relative interior. Consider x ∈ C and λ > 0
such that (x + λB) ∩ Y is in the relative interior of C and let d = diam C . It follows
that sup{‖x − y‖ : y ∈ C} ≤ d − λ. Hence, if z ∈ (x + λB) \ Y , then for all y ∈ C ,

‖z−y‖ ≤ ‖z−x‖+‖x−y‖ ≤ λ+(d−λ) = d; since C is diametrically maximal, we get
the contradiction that z ∈ C ⊂ Y . However, C can have empty interior in the infinite
dimensional case, even if C has constant width; this will be seen in the next example.
It is obvious that, even if a nontrivial constant width set C has empty interior, its

linear span must be dense (otherwise, there would exist a nonzero functional which
vanished on C). This is in contrast to the case for diametrically maximal sets, as will
be seen in Example 4.6 in the next section.

Example Let C be the subset of c0 consisting of all x = (xn) such that 0 ≤ xn ≤ 1.
This is clearly closed, convex and bounded. To see that C has constant width 1, we
need only show that C − C is the unit ball B. Clearly, C − C ⊂ B. Further (and
equally trivially), if x ∈ B, then xn → 0 and −1 ≤ xn ≤ 1 for all n, and we can write

xn = x+
n −x−n , 0 ≤ x+

n , x
−
n ≤ 1, getting x = x+−x− ∈ C−C . Finally, if x = (xn) ∈ C ,

then, letting en denote the n-th basis vector, define yn
= x − (xn + 1/n)en. Then

yn
n = −1/n < 0, so yn /∈ C but ‖yn − x‖ = |xn + 1/n| → 0, hence x is not an interior

point of C.
The example above appears in [3] as an example of a pseudoball, a closed bounded

convex set which can be characterized by the fact that its weak∗-closure in X∗∗ is a
ball (hence must be of constant width). The analogous set in ℓ∞ is also of constant
width but it has nonempty interior, since it is, in fact, a translate by ( 1

2
, 1

2
, 1

2
, . . . ) of

1
2
Bℓ∞ . The following result shows that the example above is a particular case of a

more general situation.

Proposition 3.1 In c0(I) with the usual sup norm, a set C is of constant width if (and

only if) it is diametrically maximal. Moreover, C is of constant width if and only if

C = D ∩ c0(I) where D is a ball in ℓ∞(I).

Proof When dealing with intersections of balls, as in the case of diametrically maxi-

https://doi.org/10.4153/CJM-2006-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-033-1


824 J. P. Moreno, P. L. Papini, and R. R. Phelps

mal sets, it is helpful to have an easy-to-use representation, such as the one appearing
in [12]: C is an intersection of balls in (c0(I), ‖ · ‖∞) if and only if there exists k > 0

such that
C =

⋂

i

f −1
i [ai, bi],

where { fi} are the coordinate functionals and −k ≤ ai ≤ bi ≤ k for all i ∈ I.
When D =

⋂
i f −1

i [ci , di] is another (nonempty) intersection of balls, then C + D =⋂
i f −1

i [ai + ci , bi + di] [12]. (In particular, the sum of two such sets is closed.) Now
assume that C has diameter d and is an intersection of balls; then C is a set of constant
width if and only if C − C = dB =

⋂
i f −1

i [−d, d]. Since −C =

⋂
i f −1

i [−bi ,−ai],
this means that C is of constant width if and only if it is nonempty and

(3.1) C −C =

⋂

i

f −1
i [ai − bi, bi − ai] =

⋂

i

f −1
i [−d, d].

That is, ai + d = bi for all i ∈ I. Suppose now that D =

⋂
i f −1

i [ci , di] is a diametri-
cally maximal set with diameter d. Notice that d = supi(di − ci). Assume that there
is an index i0 ∈ I such that di0

− ci0
< d. Then, the set

D ′
=

⋂

i 6=i0

f −1
i [ci, di] ∩ f −1

i0
[ci0
, ci0

+ d]

has diameter d, contains D but D ′ 6= D. For instance,

x =

∑

i 6=i0

diei + (ci0
+ d)ei0

∈ D ′ \ D

({ei} being the canonical basis of c0(I)). Therefore, if D is diametrically maximal,
then ci + d = di for every i and it is nonempty, so it is of constant width. Finally,
observe that we have shown that D ⊂ c0(I) is diametrically maximal of diameter d

(equivalently, is of constant width d) if and only if

D =

(
(xi)i∈I +

d

2
B
)
∩ c0(I),

where (xi)i∈I is the element of ℓ∞(I) whose coordinates are xi = (ci + di)/2 for every
i ∈ I and B is the unit ball in ℓ∞(I).

The radius of C with respect to x is the number r(C, x) = sup{‖x − y‖ : y ∈ C}.

The radius of C is defined as r(C) = inf{r(C, x) : x ∈ X}. If x ∈ C , then r(C, x) ≤
diam C , hence r(C) ≤ diam C . Obviously, if C is a ball, then its diameter is twice its
radius. Payá and Palacios [21, Lemma 1.8] have shown that for a set C of constant
width, the converse is true: If diam C = 2r(C), then C is a ball. The set C is said to

be diametral if diam C = r(C, x) for every x ∈ C . Finally, recall the definition of the
Jung constant [16] of a space X:

J(X) = sup
{ 2r(C)

diam C
: C ⊂ X is nontrivial and bounded

}
,
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where nontrivial means that the set C is not a singleton, since otherwise diam C = 0.
Since r(C) ≤ diam C , it is clear that J(X) ≤ 2 for every Banach space X. Note that

for the unit ball B, we have 2r(B)

diam B
= 1, so that J(X) ≥ 1 for every X.

Theorem 3.2 If there is a (nontrivial) diametrically maximal set C ⊂ X with empty

interior, then r(C) = diam C (so C is diametral) and J(X) = 2.

Proof Note first that for any diametrically maximal set C we have

r(C) = inf{r(C, x) : x ∈ C}.

If not, there would be a point y /∈ C such that r(C, y) < inf{r(C, x) : x ∈ C}(≤
diam C). This implies that diam(C ∪ {y}) = diam C , contradicting the fact that C is
diametrically maximal. Next, if x is a boundary point of C , then r(C, x) = diam C .
Indeed, if r(C, x) < diam C , take y /∈ C such that ‖x − y‖ < diam C − r(C, x). For
every z ∈ C , we have

‖z − y‖ ≤ ‖z − x‖ + ‖x − y‖ ≤ r(C, x) + diam C − r(C, x)

and so diam (C ∪ {y}) ≤ diam C , which again contradicts the fact that C is diamet-

rically maximal. Finally we obtain that if a diametrically maximal set C has empty
interior, then every x ∈ C is a boundary point, so r(C, x) = diam C for all x ∈ C ,
hence C is diametral and r(C) = diam C .

