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Abstract
In 2007 Chang and Yu determined all the algebraic relations among Goss’s zeta values for 𝐴 = F𝑞 [𝜃], also known
as the Carlitz zeta values. Goss raised the problem of determining all algebraic relations among Goss’s zeta values
at positive integers for a general base ring A, but very little is known. In this paper, we develop a general method,
and we determine all algebraic relations among Goss’s zeta values for the base ring A which is the coordinate ring
of an elliptic curve defined over F𝑞 . To our knowledge, this is the first work tackling Goss’s problem when the base
ring has class number strictly greater than 1.
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Introduction

0.1. Background

The study of the Riemann zeta function 𝜁 (.) and its special values 𝜁 (𝑛) for 𝑛 ∈ N and 𝑛 ≥ 2 is a
classical topic in number theory. A well-known analogy between the arithmetic of number fields and
global function fields suggests that one can replace Z by the coordinate ring of a curve defined over a
finite field and Q by its field of fractions, and study similarly defined objects. In [16], Carlitz carries
out this analogy for the case where 𝐴 = F𝑞 [𝜃] (q a power of a prime) and 𝐾 = F𝑞 (𝜃) (which are the
coordinate ring and function field of the curve P1 over F𝑞), wherein he defines zeta values 𝜁𝐴(𝑛) which
are considered as the analogues of the Riemann zeta function. Many years after Carlitz’s pioneering
work, Goss showed that these values could be realized as the special values of the so-called Goss-
Carlitz zeta function 𝜁𝐴(·) over a suitable generalization of the complex plane. Goss’s zeta functions
are a special case of the L-functions he introduced in [30] for more general rings A. The special values
of this type of L-function, called Goss’s zeta values, have been at the heart of function field arithmetic
for the last forty years. Various works have revealed the importance of these zeta values for both their
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independent interest and for their applications to a wide variety of arithmetic problems, including
multiple zeta values (see the excellent articles [54, 53] for an overview and also [46] for some recent
results), Anderson’s log-algebraicity identities (see [2, 3, 6, 36, 51]) and Taelman’s units and the class
formula à la Taelman (see [11, 24, 25, 26, 28, 43, 50] for recent progress and [10] for an overview).

For 𝐴 = F𝑞 [𝜃], the transcendence of the Carlitz zeta values at positive integers 𝜁𝐴(𝑛) (𝑛 ≥ 1) was
first proved by Jing Yu [55]. Further, all algebraic relations among these values were determined by Jing
Yu [56] and by Chieh-Yu Chang and Jing Yu [23]. These results are very surprising when compared to
the extremely limited knowledge we have about the transcendence of values of Riemann’s zeta function
at odd positive integers greater than 3 (see section 3 of [44] for a description of known classical results).
Goss raised the problem of extending the work of Chang and Yu to a more general setting. For a finite
class of curves, such that the coordinate ring A has class number one, several partial results about Goss’s
zeta values have been obtained by a similar method (see, for example, [42]). However, to our knowledge,
nothing is known when the class number of A is greater than 1. One difficulty of extending these results
to rings with arbitrary class number is that one must define the zeta values as sums over ideals, rather
than over monic elements, which greatly complicates some of the calculations. Additionally, Anderson
generating functions are more complicated in this situation (see §2.1) and require more sophisticated
analysis to realize their evaluations as periods (see §3.3).

In this paper, we provide the first step towards the resolution of the above problem and develop
a conceptual method to deal with the genus 1 case. The advantage of working in the genus 1 case
(elliptic curves) is that we have an explicit group law on the curve which we often exploit in our
arguments. However, where possible, we strive to give general arguments in our proofs which will
readily generalize to curves of arbitrary genus. Our results determine all algebraic relations among
Goss’s zeta values attached to the base ring A which is the coordinate ring of an elliptic curve over a
finite field. To do so, we reduce the study of Goss’s zeta values, which are fundamentally analytic objects,
to that of Anderson’s zeta values, which are of arithmetic nature (see Section 5.3 for details). Then we
use a generalization of Anderson-Thakur’s theorem (Theorem 1.8) on elliptic curves to construct zeta
t-motives attached to Anderson’s zeta values. We apply the work of Hardouin [37] on Tannakian groups
in positive characteristic and compute the Galois groups attached to zeta t-motives. Finally, we apply
the transcendence method introduced by Papanikolas [47] (which relies heavily on [4]) to obtain our
algebraic independence result.

0.2. Statement of Results

Let us give now more precise statements of our results.
Let X be a geometrically connected smooth projective curve over a finite field F𝑞 of characteristic

p, having q elements. We denote by K its function field and fix a place ∞ of K of degree 𝑑∞ = 1. We
denote by A the ring of elements of K which are regular outside ∞. The ∞-adic completion 𝐾∞ of K is
equipped with the normalized ∞-adic valuation 𝑣∞ : 𝐾∞ → Z ∪ {+∞}. The completion C∞ of a fixed
algebraic closure 𝐾∞ of 𝐾∞ comes with a unique valuation extending 𝑣∞, which we also denote by 𝑣∞.

To define Goss’s zeta values (our exposition closely follows [32, §8.2-8.7]), we let 𝜋 ∈ 𝐾×
∞ be a

uniformizer so that we can identify 𝐾∞ with F𝑞 ((𝜋)). For 𝑥 ∈ 𝐾
×

∞, one can write 𝑥 = 𝜋𝑣∞ (𝑥) sgn(𝑥)〈𝑥〉,
where sgn(𝑥) ∈ F×𝑞 and 〈𝑥〉 ∈ (1 + 𝜋F𝑞 [[𝜋]]) is a 1-unit. If we denote by I (𝐴) the group of fractional
ideals of A, then Goss defines a group homomorphism

[·]𝐴 : I (𝐴) → 𝐾
×

∞

such that for 𝑥 ∈ 𝐾×, we have [𝑥𝐴]𝐴 = 𝑥/sgn(𝑥). Note that the definition of ideal exponentiation
technically depends on the choice of uniformizer 𝜋 ∈ 𝐾∗

∞ and the choice of sign function (see [32,
Thm. 8.2.15-16]). However, in this paper, we apply it only in the case of function fields for rank 1 sign-
normalized Drinfeld modules for elliptic curves, so there is a canonical choice for each of these (see
Section 1.2).
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Let 𝐸/𝐾 be a finite extension, and let 𝑂𝐸 be the integral closure of A in E. Then Goss defined a zeta
function 𝜁𝑂𝐸 (.) (see [32, §8.6]) over a suitable generalization of the complex plane (see [32, §8.1]). We
are interested in Goss’s zeta values for 𝑛 ∈ N given by

𝜁𝑂𝐸 (𝑛) =
∑
𝑑≥0

∑
ℑ∈I (𝑂𝐸 ) ,ℑ⊂𝑂𝐸 ,
deg(𝑁𝐸/𝐾 (ℑ))=𝑑

[
𝑂𝐸

ℑ

]−𝑛

𝐴

∈ 𝐾
×

∞

(details of this definition are in §5.2), where I (𝑂𝐸 ) denotes the group of fractional ideals of 𝑂𝐸 .

0.3. Carlitz zeta values (the genus 0 case).

We set our curve X to be the projective line P1/F𝑞 equipped with the infinity point ∞ ∈ P1 (F𝑞). Then
𝐴 = F𝑞 [𝜃], 𝐾 = F𝑞 (𝜃) and 𝐾∞ = F𝑞 ((1/𝜃)), where 𝜃 is an independent variable. Let 𝐴+ be the set of
monic polynomials in A.

Since the class number of A is 1, by the above discussion, Goss’s map is given by [𝑥𝐴]𝐴 = 𝑥/sgn(𝑥)
for 𝑥 ∈ 𝐾×. Then the Carlitz zeta values, which are special values of the Carlitz-Goss zeta function, are
given by

𝜁𝐴(𝑛) :=
∑
𝑎∈𝐴+

1
𝑎𝑛

∈ 𝐾×
∞, 𝑛 ∈ N.

