Fourth Meeting, February 14th, 1896.

Dr Peddie, President, in the Chair.

Note on a Certain Harmonical Progression.
 Note on Continued Fractions.
 On Methods of Election.

By Professor Steggall.

A Simple Method of Finding any Number of Square Numbers whose Sum is a Square.

By Artemas Martin, LL.D.
I.--Take the well-known identity

$$
\begin{equation*}
(w+z)^{2}=w^{2}+2 w z+z^{2}=(w-z)^{2}+4 w z \tag{1}
\end{equation*}
$$

Now if we can transform $4 w z$ into a square we shall have two square numbers whose sum is a square. This will be effected by taking $w=p^{2}, z=q^{2}$, for then $4 w z=4 p^{2} q^{2}=(2 p q)^{2}$ and we have

$$
\begin{equation*}
\left(p^{2}+q^{2}\right)^{2}=\left(p^{2}-q^{2}\right)^{2}+(2 p q)^{2} \tag{2}
\end{equation*}
$$

See Mathematical Magazine, Vol. II., No. 5, p. 69.
In (2) the values of p and q may be chosen at pleasure, but to have numbers that are prime to each other p and q must also be prime to each other and one odd and the other even.

Examples.-1. Take $p=2, q=1$; then we find

$$
3^{2}+4^{2}=5^{2} .
$$

2. Take $p=3, q=2$; then we shall have

$$
5^{2}+12^{2}=13^{2}
$$

3. Take $p=4, q=1$; then we get

$$
8^{2}+15^{2}=17^{2}
$$

And so on, ad lib.