As a consequence of the above result we get that in every Banach space X satisfy-
ing J(X) < 2, every (nontrivial) set of constant width has nonempty interior. This is
the case, for instance, for Hilbert spaces, which satisfy J(X) =

√
2 in the infinite di-

mensional case (the n-dimensional Euclidean space satisfies J(X) =

√
2n/(n + 1) <√

2). Also, J(X) < 2 in every uniformly convex space. For these and other estimates

of the Jung constant, we refer to the paper by Amir [1]. On the other hand, our ear-
lier example of a constant width (hence diametrically maximal) set in c0 with empty
interior yields the known fact that J(c0) = 2. For the same reason, it follows from
Example 4.6 that for continuous function spaces X = C(K), we have J(X) = 2. It

is natural to ask whether the converse of this result holds, namely, does J(X) = 2
imply the existence of a (nontrivial) constant width set with empty interior? We an-
swer this question by the negative in the following section, by showing that every set
of constant width in C(K) is a ball. With respect to Theorem 3.2, note finally that a

bounded closed convex set C which has nonempty interior cannot be diametral. Indeed,
if x ∈ int C , there exists r > 0 such that B(x, r) ⊂ C , hence r(C, x) ≥ r. Choose
z ∈ C such that ‖x− z‖ > r(C, x)− r/2. Let t = 1 + r/‖x− z‖ and y = tx + (1− t)z.
Then

‖x − y‖ = (t − 1)‖x − z‖ = (r/‖x − z‖)‖x − z‖ = r,

so y ∈ B(x, r) ⊂ C . Also,

r(C, y) ≥ ‖z − y‖ = t‖x − z‖ = ‖x − z‖ + r > r(C, x) + r/2 > r(C, x),

so C is not diametral.
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4 Constant Width and Diametrically Maximal Sets in C(K)

The purpose of this section is to study constant width and diametrically maximal
sets in C(K), endowed with the usual supremum norm. Among other things, we will
obtain an infinite dimensional counterexample to the question of Groemer [13, §4]

concerning the stability under sums of the family of all diametrically maximal sets.
(A finite dimensional counterexample will be obtained in Proposition 5.2.)

We need a useful characterization of the sets which are intersections of closed balls
in C(K), where K is Hausdorf compact. For every t ∈ K, let us denote by δt the Dirac

functional defined as δt ( f ) = f (t) for every f ∈ C(K). Given bounded real-valued
functions f , g on K such that f (t) ≤ g(t) for every t ∈ K, we let [ f , g] = {h ∈ C(K) :
f (t) ≤ h(t) ≤ g(t)}. This can also be written as [ f , g] =

⋂
t∈K δ

−1
t [ f (t), g(t)]. The

function f : K → R is called:

(i) lower semicontinuous if lim infy→x f (y) ≥ f (x);
(ii) upper semicontinuous if lim supy→x f (y) ≤ f (x).

The set of points of continuity of a function f : K → R will be denoted by D f . When
D f is dense in K we say that f is densely continuous. Semicontinuous functions (upper
or lower) on arbitrary topological spaces are always continuous on a residual set [11].

Consequently, when defined on a compact space, they are densely continuous. We
will call f , g : K → R an admissible pair (see [19]) when:

(a) they are lower and upper semicontinuous, respectively;
(b) for every x ∈ K, f (x) ≤ g(x) and lim infy→x, y∈Dg

g(y) ≥ lim supy→x,y∈D f
f (y).

Proposition 4.1 If K is a compact Hausdorff space, C ⊂ C(K) is a nonempty inter-

section of closed balls if and only if C = [ f , g], where f , g form an admissible pair.

Proof The unit ball B in C(K) endowed with the usual sup norm is

B =

⋂

t∈K

δ−1
t [−1, 1].

Then the ball with center h ∈ C(K) and radius r > 0 is

h + rB = h +
⋂

t∈K

δ−1
t [−r, r]

=

⋂

t∈K

δ−1
t [h(t) − r, h(t) + r] .

Therefore, if we consider a family of balls {Bi = hi + riB} satisfying C =

⋂
i Bi 6= ∅

we have

C =

⋂

i

Bi =

⋂

i

⋂

t∈K

δ−1
t [hi(t) − ri, hi(t) + ri]

=

⋂

t∈K

δ−1
t

[
sup

i

{hi(t) − ri}, inf
i
{hi(t) + ri}

]

=

⋂

t∈K

δ−1
t [ f (t), g(t)],
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where f (t) = supi{hi(t) − ri} and g(t) = infi{hi(t) + ri} for each t ∈ K. It is clear
that f is lower semicontinuous and g is upper semicontinuous. Moreover, f (t) ≤
h(t) ≤ g(t) for every t ∈ K and every h ∈ C 6= ∅, and both functions f and g are
bounded. It remains to show that f , g form an admissible pair. Let h ∈ [ f , g] be
a continuous function. Then, lim sups→t,s∈D f

f (s) ≤ h(t) ≤ lim infs→t,s∈Dg
g(s) for

every t ∈ K.

Conversely, suppose that C =

⋂
t∈K δ

−1
t [ f (t), g(t)] where f , g are lower and up-

per semicontinuous, respectively. Consider h ∈ C(K) such that h /∈ C . There is
t0 ∈ K such that h(t0) /∈ [ f (t0), g(t0)]. Assume, for instance, that h(t0) < f (t0).
Notice that f is the supremum of a family of continuous functions on X, say {ψi}.

Indeed, since K is normal, f is the pointwise supremum of the set of all continuous
functions which are less than or equal to f (which is nonempty, because f is bounded
below). Consequently, there is i0 such that ψi0

(t0) − h(t0) = 2m > 0. Take M > 0
satisfying ψi0

(t) + M ≥ g(t) for every t ∈ K (g is bounded above). Finally, consider

the ball D centered in ψi0
+ (M − m)/2 and having radius (M + m)/2. Then, C ⊂ D

but h /∈ D. As a direct consequence of a sandwich-like result [19, Lemma 2.], we have
C = [ f , g] 6= ∅ provided f , g form an admissible pair.

Remark 4.2 If C ⊂ C(K) is an intersection of balls, then we can also write C =

[ f̃ , g̃] where this time f̃ is bounded and upper semicontinuous and g̃ is bounded and
lower semicontinuous and f̃ (t) ≤ g̃(t) for each t ∈ K.

Detail: Since C is bounded, the functions defined by f (t) = inf{φ(t) : φ ∈ C}
and g(t) = sup{φ(t) : φ ∈ C} are bounded and upper and lower semicontinuous,
respectively. Clearly, f (t) ≤ g(t) for all t ∈ K and C ⊂ [ f , g]. Suppose that a
function φ ∈ C(K) is not in C . Since the latter is an intersection of balls, there exist
ψ ∈ C(K) and r > 0 such that C ⊂ ψ + rB but φ /∈ ψ + rB. This means that

‖φ−ψ‖ > r, that is, |φ(t)−ψ(t)| > r for some t ∈ K. Suppose that φ(t) > ψ(t) + r,
say. Since C ⊂ ψ+rB, we must have φ ′ ≤ ψ+r for all φ ′ ∈ C and therefore g ≤ ψ+r.
It follows that φ(t) > g(t) and therefore φ /∈ [ f , g]. A similar argument applies if
φ(t) < ψ(t) − r, hence C = [ f , g].

Notice, finally, that the converse of Remark 4.2 is not true, and so this is not a
characterization. Indeed, consider K = [0, 1], g = 1 − χ{1/2} and f = −g. Every
ball containing C = [ f , g] must contain the unit ball, so C is not an intersection of
balls.