Carlitz noticed that these values are intimately related to the so-called Carlitz module C that is the
first example of a Drinfeld module. Then he proved two fundamental theorems about these values. In
analogy with the classical Euler formulas, Carlitz’s first theorem asserts that for the so-called Carlitz
period �̃� ∈ 𝐾

×

∞, we have the Carlitz-Euler relations

𝜁𝐴(𝑛)

�̃�𝑛
∈ 𝐾 for all 𝑛 ≥ 1, 𝑛 ≡ 0 (mod 𝑞 − 1).

His second theorem states that 𝜁𝐴(1) is the logarithm of 1 of the Carlitz module C, which is the first
example of log-algebraicity identities. Anderson extended this theory by giving many more log-algebraic
identities [3].

Many years after the work of Carlitz, Anderson and Thakur [5] developed an explicit theory of tensor
powers of the Carlitz module 𝐶⊗𝑛 (𝑛 ∈ N) and expressed 𝜁𝐴(𝑛) as the last coordinate of the logarithm
of a special algebraic point of 𝐶⊗𝑛. Using this result, Yu proved that 𝜁𝐴(𝑛) is transcendental in [55] and
that the only 𝐾-linear relations among the Carlitz zeta values and powers of the Carlitz period are the
above Carlitz-Euler relations in [56].

For algebraic relations among Carlitz zeta values, we have the trivial relations coming from working
in characteristic p, which state that for 𝑚, 𝑛 ∈ N,

𝜁𝐴(𝑝
𝑚𝑛) = (𝜁𝐴(𝑛))

𝑝𝑚 .

Extending the previous works of Yu, Chang and Yu [23] proved that the Carlitz-Euler relations and
the Frobenius relations give rise to all algebraic relations among the Carlitz zeta values. To prove this
result, Chang and Yu use the connection between Anderson F𝑞 [𝜃]-modules and t-motives as well as
the powerful criterion for transcendence introduced by Anderson-Brownawell-Papanikolas in [4] and
the criterion for algebraic independence developed by Papanikolas in [47]. This latter criterion, which
we will also use in our present paper, states roughly that the dimension of the motivic Galois group of
a t-motive is equal to the transcendence degree of its attached period matrix.
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0.4. Goss’s zeta values on elliptic curves (the genus 1 case).

In a series of papers [34, 33, 36], Papanikolas and the first author carried out an extensive study to move
from the projective line P1/F𝑞 (the genus 0 case) to elliptic curves over F𝑞 (the genus 1 case).

We work with an elliptic curve X defined over F𝑞 with defining equation given in (1.1) equipped with
a rational point ∞ ∈ 𝑋 (F𝑞). Then 𝐴 = F𝑞 [𝜃, 𝜂] is the coordinate ring of X, where 𝜃 and 𝜂 satisfy (1.1).
We denote by 𝐾 = F𝑞 (𝜃, 𝜂) its fraction field and by 𝐻 ⊂ 𝐾∞ the Hilbert class field of A.

The class number Cl(𝐴) of A equals the number of rational points 𝑋 (F𝑞) on the elliptic curve X,
which also equals the degree of extension [𝐻 : 𝐾]; that is,

Cl(𝐴) = |𝑋 (F𝑞) | = [𝐻 : 𝐾] .

For a prime ideal𝔭 of A of degree 1 corresponding to an F𝑞-rational point on X, we let𝔭−1 be the inverse
fractional ideal of 𝔭 and consider the sum

𝜁𝐴(𝔭, 𝑛) =
∑

𝑎∈𝔭−1 ,
sgn(𝑎)=1

1
𝑎𝑛

, 𝑛 ∈ N.

The sums 𝜁𝐴(𝔭, 𝑛) where 𝔭 runs through the set P of prime ideals of A of degree 1 are the elementary
blocks in the study of Goss’s zeta values on elliptic curves. When the extension 𝐸/𝐾 is trivial (i.e.,
𝐸 = 𝐾), the Goss zeta value 𝜁𝐴(𝑛) can be expressed as a 𝐾-linear combination of 𝜁𝐴(𝔭, 𝑛). When
𝐸 = 𝐻, the zeta value 𝜁𝑂𝐻 (𝑛) (which is a regulator in the sense of Taelman [6, 50]) can be written as a
product of 𝐾-linear combinations of 𝜁𝐴(𝔭, 𝑛). This is done explicitly in §5.3–5.4.

Contrary to the F𝑞 [𝜃]-case, one main issue present in the higher genus case is that Goss’s zeta
function is fundamentally analytic in nature; it has no explicit dependence on the arithmetic of Drinfeld
modules. To overcome this problem, Anderson introduced the so-called Anderson zeta values 𝜁𝜌 (𝑏𝑖 , 𝑛)
(see (1.21) for a precise definition) indexed by a K-basis {𝑏𝑖}

𝑚
𝑖=1 ∈ 𝑂𝐻 of H. These zeta values are also

𝐾-linear combinations of 𝜁𝐴(𝔭, 𝑛), and thus they contain the same information as Goss’s zeta values.
The crucial point is that Anderson’s zeta values are of arithmetic nature and intimately related to a
canonical rank 1 sign normalized Drinfeld A-module 𝜌 (see §1.3 for a summary).

In [36], Papanikolas and the first author developed an explicit theory of the above Drinfeld A-module
𝜌. They gave a new proof of Anderson’s celebrated log-algebraicity theorem on elliptic curves and
proved that 𝜁𝜌 (𝑏𝑖 , 1) can be realized as the logarithm of 𝜌 evaluated at a prescribed algebraic point.
In [34, 33], the first author introduced the tensor powers 𝜌⊗𝑛 for 𝑛 ∈ N and proved basic properties
of Anderson modules 𝜌⊗𝑛. Then he obtained a generalization of Anderson-Thakur’s theorem for small
values 𝑛 < 𝑞. By a completely different approach based on the notion of Stark units and Pellarin’s L-
series, Anglès, Tavares Ribeiro and the second author [8] proved a generalization of Anderson-Thakur’s
theorem for all 𝑛 ∈ N. It states that for any 𝑛 ∈ N, Anderson’s zeta values 𝜁𝜌 (𝑏𝑖 , 𝑛) can be written as
the last coordinate of the logarithm of 𝜌⊗𝑛 evaluated at an algebraic point. 1

In this paper, using the aforementioned works, we generalize the work of Chang and Yu [23] for the
Carlitz zeta values and determine all algebraic relations among Anderson’s zeta values on elliptic curves.

Theorem A (Theorem 4.3). Let 𝑚 ∈ N and {𝑏1, . . . , 𝑏ℎ} be a K-basis of H with 𝑏𝑖 ∈ 𝐵. We consider
the following set:

A = {𝜋𝜌} ∪ {𝜁𝜌 (𝑏𝑖 , 𝑛) : 1 ≤ 𝑖 ≤ ℎ, 1 ≤ 𝑛 ≤ 𝑚 such that 𝑞 − 1 � 𝑛 and 𝑝 � 𝑛},

where 𝜋𝜌 is a generator of the period lattice attached to 𝜌. Then the elements of A are algebraically
independent over 𝐾 . We also classify all algebraic relations between such zeta values, and thus these
algebraic independence results are the best possible in this setting.

1In fact, this theorem holds for any general base ring A; see [8].
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As an application, we also determine all algebraic relations among Goss’s zeta values defined for
function fields of elliptic curves (see also Theorem 5.3).

Theorem B (Corollary 5.4). Let 𝑚 ∈ N and L be an extension of K such that 𝐿 ⊂ 𝐻. We consider the
following set:

G𝐿 = {𝜋𝜌} ∪ {𝜁𝑂𝐿 (𝑛) : 1 ≤ 𝑛 ≤ 𝑚 such that 𝑞 − 1 � 𝑛 and 𝑝 � 𝑛}.

Then the elements of G𝐿 are algebraically independent over 𝐾 . We also classify all algebraic relations
between such zeta values, and thus these algebraic independence results are the best possible in this
setting.

Remark 0.1. We note that the conditions 𝑞 − 1 � 𝑛 and 𝑝 � 𝑛 are necessary, else one gets known
relations, such as

𝜁𝑂𝐿 (𝑞 − 1)
𝜋𝑞−1

𝜌

∈ 𝐾, 𝜁𝑂𝐿 (𝑝𝑛) = 𝜁𝑂𝐿 (𝑛)
𝑝 .