Theorem 4.3 The only sets of constant width in C(K) are points and balls.

Proof Consider a set C ⊂ C(K) of constant width diam C = d > 0. In a series of

steps, we will prove that C is a ball of radius d/2. We will use the representation stated
in Proposition 4.1, namely C = [ f , g] =

⋂
t∈K δ

−1
t [ f (t), g(t)] where f , g : K → R

are lower and upper semicontinuous, respectively, hence there exists a dense Gδ-set
of points at which both are continuous.

Step 1: If f and g are continuous at t0 ∈ K, then d = sup δt0
(C − C) = g(t0) − f (t0).

The equality d = sup δt0
(C − C) needs little explanation since C has constant width
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d and δt0
is a norm-one functional. To prove the second equality, we will only show

that sup δt0
(C) = g(t0) since the proof of inf δt0

(C) = f (t0) is analogous. Given

ε > 0, we need to find h ∈ C satisfying h(t0) ≥ g(t0) − ε. Choose a function ϕ ∈ C .
If ϕ(t0) = g(t0), there is nothing to prove, so we will assume that ϕ(t0) < g(t0).
Moreover, by taking ε smaller if necessary, we may also assume that ϕ(t0) < g(t0)−ε.
By continuity of g and ϕ at t0, there is a neighborhood G of t0 such that t ∈ G implies

g(t) > g(t0)− ε and ϕ(t) < g(t0)− ε. Since K is normal, there is a Urysohn function
ψ : K → R satisfying ψ(t) = 0 for all t ∈ K \ G, ψ(t0) = 1 and 0 ≤ ψ(t) ≤ 1 for
all t ∈ K. We now modify ϕ in order to obtain the desired function h, as follows:
h(t) = (1 − ψ(t))ϕ(t) + ψ(t)(g(t0) − ε). Clearly, h(t0) = g(t0) − ε. To check that

h ∈ C , we need only show that f ≤ h ≤ g. This is obvious outside of G, where h = ϕ.
It is readily checked that in G, the function h is a pointwise convex combination of
functions which are not less than f nor greater than g.

Notice that Step 1 has the following consequence: if the functions f and g are
actually continuous, then f (t) = g(t) − d for every t ∈ K and so C is the ball with

center ( f + g)/2 and radius d/2. However, f and g need not be continuous and,
therefore, if this is the case, we must try to replace them by continuous functions. A
couple of technical steps are still required.

Step 2: For every t ∈ K we have

(i) lim sups→t f (s) ≤ inf δt (C) ≡ at and

(ii) lim infs→t g(s) ≥ sup δt (C) ≡ bt .

We will only show (i). Given ε > 0, there is h ∈ C such that h(t) < at + ε/2. Since h

is continuous, there is a neighborhood G of t such that |h(s) − h(t)| < ε/2 whenever

s ∈ G. Therefore, h(s) < at +ε when s ∈ G. Since h ∈ C , f (s) ≤ h(s) for every s ∈ K.
Consequently, f (s) < at + ε if s ∈ G and so lim sups→t f (s) ≤ at + ε, and this holds
for every ε > 0.

Step 3: The function f̃ defined as follows:

f̃ (t) =

{
f (t) if f is continuous at t,

at otherwise,

is continuous. Denote by D f ⊂ K the set of points of continuity of f , which is dense
in K. It is enough to show that lims∈D f , s→t f (s) = at for every t ∈ K \ D f . Suppose
that this were not so, that is, there exists t0 ∈ K \ D f and a net {si} ⊂ D f such that
limi si = t0 but (by Step 2) lim supi f (si) < at0

. We now use Step 1 to write

lim inf
i

g(si) ≤ lim sup
i

g(si) = lim sup
i

[ f (si) + d] < at0
+ d = bt0

,

which contradicts the statement of Step 2, namely that bt0
≤ lim infs→t0

g(s). An

analogous statement to Step 3 can be made by defining g̃ as follows:

g̃(t) =

{
g(t) if g is continuous at t,

bt otherwise.
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As in the preceding case, g̃ is also continuous by a symmetric argument. To finish the
proof, notice that

C =

⋂

t∈K

δ−1
t [ f (t), g(t)] =

⋂

t∈K

δ−1
t [ f̃ (t), g̃(t)],

and apply the observation preceding Step 2. The inclusion
⋂

t∈K δ
−1
t [ f̃ (t), g̃(t)] ⊂ C

follows from the fact [ f̃ (t), g̃(t)] ⊂ [ f (t), g(t)] for every t ∈ K. For the reverse
inclusion, consider ϕ ∈ C . Then, ϕ(t) ≥ f (t) = f̃ (t) for every point t ∈ S. Since f̃

is continuous and D f is dense, it follows that ϕ(t) ≥ f̃ (t) for every t ∈ K. The proof

of ϕ ≤ g is analogous.

We are indebted to Professor A. Rodriguez-Palacios for calling the following corol-
lary to our attention. Recall that a pseudoball is a bounded closed convex set whose
weak∗-closure in X∗∗ is a ball (hence is necessarily of constant width).

Corollary 4.4 If X = C0( J) is the sup-normed Banach space of all continuous real-

valued functions which vanish at infinity on the locally compact Hausdorff space J, then

any nontrivial set C of constant width in X is a pseudoball.

Proof We first show that the weak∗ closure (Ĉ)∗∗ of the canonical embedding Ĉ of
C in X∗∗ is of constant width. To this end, we use the characterization of Paya and
Rodriguez-Palacios stated in Section 2: C is of constant width λ > 0 if and only if
intλB ⊂ C − C . Note that the unit ball of X∗∗ is the same as (B̂)∗∗; moreover, an

elementary argument shows that int B̂∗∗ ⊂ (înt B)∗∗. Thus, if C is of constant width

λ > 0, then întλB ⊂ Ĉ −C = Ĉ − Ĉ ⊂ Ĉ∗∗ − Ĉ∗∗. The latter set is weak∗ compact,

therefore weak∗ closed and hence intλB̂∗∗ ⊂ (întλB)∗∗ ⊂ Ĉ∗∗−Ĉ∗∗, which implies
that C∗∗ is of constant width λ in X∗∗.

Next, we use the fact that X = C0( J) is an abstract (M)-space [6], hence so too
is X∗∗. By Kakutani’s theorem then X∗∗ is linearly isometric to a space C(K) for

some compact Hausdorff space K and by Theorem 4.3, (Ĉ)∗∗ is a ball, that is, C is a

pseudoball.

Now that we have characterized the sets of constant width in C(K), we focus our
attention on diametrically maximal sets. Precisely, we have the following characteri-
zation for such sets that will be used later to answer Groemer’s question [13].

Theorem 4.5 The set C ⊂ C(K) is diametrically maximal of diameter d > 0 if and

only if C = [ f , g] where f , g form an admissible pair and g(t) − f (t) = d whenever f

and g are continuous at t.

Proof First notice that if the set C can be represented as C = [ f , g] where f (t) ≤
g(t) for every t ∈ K, then the same argument used to prove Step 1 in Theorem 4.3
shows that g(t) − f (t) = sup δt (C −C) whenever f and g are continuous at t .
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If C is diametrically maximal, then C satisfies the spherical intersection property
and therefore it is an intersection of closed balls. Thus, we can apply Proposition 4.1

to represent C in the form [ f , g] where f and g satisfy the required conditions. There-
fore, to prove the necessity, we need simply check that sup δt0

(C −C) = d whenever
f and g are continuous at t0. Since d = supt∈K sup δt (C − C) ≥ sup δt0

(C − C),
we need only prove that sup δt0

(C − C) ≥ diam C . Suppose, on the contrary, that

sup δt0
(C − C) < d. Choose ε > 0 such that ε < (1/2)(d − sup δt0

(C − C)). There
exists a neighborhood G of t0 such that | f (t) − f (t0)| < ε and |g(t) − g(t0)| < ε
when t ∈ G. Again, there is a Urysohn function ψ : K → R satisfying ψ(t) = 0 for
all t ∈ K \ G, ψ(t0) = 1 and 0 ≤ ψ(t) ≤ 1 for all t ∈ K. Now pick a function h ∈ C .

We will modify h to obtain a new function h̃ /∈ C such that diam(C ∪ {h̃}) = d, con-
tradicting the hypothesis that C is diametrically maximal. The function h̃ is defined
as follows: h̃(t) = (1 − ψ(t))h(t) + ψ(t)(g(t0) + ε), so h̃(t0) > g(t0), hence h̃ /∈ C .
Let us check next that ‖ϕ − h̃‖∞ ≤ d for every ϕ ∈ C . Since h = h̃ on K \ G, the

only thing to estimate is supt∈G |ϕ(t) − h̃(t)| when ϕ ∈ C . But,

sup
t∈G

|ϕ(t) − h̃(t)| ≤ g(t0) + ε− ( f (t0) − ε) ≤ d.

To prove the sufficiency, assume now that C = [ f , g], where f is lower semicon-
tinuous, g is upper semicontinuous and g(t) − f (t) = sup δt (C − C) = d > 0
whenever f and g are continuous at t . We first show that d = diam C . To this end,
denote again by D f and Dg the points of continuity of f and g, respectively, and

consider S = D f ∩ Dg . It is clear that

diam C = sup
s∈K

sup δs(C −C) ≥ sup
s∈S

sup δs(C −C) = d.

To prove the reverse inequality, choose ε > 0 and s0 ∈ K such that diam C ≤
sup δs0

(C −C) + ε/4; now take ψ, ϕ ∈ C satisfying ϕ(s0) −ψ(s0) > sup δs0
(C−C) −

ε/4. Then ϕ(s0) − ψ(s0) + ε/2 > diam C . Let s1 ∈ S be close enough to s0 so that

ϕ(s1) − ψ(s1) > ϕ(s0) − ψ(s0) − ε/2. Then, ϕ(s1) − ψ(s1) > diam C − ε, whence
d = sups∈S sup δs(C −C) ≥ diam C .

Consider h /∈ C ; we want to show that diam(C ∪ {h}) > d. There exists t0 ∈ K

such that h(t0) /∈ [ f (t0), g(t0)]. We may assume, for instance, that h(t0) > g(t0).

Since g is upper semicontinuous, this implies that

(4.1) lim sup
t→t0

g(t) ≤ g(t0) < h(t0).

Since D f ∩ Dg is dense, (4.1) and the continuity of h imply the existence of a point

t1 ∈ D f ∩ Dg , close to t0, satisfying g(t1) < h(t1). Choose ε > 0 such that ε <
(1/2)(h(t1)−g(t1)). There areϕ, ψ ∈ C such thatϕ(t1)−ψ(t1) > sup δt1

(C−C)−ε =

d − ε. Hence

‖h − ψ‖ ≥ h(t1) − ψ(t1) = h(t1) − ϕ(t1) + ϕ(t1) − ψ(t1)

> h(t1) − g(t1) + d − ε

≥ d

and the proof is finished.
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Example 4.6 Consider the two functions g(t) = χ[ 1

2
,1](t), f (t) = −χ[0, 1

2
](t) and

the value d = 1; these satisfy the conditions of Theorem 4.5. Therefore, C = [ f , g] is

diametrically maximal, and so is −C = [−g,− f ]. However, C −C is not diametri-
cally maximal. Moreover, C is contained in a closed hyperplane, hence its linear span
is not dense.

Proof First we show that C−C = [ f̃ , g̃], where g̃ = 1−χ{ 1

2
} and f̃ = −g̃. It is clear

that C − C ⊂ [ f̃ , g̃], since ϕ(1/2) = 0 for every function ϕ ∈ C , hence for every
function in −C as well. (This shows that C is contained in a closed hyperplane.)
To prove the reverse inclusion, consider h ∈ [ f̃ , g̃] and the usual decomposition
h = h+ + h−, where h+

= max{h, 0} and h−
= min{h, 0}. Noting that h( 1

2
) = 0, it

is easy to check that we can also decompose h as follows:

h =

(
χ[0, 1

2
]h

− + χ[ 1

2
,1]h

+
)

+
(
χ[0, 1

2
]h

+ + χ[ 1

2
,1]h

−
)

where χ[0, 1

2
]h

− + χ[ 1

2
,1]h

+ ∈ C and χ[0, 1

2
]h

+ + χ[ 1

2
,1]h

− ∈ −C . On the other

hand, notice that since C − C = [ f̃ , g̃] and [ f̃ , g̃] =

⋂
t∈[0,1] δ

−1
t ([ f̃ (t), g̃(t)]) is an

intersection of closed sets, the set C−C must be closed. However, we claim that C−C

is not an intersection of balls, thus implying that it cannot be diametrically maximal

either. To prove the claim, assume (using Proposition 4.1) that f̂ and ĝ are lower
and upper semicontinuous, respectively, and that C − C = [ f̃ , g̃] = [ f̂ , ĝ]. When
t ∈ [0, 1] is a point of continuity for f and g we know that sup δt (C −C) = g̃(t) and

inf δt (C −C) = f̃ (t). Consequently, in these points f̂ (t) ≤ f̃ (t) and ĝ(t) ≥ g̃(t) and
hence f̂ (t) ≤ −1 and ĝ(t) ≥ 1 for every t 6= 1/2. Since f̂ and ĝ are lower and upper
semicontinuous, respectively, this implies that f̂ (1/2) ≤ −1 and ĝ(1/2) ≥ 1. Hence
[ f̂ , ĝ] contains the unit ball, which contradicts the fact that [ f̂ , ĝ] = C−C ⊂ δ−1

1

2

(0).

Remark 4.7 Fonf and Lindenstrauss [9, Remark 2] have given a simple argument
which shows that if C is a bounded closed convex for which C−C has nonempty inte-
rior, then for any convex set D containing C , there cannot exist an affine retraction of
D onto C . Thus, their result applies to sets of constant width. (Since the nonexistence

of such retractions is clear if C itself has nonempty interior, their result is primarily
of interest when int C = ∅.) That their result does not apply to diametrically max-
imal sets is shown by the foregoing example, where C − C is contained in a closed
hyperplane.