We also prove algebraic independence of periods and logarithms of tensor powers of Drinfeld
modules.

Theorem C (Theorem 3.13). Suppose that u1, . . . , u𝑚 ∈ Mat𝑛×1 (C∞) such that Exp⊗𝑛
𝜌 (u𝑖) = v𝑖 ∈

Mat𝑛×1 (𝐾) and denote the jth entry of u𝑖 as u𝑖, 𝑗 . If 𝜋𝑛
𝜌 , u1,𝑛, . . . , u𝑚,𝑛 are linearly independent over K,

then they are algebraically independent over 𝐾 .

Let us sketch our proof and highlight the advances beyond [23].

◦ Since we want to apply the transcendence method of Papanikolas [47] (see Section 1.6 for a summary),
we will consider the F𝑞 [𝑡]-modules induced by tensor powers of Drinfeld modules, still denoted by
𝜌⊗𝑛 (see Section 1).

◦ In Section 2, we construct t-motives attached to 𝜌⊗𝑛 and give a description of their motivic Galois
groups. We use this description later in the paper when applying Hardouin’s work [37] (see Section 1.7
for a summary) to extensions of these motives to calculate the dimension of their motivic Galois
groups.

◦ In Sections 3.1 and 3.2, we construct t-motives attached to logarithms of 𝜌⊗𝑛. Our construction uses
Anderson’s generating functions as in [18] instead of polygarithms used by Chang and Yu. This allows
us to bypass the convergence issues of polygarithms present in [23].

◦ In Sections 3.3 and 3.4, we present two different ways to compute periods: either by direct calculations
or by using a more conceptual method due to Anderson (see [38], Section 2.5).

◦ In Section 3.6, we compute explicitly the Galois groups of t-motives attached to logarithms and derive
an application about algebraic independence of logarithms (see Theorem 3.13). Our calculations are
completely different from all aforementioned works and based on a more robust method devised by
Hardouin [37] (compare our methods with [23, 18] which do not use Hardouin’s work at all, or [19]
which uses her work only minimally).

◦ In Section 4, we use a generalization of Anderson-Thakur’s theorem on elliptic curves (see Theo-
rem 1.8) to construct a single t-motive which is simultaneously attached to all of the Anderson zeta
values we consider. Using results from Section 3, we apply the strategy of Chang-Yu to determine all
algebraic relations among Anderson’s zeta values (see Theorems 4.2 and 4.3).

◦ In Section 5, we derive all algebraic relations among Goss’s zeta values from those among Anderson’s
zeta values (see Theorem 5.3 and Corollary 5.4).

To summarize, we have solved completely the problem of determining all algebraic relations among
Goss’s zeta values for function fields of elliptic curves. Although in this project we work on elliptic
curves and occasionally make use of their group law, we have strived to use a general approach which
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relies on such explicit calculations as little as possible. The authors are currently working to extend these
ideas to curves of higher genus, where such a group law no longer exists. Some of the main difficulties
to be overcome in this case are developing a theory of Anderson generating functions and proving the
simplicity of the tensor powers of Drinfeld modules.

1. Background

Traditionally, proofs in transcendental number theory tend to be quite eclectic; they pull from numerous
disparate areas of mathematics. Such is the case in this paper. To ease the burden on the reader, we
collect here a review of the various theories on which the proofs of our main theorems rely. This review
is not intended to be exhaustive, and we refer the reader to various sources listed in each section. After
laying out the general notation (Section 1.1), we give a review of Anderson A-modules (Section 1.2),
tensor powers of sign-normalized rank 1 Drinfeld-Hayes modules (Section 1.3), Anderson-Thakur’s
theorem on zeta values and logarithms (Section 1.4), linear independence of Anderson’s zeta values
(Section 1.5), Papanikolas’s theory on Tannakian categories and motivic Galois groups (Section 1.6)
and Hardouin’s theory on computing motivic Galois groups via the unipotent radical (Section 1.7).

1.1. Notation

1.1.1. Elliptic curves
We keep the notation of [34, 33, 36] and work on elliptic curves. Throughout this paper, let F𝑞 be a
finite field of characteristic p, having q elements. Let X be an elliptic curve defined over F𝑞 given by

𝑦2 + 𝑐1𝑡𝑦 + 𝑐3𝑦 = 𝑡3 + 𝑐2𝑡
2 + 𝑐4𝑡 + 𝑐6, 𝑐𝑖 ∈ F𝑞 . (1.1)

It is equipped with the rational point ∞ ∈ 𝑋 (F𝑞) at infinity, which we designate as the neutral element
for the group law on X. We set A = F𝑞 [𝑡, 𝑦] the affine coordinate ring of X, which is the set of functions
on X regular outside ∞ and K = F𝑞 (𝑡, 𝑦), its fraction field. We also fix other variables 𝜃, 𝜂 so that
𝐴 = F𝑞 [𝜃, 𝜂] and 𝐾 = F𝑞 (𝜃, 𝜂) are isomorphic to A and K. We denote the canonical isomorphism
𝜄 : K −→ 𝐾 such that 𝜄(𝑡) = 𝜃 and 𝜄(𝑦) = 𝜂. Let 𝜆 = 𝑑𝑡

2𝑦+𝑐1𝑡+𝑐3
be the invariant differential on X.

The ∞-adic completion 𝐾∞ of K is equipped with the normalized ∞-adic valuation 𝑣∞ : 𝐾∞ →

Z∪ {+∞} and has residue field F𝑞 . We set deg := −𝑣∞ so that deg 𝜃 = 2 and deg 𝜂 = 3. The completion
C∞ of a fixed algebraic closure 𝐾∞ of 𝐾∞ comes with a unique valuation extending 𝑣∞, which we also
denote by 𝑣∞. We define the Frobenius 𝜏 : C∞ → C∞ as the F𝑞-algebra homomorphism which sends x
to 𝑥𝑞 . Similarly, we can define K∞ equipped with 𝑣∞ and deg.

We set Ξ = (𝜃, 𝜂) which is a K-rational point of the elliptic curve X. We define a sign function
sgn : A \ {0} → F×𝑞 as follows. For any 𝑎 ∈ A \ {0}, there is a unique way to write

𝑎 =
∑
𝑖≥0

𝑎𝑖𝑡
𝑖 +

∑
𝑖≥0

𝑏𝑖𝑡
𝑖𝑦, 𝑎𝑖 , 𝑏𝑖 ∈ F𝑞 .

Recall that deg 𝑡 = 2 and deg 𝑦 = 3. The sign of a is defined to be the coefficient of the term of highest
degree. It is easy to see that it extends to a group homomorphism

sgn : K×
∞ → F×𝑞 .

Similarly, we can define the sign function

sgn : 𝐾×
∞ → F×𝑞 .

For any field extension 𝐿/F𝑞 , the coordinate ring of X over L is 𝐿 [𝑡, 𝑦] = 𝐿 ⊗F𝑞 A. We extend the
sign function to such rings 𝐿 [𝑡, 𝑦] \ {0} by using the same notion of leading term, namely, by writing
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𝑎 =
∑
𝑖≥0

𝑎𝑖𝑡
𝑖 +

∑
𝑖≥0

𝑏𝑖𝑡
𝑖𝑦, 𝑎𝑖 , 𝑏𝑖 ∈ 𝐿,

and then defining s̃gn : 𝐿 [𝑡, 𝑦] \ {0} → 𝐿× to be the coefficient of the leading term. This extends
naturally to 𝐿(𝑡, 𝑦)× by taking quotients.

1.1.2. Tate algebras
We denote by T the Tate algebra in the variable t with coefficients in C∞,

T =

{ ∞∑
𝑖=0

𝑏𝑖𝑡
𝑖 ∈ C∞[[𝑡]]

���� ��𝑏𝑖

��
∞
→ 0

}
, (1.2)

where | · |∞ is the norm on C∞ given by |𝑔 |∞ = 𝑞deg(𝑔) . The Gauss norm on T is given by

‖ 𝑓 ‖ := max
𝑖

{|𝑏𝑖 |∞}

for 𝑓 =
∑

𝑖≥0 𝑏𝑖𝑡
𝑖 ∈ T. Let L be its fraction field.