5 Sums of Diametrically Maximal Sets

It is straightforward to verify that given two sets C,D of constant width, the closure of
the sum C + D necessarily has constant width. Indeed, for every norm-one functional

f one has sup f (C + D) − inf f (C + D) = (sup f (C) − inf f (C)) + (sup f (D) −
inf f (D)) = diam C + diam D. The question of whether the (closure of the) sum of
two diametrically maximal sets is again diametrically maximal was answered in the
negative in the preceding section. However, it is natural to ask to what extent this

https://doi.org/10.4153/CJM-2006-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-033-1


832 J. P. Moreno, P. L. Papini, and R. R. Phelps

answer depends on whether the space has infinite dimension. In this section we find
another counterexample in a 3-dimensional space, namely ℓ3

1. To this end, we will

obtain a characterization of diametrically maximal sets in this space.
We will make use of this easy observation: the family of all diametrically maximal

sets is closed with respect to translations and dilations. To prove, for instance, that
λD is diametrically maximal whenever λ ∈ R and D is diametrically maximal, we

just need to use that λD satisfies the spherical intersection property. Then, letting
diam D = d, we have

λD = λ
( ⋂

x∈D

(x + dB)
)

=

⋂

x∈D

λ(x + dB)

=

⋂

y∈λD

(y + λdB)

and, taking into account that diamλD = λd, this implies that λD satisfies also the
desired property. In what follows, we will consider the functionals

f1(x1, x2, x3) = x1 + x2 + x3, f2(x1, x2, x3) = x1 + x2 − x3,

f3(x1, x2, x3) = x1 − x2 − x3, f4(x1, x2, x3) = x1 − x2 + x3.

Proposition 5.1 In ℓ3
1, a set C is diametrically maximal if and only if C is an intersec-

tion of balls and sup fi(C −C) = diam C for i = 1, . . . , 4.

Proof First notice that there is a useful way to calculate the diameter of a set. Recall

that the family { fi}4
i=1 is norming in ℓ3

1, that is, ‖x‖ = max{| fi(x)|, i = 1, . . . , 4} for
every x ∈ ℓ3

1. As a consequence, for every set C ⊂ ℓ3
1 we have

diam C = max{sup fi(C −C), i = 1, . . . , 4}.

To prove the sufficiency, since C is an intersection of balls, we will represent C as
follows [12]:

(5.1) C =

4⋂

i=1

f −1
i ([inf fi(C), sup fi(C)]).

Now take a point z /∈ C . There is i0 ∈ {1, . . . , 4} such that

fi0
(z) /∈ [inf fi0

(C), sup fi0
(C)].

Then

diam
(

C ∪ {z}
)
≥ sup fi0

(
C ∪ {z}

)
− inf fi0

(
C ∪ {z}

)

> sup(C −C) = diam C

https://doi.org/10.4153/CJM-2006-033-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-033-1


Constant Width Sets in Banach Spaces 833

thus implying that C is diametrically maximal. Notice that it is not difficult to find
examples of sets C satisfying sup fi(C − C) = diam C for i = 1, . . . , 4 which are

not intersection of balls. These sets cannot be diametrically maximal since obviously
they do not satisfy the spherical intersection property.

To prove the necessity, if C is diametrically maximal we know that C is an inter-
section of balls and so we can represent it as in (5.1) [12]:

(5.2) C =

4⋂

i=1

f −1
i ([inf fi(C), sup fi(C)]) =

4⋂

i=1

f −1
i ([ai , bi]).

We want to prove that sup fi(C −C) = diam C for i = 1, . . . , 4. Assume, on the con-
trary, that there is i ∈ {1, . . . , 4} satisfying sup fi(C −C) < diam C . We can take, for
instance, i = 1 since the other cases are analogous. Define {b ′

i } as b ′
i = ai + diam C

for i = 2, 3, 4, b ′
1 = b1 and consider the set C ′

=

⋂4

i=1 f −1
i ([ai , b

′
i ]). Then since

C ⊂ C ′ and diam C = diam C ′, necessarily C = C ′. After a suitable translation
we may assume ai = −b ′

i and, finally, a dilation ϕ(x) = (diam C)−1x will make

ai = −1, b ′
i = 1 for i = 2, 3, 4. Now consider the set D =

⋂4

i=2 f −1
i ([ai , b

′
i ]) =⋂4

i=2 f −1
i ([−1, 1]). The diameter of D is exactly sup f1(D − D) = f1(1, 1, 1) −

f1(−1,−1,−1) = 6. This means that −3 ≤ a1 and b1 ≤ 3. Actually, since
diam C = 2, either −3 < a1 or b1 < 3. Assume, for instance, that −3 < a1.
Then a1 < 3 also, since otherwise either C will reduce to a point or will be empty,
which in both cases is impossible. Thus −3 < a1 < 3 and therefore the hyperplane

f −1
1 (a1) intersects the interior of D. Take z ∈ f −1

1 (a1) ∩ int(D) and ε > 0 satisfying
z + εB ⊂ D and 3ε < 2 − (b1 − a1). Finally, consider w = z + ε(−1,−1,−1). Then
f1(z) < a1 and so z /∈ C . We just need to prove that diam({w} ∪ C) = diam C to
obtain a contradiction. Since w ∈ D, | fi(w) − fi(y)| ≤ 2 for arbitrary y ∈ C and

i = 2, 3, 4. Finally, | f1(y)− f1(w)| = f1(y)− f1(w) ≤ b1 − a1 + 3ε < 2 also for every
y ∈ C .

As a consequence of the above result, we get that every diametrically maximal set
C with diam(C) = 2 in ℓ3

1 (up to translation) has the form C =

⋂4

i=2 f −1
i ([−1, 1]) ∩

f −1
1 ([a1, b1]) where −3 ≤ a1 ≤ 2 and b1 = a1 + 1. For instance, if C is the con-

vex hull of the four points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), then C is diametrically
maximal. Indeed, C =

⋂4

i=2 f −1
i ([−1, 1]) ∩ f −1

1 ([1, 3]). Next we show that this is
not the case for C −C .

We will denote the family of all diametrically maximal sets by D and the family of

all sets of constant width by W.

Proposition 5.2 For the set C defined above, the sum C + (−C) is not an intersection

of balls, hence C − C /∈ D, implying that D is not closed with respect to sums in ℓ3
1.

However, in this space, if C ∈ W and D ∈ D then C + D ∈ D.

Proof The set C − C contains the face which is the convex hull of the four points
{(−1, 0, 1), (0,−1, 1), (0, 1, 1), (1, 0, 1)}. Therefore, every ℓ1-ball containing C −C
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necessarily contains the ball with center 1
4
(−1, 0, 1) + 1

4
(0,−1, 1) + 1

4
(0, 1, 1) +

1
4
(1, 0, 1) = (0, 0, 1) and radius 1 [12], which is not contained in C −C .

To prove the second assertion, first notice that sup fi(C + D) − inf fi(C + D) =

diam C +diam D for every i = 1, . . . , 4, so the second condition stated in Proposition
5.1, to check whether C + D is diametrically maximal, is satisfied. It remains to prove
that C + D is an intersection of balls. We use a result of [26], where it was proved that

the only sets of constant width in ℓ3
1 (as well as in a wide family of finite dimensional

polyhedral spaces) are points and balls. The case of C being a point is trivial, so
we may assume that C is a ball. Now we can apply a result from [12], where it was
shown that in ℓ3

1 the sum of a ball with a set which is an intersection of balls is itself

an intersection of balls. Consequently, using Proposition 5.1, we get that C + D is
diametrically maximal.

The following example shows that, in general, the sum of a diametrically maximal

set with a ball does not yield a diametrically maximal set.

Example 5.3 Let X = { f ∈ C[0, 1] : 2 f (1/2) = f (1)} be a subspace of C[0, 1], let
C be the same set used in Example 4.6 and define C ′

= C ∩ X (= { f ∈ C : f ( 1
2
) =

f (1) = 0}). Then diam C ′
= 1, and C ′ is diametrically maximal in X (the latter

endowed with the sup norm). But, if we denote by B the unit ball of X, then C ′ + B

is not diametrically maximal.

Proof It is readily checked that diam C ′
= 1. To see that C ′ is diametrically maxi-

mal, note that if f ∈ X \C ′, then there is either t ∈ [0, 1/2) satisfying f (t) /∈ [−1, 0]
or t ∈ (1/2, 1) satisfying f (t) /∈ [0, 1]. In either case, it is easy to find f ′ ∈ C ′ for
which 1 < | f − f ′|(t) ≤ ‖ f − f ′‖. It is also easy to show that diam(C ′ + B) =

diam C ′ + 2 = 3, hence diam C ′ + B = 3. Now, for every f = f1 + f2 ∈ C ′ + B

where f1 ∈ C ′ and f2 ∈ B, we have −1 ≤ f (1) ≤ 1, since f1(1) = 2 f1(1/2) = 0.
These same inequalities must also hold for functions in C ′ + B. Consider, finally, the
function h(t) = 2t ; this is in X but not in C ′ + B. It is straightforward to verify that
the diameter of (C ′ + B) ∪ {h} (therefore of C ′ + B ∪ {h}) is 3, which shows that

C ′ + B is not diametrically maximal.

While the above example shows that C being diametrically maximal does not im-
ply the same for C + B (recall that B is the unit ball), we next observe that if C is

not diametrically maximal, then the same is true for for C + B. Indeed, assume that
C is not diametrically maximal. There must exist x ′ ∈

⋂
x∈C (x + dB) \ C , where

d = diam C ; say that dist(x ′,C) = α > 0. Then, we can choose z ∈ B such that
dist(x ′ + z,C + B) > α/2, say. Since diam(C + B) = d + 2, if we can prove that

x ′ + z ∈
⋂

y∈C+B(y + (d + 2)B), then we have finished. To this end, notice that

x ′ + z ∈
( ⋂

x∈C

(x + dB)
)

+ B ⊂
⋂

x∈C

(x + (d + 1)B)

⊂
⋂

y∈C+B

(y + (d + 2)B) =

⋂

y∈C+B

(y + (d + 2)B).
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It can also be easily checked that if C is not of constant width, then the same is true
of C + B.

6 Sets of Constant Width and Porosity

We know that W = D in two dimensional spaces [8] and that this is also the case for
(c0(I), ‖ · ‖∞), as was proved in Proposition 3.1. In spaces with the Binary Intersec-
tion Property (P1-spaces), both classes coincide with the family of closed balls [10].

However, it is a natural question to ask about the size of W inside of D in spaces where
they are different. We will answer this question when D is stable under (the closure
of) the addition of constant width sets, namely if C + D ∈ D provided C ∈ W and
D ∈ D. In this case, we say that D is w-stable. For instance, D is w-stable in ℓ3

1 (see

the preceding section) and in (C(K), ‖ · ‖∞) for every Hausdorff compact space K.
The latter result is a consequence of Theorems 4.3 and 4.5 in Section 4, together with
a result of [19]. On the other hand, Example 5.3 shows that there are spaces in which

D is not w-stable.

We recall the notion of a uniformly very porous set [15]. Let M be a metric space,
P a subset of M, B(x,R) the closed ball centered at x with radius R and γ(x,R, P) the
supremum of all r for which there exists y ∈ M such that B(y, r) ⊂ B(x,R) \ P. The
number

ρ(x, P) = 2 lim
R→0

inf
γ(x,R, P)

R

is called the extreme porosity of P at x [27]. We say that P is uniformly very porous if

there exists an ε > 0 satisfying ρ(x, P) > ε for every x ∈ M. In our setup, we take
M = D, P = W and x will be an element of W.

Proposition 6.1 The family W is (topologically) closed. Moreover, when D is

w-stable, W is uniformly very porous (in D) if and only if W 6= D.

Proof Let C be closed, convex and bounded set which is not of constant width.

Then, there is λ > 0 satisfying

λ = sup
‖ f‖=1

{sup f (C −C)} − inf
‖ f ‖=1

{sup f (C −C)}.

As a consequence, if d(C,D) < λ/4 (here d(C,D) denotes the distance with respect

to the usual Hausdorff metric) then D /∈ W. Indeed, consider, for every n ∈ N ,
norm one functionals fn, gn satisfying sup fn(C − C) − sup gn(C − C) > λ − 1/n.
Since

sup fn(D − D) ≥ sup fn(C −C) − 2d(C,D),

sup gn(D − D) ≤ sup gn(C −C) + 2d(C,D),

we get

sup fn(D − D) − sup gn(D − D) > (λ− 1/n) − 4d(C,D),
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which is positive for sufficiently large n. This shows that W is closed. To prove that
it is uniformly very porous, we will use a similar argument, as follows. Consider now

C ∈ D and functionals fn, gn defined as before, assuming that 0 ∈ C and diam C ≤ 1
(if not, a suitable translation and a dilation do the job). Take D ∈ W, R > 0 and
define DR = D + RC . Since D is w-stable, DR ∈ D. We claim that

Bd(DR,Rλ/4) ∩ W = ∅

where Bd(DR,Rλ/4) denotes the ball (in the Hausdorff metric) with center DR and
radius Rλ/4. To prove the claim, first notice that for every functional f ,

sup f (DR − DR) = sup f (DR) − inf f (DR)

= sup f (D) + R sup f (C) − (inf f (D) + R inf f (C))

= R sup f (C −C) + diam D

and this implies that for every n ∈ N ,

sup fn(DR − DR) − sup gn(DR − DR) > R(λ− 1/n)

and, finally, we get

sup
‖ f‖=1

{sup f (DR − DR)} − inf
‖ f‖=1

{sup f (DR − DR)} = Rλ.

Now the same argument used to prove that W is closed applies to prove the claim. To
compute the porosity of W at D, note that d(D,DR) ≤ R diam C = R. This means
that γ(D,R + Rλ/4,W) ≥ Rλ/4 thus implying that

2 lim
R→0

inf
γ(D,R + Rλ/4,W)

R + Rλ/4
≥ lim

R→0
inf

Rλ/2

R + Rλ/4
=

λ/2

1 + λ/4
.