Further, we define the Tate algebra T𝜃 as the space of power series in t with coefficients in C∞ on
the disc of radius |𝜃 |∞,

T𝜃 =

{ ∞∑
𝑖=0

𝑏𝑖𝑡
𝑖 ∈ C∞[[𝑡]]

���� 𝑞𝑖
��𝑏𝑖

��
∞
→ 0

}
. (1.3)

Similarly, we define the norm ‖·‖𝜃 on T𝜃 : if 𝑓 =
∑∞

𝑖=0 𝑏𝑖𝑡
𝑖 ∈ T𝜃 , then

‖ 𝑓 ‖𝜃 = max
𝑖

{
𝑞𝑖 |𝑏𝑖 |∞

}
.

We note that T𝜃 ⊂ T.

1.2. Anderson A-modules on elliptic curves

We briefly review the basic theory of Anderson A-modules and dual A-motives and the relation between
them. This material follows closely to [34, §3-4], and the reader is directed there for proofs.

For R an F𝑝-algebra, we let 𝑅[𝜏] denote the (non-commutative) skew-polynomial ring with coeffi-
cients in R, subject to the relation for 𝑟 ∈ 𝑅,

𝜏𝑟 = 𝑟𝑞𝜏.

We similarly define 𝑅[𝜎], but subject to the restriction that R must be an algebraically closed field and
subject to the relation

𝜎𝑟 = 𝑟1/𝑞𝜎.

We define the ith Frobenius twisting automorphism of C∞[𝑡, 𝑦] by

𝑔 ↦→ 𝑔 (𝑖) :
∑
𝑖, 𝑗

𝑐𝑖 𝑗 𝑡
𝑖𝑦 𝑗 ↦→

∑
𝑖, 𝑗

𝑐𝑞𝑖

𝑖 𝑗 𝑡
𝑖𝑦 𝑗 .

We extend twisting to matrices Mat𝑖× 𝑗 (C∞[𝑡, 𝑦]) by twisting coordinatewise. We also define Frobenius
twisting on points 𝑃 ∈ 𝑋 (C∞), also denoted by 𝑃 (𝑖) , by raising each coordinate to the 𝑞𝑖 power. We
extend this to divisors on X in the natural way.
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Definition 1.1. 1) An n-dimensional Anderson A-module is an F𝑞-algebra homomorphism 𝐸 : A →

Mat𝑛 (𝐾∞)[𝜏], such that for each 𝑎 ∈ A,

𝐸𝑎 = 𝑑 [𝑎] + 𝐴1𝜏 + . . . , 𝐴𝑖 ∈ Mat𝑛 (𝐾∞),

where 𝑑 [𝑎] = 𝜄(𝑎)Id𝑛 + 𝑁 for some nilpotent matrix 𝑁 ∈ Mat𝑛 (𝐾∞) (depending on a).
2) A Drinfeld module is a nontrivial one-dimensional Anderson A-module 𝜌 : A → 𝐾∞[𝜏].

We note that the map 𝑎 ↦→ 𝑑 [𝑎] is a ring homomorphism.
Let E be an A-Anderson module of dimension n. We introduce the exponential and logarithm

functions attached to E, denoted Exp𝐸 and Log𝐸 , respectively. The exponential function is the unique
function on C𝑛

∞ such that for all 𝑎 ∈ A and z ∈ C𝑛
∞,

Exp𝐸 (𝑑 [𝑎]z) = 𝐸𝑎 (Exp𝐸 (z)) (1.4)

and Exp𝐸 (0) = Id𝑛.
The function Log𝐸 is then defined as the formal power series inverse of Exp𝐸 . We note that as

functions on C𝑛
∞, the function Exp𝐸 is everywhere convergent, whereas Log𝐸 has a finite domain of

convergence.
We briefly set out some notation regarding points and divisors on the elliptic curve X. We will denote

addition of points using the group law of X by adding the points without parenthesis. For example, for
𝑅1, 𝑅2 ∈ 𝑋 ,

𝑅1 + 𝑅2 ∈ 𝑋,

and we will denote formal sums of divisors involving points on X using the points inside parenthesis.
For example, for 𝑔 ∈ 𝐾 (𝑡, 𝑦),

div(𝑔) = (𝑅1) − (𝑅2).

Further, multiplication on the curve X will be denoted with square brackets. For example,

[2]𝑅1 ∈ 𝑋,

whereas formal multiplication of points in a divisor will be denoted with simply a number where
possible, or by an expression inside parenthesis; for example, for ℎ ∈ 𝐾 (𝑡, 𝑦),

div(ℎ) = 3(𝑅1) − (𝑛 + 2) (𝑅2).

1.3. Tensor powers of Drinfeld-Hayes modules on elliptic curves

We now construct the canonical rank 1 sign-normalized Drinfeld module associated to the ring A to
which we will attach zeta values (see [36] for a detailed account). For curves of general genus, we
refer the interested reader to Hayes’s work [39, 40] (see also [3, 6, 52] or [32, §7]) for more details on
sign-normalized rank one Drinfeld modules.

For the sign function defined in §1.1, a rank 1 sign-normalized Drinfeld module is a Drinfeld module
𝜌 : A → 𝐾∞[𝜏] such that for 𝑎 ∈ A, we have

𝜌𝑎 = 𝜄(𝑎) + 𝑎1𝜏 + · · · + sgn(𝑎)𝜏deg(𝑎) .

By Drinfeld’s seminal work [27], there exists a unique effective divisor V on X such that the divisor
𝑉 (1) −𝑉 + (Ξ) − (∞) is principal. In our setting of elliptic curves, the situation is much more concrete.
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Recall that 𝐻 ⊂ 𝐾∞ is the Hilbert class field of A. Then the Drinfeld divisor is the unique point
𝑉 ∈ 𝑋 (𝐻) whose coordinates have positive degree that verifies the equation on X

𝑉 −𝑉 (1) = Ξ.

We remind the reader that a divisor
∑

𝑛𝑃𝑃 on X is principal if and only if
∑

𝑛𝑝𝑃 = ∞ on X and
∑

𝑛𝑝 = 0
(see [49, Cor. III.3.5]). Thus, in our situation, we conclude that the divisor (Ξ) + (𝑉 (1) ) − (𝑉) − (∞) is
principal, and we denote the function with that divisor 𝑓 ∈ 𝐻 (𝑡, 𝑦) (recall H is the Hilbert class field of
A), normalized so that s̃gn( 𝑓 ) = 1. We call this the shtuka function associated to X; that is,

div( 𝑓 ) = (Ξ) + (𝑉 (1) ) − (𝑉) − (∞). (1.5)

We will denote the denominator and numerator of the shtuka function as

𝑓 :=
𝜈(𝑡, 𝑦)

𝛿(𝑡)
:=

𝑦 − 𝜂 − 𝑚(𝑡 − 𝜃)

𝑡 − 𝛼
, (1.6)

where 𝑚 ∈ 𝐻 is the slope on X (in the sense of [49, III.2.3]) between the collinear points 𝑉 (1) ,−𝑉 and
Ξ. From [36, (19)-(20)], we get deg(𝑚) = 𝑞, and

div(𝜈) = (𝑉 (1) ) + (−𝑉) + (Ξ) − 3(∞), div(𝛿) = (𝑉) + (−𝑉) − 2(∞). (1.7)

Definition 1.2. 1) An abelian A-motive is a 𝐾 [𝑡, 𝑦, 𝜏]-module M which is a finitely generated projective
𝐾 [𝑡, 𝑦]-module and free finitely generated 𝐾 [𝜏]-module such that for ℓ � 0, we have

(𝑡 − 𝜃)ℓ (𝑀/𝜏𝑀) = {0}, (𝑦 − 𝜂)ℓ (𝑀/𝜏𝑀) = {0}.

2) An A-finite dual A-motive is a 𝐾 [𝑡, 𝑦, 𝜎]-module N which is a finitely generated projective
𝐾 [𝑡, 𝑦]-module and free finitely generated 𝐾 [𝜎]-module such that for ℓ � 0, we have

(𝑡 − 𝜃)ℓ (𝑁/𝜎𝑁) = {0}, (𝑦 − 𝜂)ℓ (𝑁/𝜎𝑁) = {0}.