The above estimate though, proves that W is uniformly very porous, is not sharp
in the sense that we do not know if there is C ′ ∈ D \ W producing a bigger λ. Then
we can define

λ0 = sup
C∈D\W

diam C=1

{
sup
‖ f‖=1

{sup f (C −C)} − inf
‖ f‖=1

{sup f (C −C)}
}

and a similar proof, together with a standard approximation argument yields, for

every D ∈ W,

ρ(D,W) ≥ λ0/2

1 + λ0/4
.
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7 Rotundity Properties of Diametrically Maximal Sets

This section is devoted to the question of which rotundity properties of the unit
ball are inherited by every diametrically maximal set. Our main result is that in a

uniformly convex space, every diametrically maximal set is uniformly convex. We
provide an estimate of its modulus of convexity. Recall that Clarkson’s modulus of

convexity of X is the function ρX : [0, 2] → [0, 1] defined by the formula ρX(ε) =

inf{1 − ‖ 1
2
(x + y)‖ : x, y ∈ B, ‖x − y‖ ≥ ε}. Given a closed, convex and bounded

set C with 0 ∈ int(C), we can analogously define γC , the modulus of convexity of C ,
by replacing in the above definition the norm by the Minkowski functional µC (x) of
C : µC (x) = inf{α > 0 : x ∈ αC}. Thus,

(7.1) γC (ε) = inf
{

1 − µC

( 1

2
(x + y)

)
: x, y ∈ C, µC (x − y) ≥ ε

}
.

Note that this modulus of convexity is defined in the interval [0, δM(C)], where
δM(C) = sup{µC (x − y) : x, y ∈ C}. The number δM(C) is called the Minkowski
diameter of C (see [28] for an interesting discussion on this notion).

Proposition 7.1 Let C be a diametrically maximal set with diameter diam C = d and

let 0 < r ≤ R be such that rB ⊂ C ⊂ RB. Then γC (ε) ≥ d
R
ρX(rε) for every ε ∈ [0, 2].

Proof First notice that R−1‖z‖ ≤ µC (z) ≤ r−1‖z‖ for every z ∈ X. Now consider
ε ∈ [0, 2] and let x, y be two points of C such that µC (x − y) ≥ ε, hence ‖x − y‖ ≥
rµC (x − y) ≥ rε. Being diametrically maximal, C satisfies the spherical intersection

property and so C =

⋂
{z + (diam C)B : z ∈ C}. Since the segment [x, y] is in C , it

follows that [x, y] ⊂ z + (diam C)B for every z ∈ C . Now, by using the definition of
the modulus of convexity in each ball z + dB, we get

(7.2)
1

2
(x + y) + ρX(rε)dB ⊂ z + dB

for every z ∈ C and, as a consequence, 1
2
(x+ y)+ρX(rε)dB ⊂ C . Then, since 1

R
C ⊂ B,

we have
1

2
(x + y) +

1

R
ρX(rε)dC ⊂ C

and this implies, letting w =
1
2
(x + y)µC ( 1

2
(x + y))−1, that

1 − µC

( 1

2
(x + y)

)
= µC (w) − µC

( 1

2
(x + y)

)

= µC (w − 1

2
(x + y))

≥ 1

R
ρX(rε) diam C

which proves the proposition.
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In [28], the authors extend to convex bodies Gurarii’s version of the modulus of
convexity, instead of Clarkson’s version that we have considered. In other words, they

define γC (ε) = inf{max{1−µC (tx+(1−t)y) : 0 ≤ t ≤ 1} : x, y ∈ C, µC (x−y) ≥ ε}
which is not a suitable extension for our purposes. Indeed, when trying to apply the
definition of Gurarii’s modulus in (7.2) , we find that for different z and different
balls z + (diam C)B, the value max{1 − µC (tx + (1 − t)y) : 0 ≤ t ≤ 1} is attained at

different t .

Two points x, y ∈ C are called diametral points if ‖x − y‖ = diam(C). Obviously,
diametral points are always boundary points. Given a closed, convex and bounded

set C , we say that x ∈ C is a strongly exposed point of C if there is f ∈ X∗ such that
f (x) = sup f (C) and xn → x when {xn} ⊂ C and f (xn) → f (x). Say that a norm
is strongly convex if every point of the unit sphere S is a strongly exposed point of
the unit ball. Recall that a norm is said to be strictly convex if every point of the unit

sphere is an extreme point of the unit ball.

Proposition 7.2 Let C be a closed, convex and bounded set and let x, y ∈ C be di-

ametral points of C. Then:

(i) if (y − x)‖y − x‖−1 is an extreme point, (resp., strongly exposed point) of B, then

y is an extreme point (strongly exposed point) of C;

(ii) if ‖ · ‖ is strictly convex, then x, y are exposed points of C;

(iii) if ‖ · ‖ is strongly convex, then x, y are strongly exposed points of C.

Proof First, note that letting d = diam C = ‖y − x‖, then (y − x)/d is an extreme
point of B, and so y is an extreme point of x + dB. Since C ⊂ x + dB and y lies in the

boundary of C , necessarily y is an extreme point of C . In the case that (y − x)/d is
strongly exposed in B by 0 6= f ∈ X∗, then y is strongly exposed by f in x + dB and
thus in C .

To prove the second part, let 0 6= g ∈ X∗ be a support functional of B at (y−x)/d,
that is, ‖g‖ = sup g(B) = g(y−x)/d. Since ‖ · ‖ is strictly convex, S∩{z ∈ X : g(z) =

‖g‖} = {(y − x)/d}. As a consequence, g also supports the ball x + dB only at y.
Again, C ⊂ x + dB and so g also supports C at y. A symmetric argument shows that

x is also an exposed point, in this case by the functional −g, for −g supports the unit
ball at the point (x − y)/d. The proof of (iii) is entirely similar to (ii).

When a constant width set C is a weakly compact and has nonempty interior, then
every boundary point x of C has a diametral companion. Indeed, if f ∈ X∗ satisfies
f (x) = sup f (C), there is y ∈ C such that f (y) = inf f (C), hence ‖x − y‖ ≥
f (x − y) = sup f (C) − inf f (C) = diam(C). As a consequence, if X is reflexive
and has a strictly convex norm, then every boundary point of C is exposed, a result
by Dalla and Tamvakis [5]; if it has a strongly convex norm, then every boundary
point of C is strongly exposed. The same argument can be applied when C is a weak∗

compact set in a dual space, to deduce similar statements replacing reflexive spaces
by dual spaces. Finally, when the space has finite dimension, then we can replace
constant width by diametrically maximal since, in these spaces, every boundary point
of a diametrically maximal set has a diametral companion.
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8 Final Remarks

We include in this section, among other things, detailed proofs of two results that
were stated without proof in Section 1, the first of them yielding the characterization
of two dimensional spaces as those with the property that, under every equivalent
norm, diametrically maximal sets always have constant width.

Proposition 8.1 If X is a Banach space of dimension at least 3, then (after being given

an equivalent norm) it contains a set C which is diametrically maximal but not of con-

stant width.