Note that our definitions here are in line with [15, §1.5.4], rather than the more general definition given
in [38, Def. 2.4.1].

We then let 𝑈 = Spec 𝐾 [𝑡, 𝑦] (i.e., the affine curve (𝐾 ×F𝑞 𝑋) \ {∞}). For a divisor D on the curve
X, we let L(𝐷) be the 𝐾-vector space of rational functions g on X with div(𝑔) ≥ −𝐷. The (geometric)
A-motive associated to X is given by

𝑀1 = Γ(𝑈,O𝑋 (𝑉)) =
⋃
𝑖≥0

L((𝑉) + 𝑖(∞)).

We make 𝑀1 into a left 𝐾 [𝑡, 𝑦, 𝜏]-module by letting 𝜏 act by

𝜏𝑔 = 𝑓 𝑔 (1) , 𝑔 ∈ 𝑀1,

and letting 𝐾 [𝑡, 𝑦] act by left multiplication.
The (geometric) dual A-motive associated to X is given by

𝑁1 = Γ
(
𝑈,O𝑋 (−(𝑉

(1) ))
)
=
⋃
𝑖≥1

L(−(𝑉 (1) ) + 𝑖(∞)) ⊆ 𝐾 [𝑡, 𝑦] . (1.8)
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We make 𝑁1 into a left 𝐾 [𝑡, 𝑦, 𝜎]-module by letting 𝜎 act by

𝜎𝑔 = 𝑓 𝑔 (−1) , 𝑔 ∈ 𝑁1,

and letting 𝐾 [𝑡, 𝑦] act by left multiplication.
We find that 𝑀1 and 𝑁1 are projective 𝐾 [𝑡, 𝑦]-module of rank 1, that 𝑀1 is as a free 𝐾 [𝜏]-module of

rank 1 and that 𝑁1 is as a free 𝐾 [𝜎]-module of rank 1 (see [36, §3] for proofs of these facts). A quick
check shows that 𝑀1 (resp. 𝑁1) is indeed an abelian A-motive (resp. A-finite dual A-motive).

We now follow as in [34, §3] and form the nth tensor power of 𝑀1 and of 𝑁1 and denote these as

𝑀𝑛 = 𝑀 ⊗𝑛
1 = 𝑀1 ⊗𝐾 [𝑡 ,𝑦 ] · · · ⊗𝐾 [𝑡 ,𝑦 ] 𝑀1,

𝑁𝑛 = 𝑁 ⊗𝑛
1 = 𝑁1 ⊗𝐾 [𝑡 ,𝑦 ] · · · ⊗𝐾 [𝑡 ,𝑦 ] 𝑁1,

with 𝜏 and 𝜎 action on 𝑎 ∈ 𝑀𝑛 and 𝑏 ∈ 𝑁𝑛 given respectively by

𝜏𝑎 = 𝑓 𝑛𝑏 (1) , 𝜎𝑏 = 𝑓 𝑛𝑏 (−1) .

Observe that

𝑀𝑛 = Γ(𝑈,O𝑋 (𝑛𝑉)), 𝑁𝑛 � Γ(𝑈,O𝑋 (−𝑛𝑉
(1) ))

and that 𝑀𝑛 (resp. 𝑁𝑛) is also an A-motive (resp. a dual A-motive). Again, 𝑀𝑛 and 𝑁𝑛 are projective
𝐾 [𝑡, 𝑦]-modules of rank 1. Further, 𝑀𝑛 is a free 𝐾 [𝜏]-module of rank n, and 𝑁𝑛 is a free 𝐾 [𝜎]-module
of rank n.

We write down convenient bases for 𝑀𝑛 and 𝑁𝑛 as free 𝐾 [𝜏]- and 𝐾 [𝜎]-modules, respectively (see
[34, Prop. 3.3]). Define functions 𝑔𝑖 ∈ 𝑀𝑛 for 1 ≤ 𝑖 ≤ 𝑛 with s̃gn(𝑔𝑖) = 1 and with divisors

div(𝑔 𝑗 ) = −𝑛(𝑉) + (𝑛 − 𝑗) (∞) + ( 𝑗 − 1) (Ξ) + ([ 𝑗 − 1]𝑉 (1) + [𝑛 − ( 𝑗 − 1)]𝑉), (1.9)

and similarly define functions ℎ𝑖 ∈ 𝑁𝑛 for 1 ≤ 𝑖 ≤ 𝑛, each with s̃gn(ℎ𝑖) = 1 and with divisor

div(ℎ 𝑗 ) = 𝑛(𝑉 (1) ) − (𝑛 + 𝑗) (∞) + ( 𝑗 − 1) (Ξ) + (−[𝑛 − ( 𝑗 − 1)]𝑉 (1) − [ 𝑗 − 1]𝑉). (1.10)

Then we have

𝑀𝑛 = 𝐾 [𝜏]{𝑔1, . . . , 𝑔𝑛}, 𝑁𝑛 = 𝐾 [𝜎]{ℎ1, . . . , ℎ𝑛}.

For 𝑔 ∈ 𝑁𝑛, we set 𝑚 = �deg(𝑔)/𝑛� and define two maps

𝛿0, 𝛿1 : 𝑁𝑛 → 𝐾
𝑛

in the following way. We write g in the 𝐾 [𝜎]-basis for 𝑁𝑛 described in (1.10),

𝑔 =
𝑚∑
𝑖=0

𝑛∑
𝑗=1

𝑏 (−𝑖)
𝑗 ,𝑖 𝜎𝑖ℎ𝑛− 𝑗+1, (1.11)

then denote b𝑖 = (𝑏1,𝑖 , 𝑏2,𝑖 , . . . , 𝑏𝑛,𝑖)
�, and set

𝛿0 (𝑔) = b0, 𝛿1(𝑔) = b0 + b1 + · · · + b𝑚. (1.12)

We then observe that the kernel of 𝛿1 equals (𝜎 − 1)𝑁𝑛 and that 𝑁𝑛/(𝜎 − 1)𝑁𝑛
𝛿1
−−→ 𝐾

𝑛 is an
isomorphism of F𝑞-vector spaces. Thus, we can write the commutative diagram of F𝑞-vector spaces
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𝑁𝑛/(1 − 𝜎)𝑁𝑛
𝛿1

> 𝐾
𝑛

𝑁𝑛/(1 − 𝜎)𝑁𝑛

𝑎
∨ 𝛿1

> 𝐾
𝑛
,

𝜌⊗𝑛
𝑎∨

(1.13)

where the left vertical arrow is multiplication by a and the right vertical arrow is the map induced by
multiplication by a, which we denote by 𝜌⊗𝑛

𝑎 .

Definition 1.3. By [38, Prop. 2.5.8], we know that 𝜌⊗𝑛 induces the structure of an A-module on 𝐾
𝑛

and that it satisfies the conditions of being an Anderson A-module. In this way, to each curve X, for
fixed n, we associate a canonical n-dimensional Anderson A-module. We call 𝜌 := 𝜌⊗1 the canonical
sign-normalized rank 1 Drinfeld module associated to X, and we call 𝜌⊗𝑛 the nth tensor power of 𝜌.

Proposition 1.4. We recall the following two facts about the functions 𝑔𝑖 and ℎ𝑖 from [34, §4].

1. For 1 ≤ 𝑖 ≤ 𝑛, there exist constants 𝑎𝑖 , 𝑏𝑖 ∈ 𝐻 such that we can write

𝑡𝑔𝑖 = 𝜃𝑔𝑖 + 𝑎𝑖𝑔𝑖+1 + 𝑔𝑖+2,

𝑡ℎ𝑖 = 𝜃ℎ𝑖 + 𝑏𝑖ℎ𝑖+1 + ℎ𝑖+2.

2. For the constants defined in (1), we have 𝑎 𝑗 = 𝑏𝑛− 𝑗 for 1 ≤ 𝑗 ≤ 𝑛 − 1 and 𝑎𝑛 = 𝑏𝑞
𝑛 .

We can write down the matrices defining 𝜌⊗𝑛
𝑡 using the coefficients 𝑎𝑖 ∈ 𝐻 from Proposition 1.4, for

𝑛 ≥ 2:

𝜌⊗𝑛
𝑡 := 𝑑 [𝜃] + 𝐸𝜃𝜏 :=

������������

𝜃 𝑎1 1 0 . . . 0 0 0
0 𝜃 𝑎2 1 . . . 0 0 0
0 0 𝜃 𝑎3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 𝜃 𝑎𝑛−2 1
0 0 0 0 . . . 0 𝜃 𝑎𝑛−1
0 0 0 0 . . . 0 0 𝜃

������������
+

��������

0 0 0 . . . 0
...

...
...
. . .

...
0 0 0 . . . 0
1 0 0 . . . 0
𝑎𝑛 1 0 . . . 0

��������
𝜏. (1.14)

The t-action of the Drinfeld A-module 𝜌 is given by

𝜌𝑡 = 𝜃 + 𝑥1𝜏 + 𝜏2, 𝑥1 ∈ 𝐵,

(see [36, §3] for more details on this construction).

Remark 1.5. We comment by way of clarification for the reader that Formula (1.14) does reduce
down to give the Drinfeld module 𝜌 in the case of 𝑛 = 1, but it is not intuitive how to interpret these
formulas. For example, the 1’s on the super-super diagonal turn into 𝜏2, which is not obvious just from
the formulas. For the sake of clarity, we will often state our formulas separately for the 𝑛 = 1 and the
𝑛 ≥ 2 case in this paper. A discussion of the relationship between these cases is given in Remark 1.1 of
[34]. Additionally, the case of 𝑛 = 1 is treated exhaustively in [36], and we refer the reader to these two
sources for further discussion.

The logarithm and exponential functions associated to 𝜌⊗𝑛 will be denoted Log⊗𝑛
𝜌 and Exp⊗𝑛

𝜌 ,
respectively, and the kernel of Exp⊗𝑛

𝜌 will be denoted by Λ⊗𝑛
𝜌 , which we call the period lattice of 𝜌⊗𝑛.

We recall the Tate algebra T in the variable t with coefficients in C∞ as in §1.1.2,

T =

{ ∞∑
𝑖=0

𝑏𝑖𝑡
𝑖 ∈ C∞[[𝑡]]

���� ��𝑏𝑖

��
∞
→ 0

}
,
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where | · |∞ is the norm on C∞ given by |𝑔 |∞ = 𝑞deg(𝑔) and its fraction field L. We now give a brief
review of the functions 𝜔𝜌, 𝐸 ⊗𝑛

u and 𝐺⊗𝑛
u defined in [34, §5-6]. Let

𝜔𝜌 = 𝜉1/(𝑞−1)
∞∏
𝑖=0

𝜉𝑞𝑖

𝑓 (𝑖)
∈ T[𝑦]×, (1.15)

where 𝑓 ∈ 𝐻 (𝑡, 𝑦) is the shtuka function defined above, and we refer the reader to [36, Thm. 4.6] for
the definition of 𝜉 ∈ 𝐻 and for details on convergence. Observe that 𝜔𝜌 satisfies the functional equation
𝜔 (1)

𝜌 = 𝑓 𝜔𝜌. For u = (𝑢1, ..., 𝑢𝑛)
� ∈ C𝑛

∞, define

𝐸 ⊗𝑛
u (𝑡) =

∞∑
𝑖=0

Exp⊗𝑛
𝜌

(
𝑑 [𝜃]−𝑖−1u

)
𝑡𝑖 , (1.16)

𝐺⊗𝑛
u (𝑡, 𝑦) = 𝐸 ⊗𝑛

𝑑 [𝜂 ]u (𝑡) + (𝑦 + 𝑐1𝑡 + 𝑐3)𝐸
⊗𝑛
u (𝑡). (1.17)

For 𝑛 = 1 and u = 𝑢 ∈ C∞, we will simplify notation by setting 𝐸𝑢 (𝑡) := 𝐸 ⊗1
u (𝑡) and 𝐺𝑢 (𝑡, 𝑦) :=

𝐺⊗1
u (𝑡, 𝑦).
Define M to be the submodule of T[𝑦] consisting of all elements in T[𝑦] which have a meromorphic

continuation to all of 𝑈 = Spec 𝐾 [𝑡, 𝑦] in the sense of [29, §4.6] (we comment that the sheaf of
meromorphic functions on a rigid space is a sheaf which locally looks like L, and its affine pieces
can be glued together coherently). Now define the map RESΞ : M𝑛 → C𝑛

∞ for a vector of functions
(𝑧1, ..., 𝑧𝑛)

� ∈ M𝑛 as

RESΞ((𝑧1, . . . , 𝑧𝑛)
�) = (ResΞ(𝑧1𝜆), . . . ,ResΞ(𝑧𝑛𝜆))�, (1.18)

where 𝜆 is the invariant differential on E (defined in §1.1).
We define a map 𝑇 : T[𝑦] → T[𝑦]𝑛 by

𝑇 (ℎ(𝑡, 𝑦)) =

������
ℎ(𝑡, 𝑦) · 𝑔1
ℎ(𝑡, 𝑦) · 𝑔2

...
ℎ(𝑡, 𝑦) · 𝑔𝑛

������
. (1.19)

We collect the following facts from [34, §5-6] about the above functions.

Proposition 1.6. We have the following properties:

(a) The function 𝐸 ⊗𝑛
u belongs to T𝑛.

(b) The function 𝐺⊗𝑛
u belongs to T[𝑦]𝑛 and extends to a meromorphic function on (C∞ ×F𝑞 𝑋) \ {∞}

with poles in each coordinate only at the points Ξ(𝑖) for 𝑖 ≥ 0.
(c) We have RESΞ(𝐺

⊗𝑛
u ) = −(𝑢1, . . . , 𝑢𝑛)

�.
(d) If we denote Π𝑛 = −RESΞ(𝑇 (𝜔

𝑛
𝜌)), then 𝑇 (𝜔𝑛

𝜌) = 𝐺⊗𝑛
Π𝑛

, and the period lattice of Exp⊗𝑛
𝜌 equals

Λ⊗𝑛
𝜌 = {𝑑 [𝑎]Π𝑛 | 𝑎 ∈ A}.

(e) If 𝜋𝜌 is a fundamental period of the exponential function associated to 𝜌, and if we denote the last
coordinate of Π𝑛 ∈ C𝑛

∞ by 𝑝𝑛, then 𝑝𝑛/𝜋
𝑛
𝜌 ∈ 𝐻 \ {0}.

1.4. A generalization of Anderson-Thakur’s theorem on elliptic curves

Recall that 𝜌 : A → C∞{𝜏} is the canonical sign-normalized rank one Drinfeld module associated to
the elliptic curve X constructed in the previous section and that H is the Hilbert class field of A. Let B
(or O𝐻 ) be the integral closure of A in H. We denote by G the Galois group Gal(𝐻/𝐾).
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We denote by I (𝐴) the group of fractional ideals of A. For 𝐼 ∈ I (𝐴), denote its Artin symbol by

𝜎𝐼 := (𝐼, 𝐻/𝐾) ∈ 𝐺. (1.20)

By [32], Proposition 7.4.2 and Corollary 7.4.9, the subfield of C∞ generated by K and the coefficients
of 𝜌𝑎 is H. Furthermore, by [32], Lemma 7.4.5, we get

∀𝑎 ∈ 𝐴, 𝜌𝑎 ∈ 𝐵{𝜏}.

Let I be a nonzero ideal of A. We define 𝜌𝐼 to be the monic element in 𝐻{𝜏} such that

𝐻{𝜏}𝜌𝐼 =
∑
𝑎∈𝐼

𝐻{𝜏}𝜌𝑎 .

We have

ker 𝜌𝐼 =
⋂
𝑎∈𝐼

ker 𝜌𝑎,

𝜌𝐼 ∈ 𝐵{𝜏},

deg𝜏 𝜌𝐼 = deg 𝐼 .