Proof By hypothesis, we can write X = Y × Z, where Z has dimension 3 and Y is
a closed subspace. We can assume that Z contains a bounded closed convex subset D

and an equivalent norm (with unit ball B1, say) with respect to which D has diameter

2 and is diametrically maximal but not of constant width. For instance, we can simply
consider Z = ℓ3

1. Let BY be the unit ball of Y with respect to the norm induced by
X, and renorm X = Y × ℓ3

1 by ‖(y, z)‖ = max{‖y‖, ‖z‖1}, with the corresponding
unit ball BX = BY ×B1. Using standard Banach space notation, this can be written as

X = Y ⊕∞ ℓ3
1. We claim that the set BY ×D ⊂ X is diametrically maximal but not of

constant width. On the one hand, we have diam C = max{diam BY , diam D} = 2.
To prove that C is diametrically maximal, consider (y, z) /∈ C . Then, either y /∈ BY

or z /∈ Z. In any case,

diam
(

C ∪ {(y, z)}
)

= max
{

diam
(

BY ∪ {y}
)
, diam

(
D ∪ {z}

)}
> 2.

On the other hand, C − C 6= 2BX , implying that C does not have constant width.

Indeed, choose z ∈ 2B1 \ (D − D); then (0, z) ∈ 2BX \ (C −C).

The second result concerns sets of constant width in non-reflexive Banach spaces.
Note that it characterizes reflexive spaces as those Banach spaces with the property
that, for every equivalent norm and every set C of constant width, the set C − C is
closed.

Proposition 8.2 If the Banach space X is not reflexive, then there exists an equivalent

norm and a constant width set C (under this norm) such that C −C is not closed.

Proof Indeed, let f be a norm-one functional on X which does not attain its norm.
Let D = ker f ∩B where B denotes the unit ball of the original norm. Given 0 < λ <
1/2, define

C = co
[

D ∪ {x : f (x) ≥ 0, ‖x‖ ≤ λ}
]

and renorm X with the new norm whose unit ball is C −C . Then C becomes a set
of constant width and we just need to check that C − C is not closed. To this end,
consider x ∈ (1/2)B such that f (x) = λ. We claim that x is in the closure of C − C .
To see this, first notice that for every n ∈ N such that 1/n < 1/2 − λ, we have
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x + (λ + 1/n)B ⊂ x + (1/2)B ⊂ B. Since inf f (x + (λ + 1/n)B) = −1/n (and
sup f (x + (λ + 1/n)B) > 0), there exists

xn ∈ x + (λ + 1/n)B ∩ ker f ⊂ D ⊂ C.

Thus, the balls xn + λB and x + (1/n)B must intersect; let yn be a point in their
intersection. This implies that yn → x; also, since f (yn) → f (x) > 0, for large
enough n we have yn ∈ D + λB ∩ {x : f (x) ≥ 0}. Now the latter set is contained in

C−C ; indeed, given a point d+λb with d ∈ D, b ∈ B and f (b) ≥ 0, we can write it as
λb − (−d) and note that λb ∈ C and −d ∈ D ⊂ C . Thus, x ∈ C −C . On the other
hand, since f < λ on D ∪ {x : f (x) ≥ 0, ‖x‖ ≤ λ}, we also have f < λ on its closed
convex hull: in fact, if z ∈ C , then z = lim tndn + (1 − tn)λbn, where dn ∈ D, bn ∈ B

and tn ∈ [0, 1]. We may assume, by taking a subsequence, that tn → t ∈ [0, 1] and
so z = lim tdn + (1 − t)λbn. If t = 0, then z ∈ λB and hence f (z) < λ. If t > 0,
then f (z) ≤ lim(1 − t)λ f (bn) ≤ λ(1 − t) < λ. Therefore, f < λ on C −C , and this
proves that C −C is not closed, since x /∈ C −C .

There are examples of nonreflexive Banach spaces in which C − C is closed for
every constant width set C . Indeed, this is the case of c0(I) with the usual sup norm.
The reason is that in this space the sum of two intersections of balls is again an inter-
section of balls [12]. We do not know how big the topological size might be of the

family of norms having constant width sets C whose difference C − C is not closed.
We do not even know whether this family is dense. Our last result concerns sets of
constant width in Hilbert spaces.

Theorem 8.3 A bounded closed convex subset C of a Hilbert space H is of constant

width λ if and only if P(C) has constant width λ, for every orthogonal projection P of H

onto a closed hyperplane.

Proof Since C − C is closed, C has constant width λ (if and) only if C − C = λB,
hence, with P as above, P(C) − P(C) = P(C − C) = P(λB) = λP(B) = λBP(H),
so P(C) has constant width λ. To prove the converse, suppose that each such P(C)
has constant width λ but that C does not, so that C − C is a proper (and closed)

subset of λB. It follows that there exists a continuous linear functional f of norm
one such that sup f (C − C) < λ. That is, there exists a point u ∈ H, ‖u‖ = 1,
such that f (x) = 〈u, x〉 for all x ∈ H with the property that sup〈u,C − C〉 < λ.
Choose any point v ∈ H, ‖v‖ = 1 such that 〈u, v〉 = 0 and let P be the projection

defined for each x ∈ H by P(x) = x − 〈x, v〉v, which maps H onto the hyperplane
{x ∈ H : 〈v, x〉 = 0}. Note that for any x ∈ H we have 〈u, Px〉 = 〈u, x〉, and
consequently, sup f |P(H)(P(C − C)) = supx∈C−C〈u, x〉 < λ. Since u ∈ P(H), the
restriction of f to P(H) still has norm 1, so we have a contradiction.
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Let us finish now by noting some open questions that arise from the results of this
paper. First, it would be interesting to know whether the condition of w-stability

is essential in Proposition 6.1. Second, we do not know whether the main result
of Section 7 remains true if we replace uniformly convex by locally uniformly convex,
namely: is every diametrically maximal set locally uniformly convex provided the
norm is locally uniformly convex? Finally, it is not clear whether diametral points

exist in diametrically maximal sets.

Note added in proof While this manuscript was being processed, we became aware
that Naszodi and Visy [20] have found a counterexample in R

3, answering Groemer’s

question in the negative.
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spaces. Bull. Soc. Math. Grèce (N.S.) 26(1985), 27–39.

[6] M. M. Day, Normed Linear Spaces. Third edition, Ergebnisse der Mathematik und ihrer
Grenzgebiete 21, Springer–Verlag, Berlin, 1973.

[7] H. G. Eggleston, Convexity. Cambridge Tracts in Mathematics and Mathematical Physics 47,
Cambridge University Press, New York, 1958.

[8] , Sets of constant width in finite dimensional Banach spaces. Israel J. Math. 3(1965),
163–172.

[9] V. Fonf and J. Lindenstrauss, Some results on infinite-dimensional convexity. Israel J. Math.
108(1998), 13–32.

[10] C. Franchetti, Relationship between the Jung constant and a certain projection constant in Banach
spaces. Ann. Univ. Ferrara Sez. VII (N.S.) 23(1977), 39-44.

[11] Z. Frolik, Baire spaces and some generalizations of complete metric spaces. Czechoslovac Math. J.
11(86)(1961), 237–248.

[12] A. S. Granero, J. P. Moreno and R. R. Phelps, Convex sets which are intersection of closed balls. Adv.
Math. 183(2004), no. 1, 183–208.

[13] H. Groemer, On complete convex bodies. Geom. Dedicata 20(1986), no. 3, 319–334.
[14] E. Heil and H. Martini, Special convex bodies. In: Handbook of Convex Geometry, Vol. A.

North-Holland, Amsterdam, 1993, pp. 347–385.
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