We write 𝜌𝐼 = 𝜌𝐼 ,0 + · · · + 𝜌𝐼 ,deg 𝐼 𝜏
deg 𝐼 with 𝜌𝐼 ,deg 𝐼 = 1 and denote by 𝜓(𝐼) ∈ 𝐵 \ {0} the constant

coefficient 𝜌𝐼 ,0 of 𝜌𝐼 . Thus, the map 𝜓 extends uniquely into a map 𝜓 : I (𝐴) → 𝐻× with the following
properties (proved in [39, Prop. 3.2 and Thm. 8.5]):
1) for all 𝐼, 𝐽 ∈ I (𝐴), 𝜓(𝐼𝐽) = 𝜎𝐽 (𝜓(𝐼)) 𝜓(𝐽),
2) for all 𝐼 ∈ I (𝐴), 𝐼𝐵 = 𝜓(𝐼)𝐵,
3) for all 𝑥 ∈ 𝐾×, 𝜓(𝑥𝐴) = 𝑥

sgn(𝑥) .
Finally, for 𝑛 ∈ N and 𝑏 ∈ 𝐵, we define Anderson’s zeta value at n attached to 𝜌 as follows:

𝜁𝜌 (𝑏, 𝑛) =
∑
𝐼 ⊆𝐴

𝜎𝐼 (𝑏)

𝜓(𝐼)𝑛
∈ 𝐾∞. (1.21)

By the work of Anderson (see [2], [3]), for any 𝑏 ∈ 𝐵, we have

exp𝜌 (𝜁𝜌 (𝑏, 1)) ∈ 𝐵. (1.22)

Remark 1.7. This is an example of log-algebraicity identities for Drinfeld modules. The theory began
with the work of Carlitz [16] where he proved the log-algebraicity identities for the Carlitz module
defined over F𝑞 [𝜃]. Further examples for Drinfeld modules over A which are PIDs were discovered by
Thakur [51, Thm. VI]. Shortly after, Anderson proved that (1.22) holds for any sign-normalized rank one
Drinfeld A-module, and this is known as Anderson’s log-algebraicity theorem. For alternative proofs of
this theorem, we refer the reader to [52, §8] for the F𝑞 [𝜃]-case, [36] for the case of elliptic curves and
[6] for the general case.

The following theorem is a generalization of the celebrated Anderson-Thakur theorem for tensor
powers of the Carlitz module (see [5], Theorem 3.8.3).
Theorem 1.8 (Anglès-Ngo Dac-Tavares Ribeiro [8] for any n and Green [33] for 𝑛 < 𝑞). Let 𝑛 ≥ 1 be
an integer. Then there exists a constant 𝐶𝑛 ∈ 𝐻 such that for 𝑏 ∈ 𝐵, there exists a vector 𝑍𝑛 (𝑏) ∈ C

𝑛
∞

verifying the following properties:
1) We have Exp⊗𝑛

𝜌 (𝑍𝑛 (𝑏)) ∈ 𝐻𝑛.
2) The last coordinate of 𝑍𝑛 (𝑏) is equal to 𝐶𝑛𝜁𝜌 (𝑏, 𝑛).
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1.5. Linear relations among Anderson’s zeta values

In this section, we determine completely linear relations among Anderson’s zeta values and powers of
𝜋𝜌 associated to an elliptic curve over F𝑝 . In the genus 0 case, this was done by Yu (see [55], Theorem
3.1 and [56], Theorem 4.1). His works are built on two main ingredients. The first one is Yu’s theory
where he developed an analogue of Wüstholz’s analytic subgroup theorem for function fields, and the
second one is the Anderson-Thakur theorem mentioned in the previous section. The main result of this
section extends Yu’s work to elliptic curves.

Recall that A = F𝑞 [𝑡, 𝑦], where t and y satisfy the Weierstrass equation (1.1). Following Green (see
[33], Section 7), we still denote by 𝜌 : F𝑞 [𝑡] −→ C∞{𝜏} the DrinfeldF𝑞 [𝑡]-module induced by forgetting
the y-action of the sign-normalized rank 1 Drinfeld module 𝜌 of the previous sections. Similarly, we
denote by 𝜌⊗𝑛 : F𝑞 [𝑡] −→ Mat𝑛 (C∞){𝜏} the Anderson F𝑞 [𝑡]-module defined by forgetting the y-action.
Basic properties of this Anderson module are given below.

Proposition 1.9 (Green [33], Lemmas 7.2 and 7.3).

1) The Anderson F𝑞 [𝑡]-module 𝜌⊗𝑛 : F𝑞 [𝑡] −→ Mat𝑛 (C∞){𝜏} is simple in the sense of Yu (see [55,
56]).

2) The Anderson F𝑞 [𝑡]-module 𝜌⊗𝑛 : F𝑞 [𝑡] −→ Mat𝑛 (C∞){𝜏} has endomorphism algebra equal to A.

We slightly generalize [33], Theorem 7.1 to obtain the following theorem which settles the problem of
determining linear relations among Anderson’s zeta values and periods attached to 𝜌, which generalizes
the work of Yu.

Theorem 1.10. Let {𝑏1, . . . , 𝑏ℎ} be a K-basis of H with 𝑏𝑖 ∈ 𝐵. We consider the following sets for
𝑚, 𝑠 ≥ 1:

R := {𝜋𝑘
𝜌 , 0 ≤ 𝑘 ≤ 𝑚} ∪ {𝜁𝜌 (𝑏𝑖 , 𝑛) : 1 ≤ 𝑖 ≤ ℎ, 1 ≤ 𝑛 ≤ 𝑠 such that 𝑞 − 1 � 𝑛},

R′ := {𝜋𝑘
𝜌 , 0 ≤ 𝑘 ≤ 𝑚} ∪ {𝜁𝜌 (𝑏𝑖 , 𝑛) : 1 ≤ 𝑖 ≤ ℎ, 1 ≤ 𝑛 ≤ 𝑠}.

Then
1) The 𝐾-vector space generated by the elements in R and that generated by those in R′ are the same.
2) The elements in R are linearly independent over 𝐾 .

Proof. The proof follows the same lines as Yu’s celebrated theorem [56, Th.m 4.1] (see also [33, Thm.
7.1]). We provide a proof for the convenience of the reader.

Recall that for 𝑛 ∈ N, the Anderson A-module 𝜌⊗𝑛 induces the structure of an F𝑞 [𝑡]-module which,
by abuse of notation, we also denote by 𝜌⊗𝑛. Also recall that h is the class number of A. We consider
the product of t-modules

𝐺 = G𝑎 ×

(
𝑚∏

𝑘=1
𝜌⊗𝑘

)
×

�����
𝑠∏

𝑛=1
𝑞−1�𝑛

(
𝜌⊗𝑛) ⊕ℎ

�����,
where we view G𝑎 in the first coordinate as a trivial t-module with the scalar A-action and with
exponential function exp𝐺𝐿 (𝑧) = 𝑧.

For 1 ≤ 𝑛 ≤ 𝑠, set 𝑍𝑛 (𝑏𝑖) = (∗, . . . , ∗, 𝐶𝑛𝜁𝜌 (𝑏𝑖 , 𝑛))
� ∈ C𝑛

∞ to be a vector from Theorem 1.8 such
that Exp⊗𝑛

𝜌 (𝑍𝑛 (𝑏𝑖)) ∈ 𝐻𝑛. For 1 ≤ 𝑘 ≤ 𝑚, let Π𝑘 ∈ C𝑘
∞ be a fundamental period of Exp⊗𝑘

𝜌 so that the
bottom coordinate of Π𝑘 is a multiple of 𝜋𝑘

𝜌 by a nonzero element of H (see [34, Thm. 6.7] for the exact
multiple). Define the vector
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u = 1 ×

(
𝑚∏

𝑘=1
Π𝑘

)
×

�����
𝑠∏

𝑛=1
𝑞−1�𝑛

ℎ∏
𝑖=1

𝑍𝑛 (𝑏𝑖)

����� ∈ 𝐺 (C∞)

and note Exp𝐺 (u) ∈ 𝐺 (𝐻), where Exp𝐺 is the exponential function on G, defined coordinatewise.
Suppose, by contradiction, that there is a 𝐾-linear relation among the 𝜁𝜌 (𝑏𝑖 , 𝑛) and 𝜋𝑘

𝜌 . This implies
that u is contained in a 𝑑 [F𝑞 [𝑡]]-invariant hyperplane of 𝐺 (C∞) defined over 𝐾 . This allows us to apply
[56, Thm. 3.3], which says that u is in Lie𝐺′ (𝐾) for a proper t-submodule 𝐺 ′ ⊂ 𝐺. Then Proposition
1.9 together with [56, Thm. 1.3] implies that there exist 1 ≤ 𝑛 ≤ 𝑠 with 𝑞 − 1 � 𝑛 and a linear relation
of the form

ℎ∑
𝑖=1

𝑎𝑖𝜁𝜌 (𝑏𝑖 , 𝑛) + 𝑏𝜋𝑛
𝜌 = 0

for some 𝑎𝑖 , 𝑏 ∈ 𝐴 not all zero. Since 𝜁𝜌 (𝑏𝑖 , 𝑛) ∈ 𝐾∞ and since 𝐻 ⊂ 𝐾∞, this implies that 𝑏𝜋𝑛
𝜌 ∈ 𝐾∞.

Since 𝑞 − 1 � 𝑛, we know that 𝜋𝑛
𝜌 ∉ 𝐾∞. It follows that 𝑏 = 0 and hence

∑ℎ
𝑖=1 𝑎𝑖𝜁𝜌 (𝑏𝑖 , 𝑛) = 0. Since

𝑎𝑖 ∈ 𝐴, we get

0 =
ℎ∑

𝑖=1
𝑎𝑖𝜁𝜌 (𝑏𝑖 , 𝑛) = 𝜁𝜌

(
ℎ∑

𝑖=1
𝑎𝑖𝑏𝑖 , 𝑛

)
.

We deduce that
∑ℎ

𝑖=1 𝑎𝑖𝑏𝑖 = 0. Since {𝑏𝑖} is a K-basis of H, this forces 𝑎𝑖 = 0 for all i. This provides a
contradiction and proves the theorem. �

As explained by B. Anglès, 2 the following result is attributed to Carlitz and Goss (see [31, Thm.
3.2.2]) which improves [7], Theorem 5.7 and [33], Corollary 7.4.
Proposition 1.11. Let 𝑛 ≥ 1, 𝑛 ≡ 0 (mod 𝑞−1) be an integer. Then for 𝑏 ∈ 𝐵, we have 𝜁𝜌 (𝑏, 𝑛)/𝜋

𝑛
𝜌 ∈

𝐾 .

1.6. Papanikolas’s work

We review Papanikolas’ theory [47] (see also [1, 4]) and work with t-motives. Let 𝐾 [𝑡, 𝜎] be the
polynomial ring in variables t and 𝜎 with the rules

𝑎𝑡 = 𝑡𝑎, 𝜎𝑡 = 𝑡𝜎, 𝜎𝑎 = 𝑎1/𝑞𝜎, 𝑎 ∈ 𝐾.

Definition 1.12. An Anderson dual t-motive is a left 𝐾 [𝑡, 𝜎]-module N which is free and finitely
generated both as a left 𝐾 [𝑡]-module and as a left 𝐾 [𝜎]-module and which satisfies

(𝑡 − 𝜃)𝑑𝑁 ⊂ 𝜎𝑁

for some integer d sufficiently large.
We consider 𝐾 (𝑡) [𝜎, 𝜎−1] the ring of Laurent polynomials in 𝜎 with coefficients in 𝐾 (𝑡).

Definition 1.13. A pre-t-motive is a left 𝐾 (𝑡) [𝜎, 𝜎−1]-module that is finite dimensional over 𝐾 (𝑡).
The category of pre-t-motives is abelian, and there is a natural functor from the category of Anderson

dual t-motives to the category of pre-t-motives

𝑁 ↦→ 𝑀 := 𝐾 (𝑡) ⊗𝐾 [𝑡 ] 𝑁,

where 𝜎 acts diagonally on M.

2Personal communication in July 2019.
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We now consider pre-t-motives M which are rigid analytically trivial, which we describe here. Let
{m} ∈ Mat𝑟×1(𝑀) be a 𝐾 (𝑡)-basis of M and let Φ ∈ GL𝑟 (𝐾 [𝑡]) be the matrix representing the
multiplication by 𝜎 on M:

𝜎(m) = Φm.

We recall that T is the Tate algebra (Definition 1.2) in variable t with coefficients in C∞ and that L is the
fraction field of the Tate algebra T. We say that M is rigid analytically trivial if there exists Ψ ∈ GL𝑟 (L)

such that

Ψ (−1) = ΦΨ.

We set 𝑀† := L⊗𝐾 (𝑡) 𝑀 on which 𝜎 acts diagonally and define 𝐻Betti(𝑀) to be the sub F𝑞 (𝑡)-vector
space of the elements of 𝑀† which are fixed by 𝜎. We call 𝐻Betti(𝑀) the Betti cohomology of M. It is
shown in [47, Prop. 3.3.9] that M is rigid analytically trivial if and only if the natural map

L ⊗F𝑞 (𝑡) 𝐻Betti(𝑀) → 𝑀†

is an isomorphism. We then call Ψ a rigid analytical trivialization for the matrix Φ.
The category of pre-t-motives which are rigid analytically trivial is a neutral Tannakian category

over F𝑞 (𝑡) with the fiber functor 𝜔 which maps 𝑀 ↦→ 𝐻Betti(𝑀) (see [47], Theorem 3.3.15).

Definition 1.14. The strictly full Tannakian subcategory generated by the images of rigid analytically
trivial Anderson dual t-motives is called the category of t-motives and is denoted by T (see [47],
Section 3.4.10). By [38], Remark 2.4.15, this category is equivalent to the category of uniformizable
dual F𝑞 [𝑡]-motives given in [38], Definition 2.4.14.

By Tannakian duality, for each (rigid analytically trivial) t-motive M, the Tannakian subcategory
generated by M is equivalent to the category of finite dimensional representations over F𝑞 (𝑡) of some
algebraic group Γ𝑀 called the (motivic) Galois group of the t-motive M. Further, we have a faithful
representation Γ𝑀 ↩→ GL(𝐻Betti(𝑀)), which is called the tautological representation of M.

Papanikolas proved an analogue of Grothendieck’s period conjecture which unveils a deep connection
between Galois groups of t-motives and transcendence.

Theorem 1.15 (Papanikolas [47], Theorem 1.1.7). Let M be a t-motive and let Γ𝑀 be its Galois group.
Suppose that Φ ∈ GL𝑛 (𝐾 (𝑡)) ∩ Mat𝑛×𝑛 (𝐾 [𝑡]) represents the multiplication by 𝜎 on M and that
detΦ = 𝑐(𝑡 − 𝜃)𝑠, 𝑐 ∈ 𝐾

×. If Ψ ∈ GL𝑛 (T) is a rigid analytic trivialization for Φ, then the entries of Ψ
may be evaluated at 𝜃 and

tr. deg𝐾 𝐾 (Ψ(𝜃)) = dim Γ𝑀 .

Papanikolas also shows that Γ𝑀 equals the Galois group ΓΨ of the Frobenius difference equation
corresponding to M (see [47], Theorem 4.5.10). This provides a method to explicitly compute the Galois
groups for t-motives in many cases. This is a very powerful tool and has led to major transcendence
results in the last decade. We refer the reader to [4, 17, 18, 19, 20, 21, 22, 23] for more details about
transcendence applications.

Papanikolas proved that Γ𝑀 is an affine algebraic groupe scheme over F𝑞 (𝑡) which is absolutely
irreducible and smooth over F𝑞 (𝑡) (see [47], Theorems 4.2.11, 4.3.1 and 4.5.10). Further, for any F𝑞 (𝑡)-
algebra R, the map

Γ𝑀 (𝑅) → GL(𝑅 ⊗F𝑞 (𝑡) 𝐻Betti(𝑀))
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is given by the tautological map

𝛾 ↦→ (1 ⊗ Ψ−1m ↦→ (𝛾−1 ⊗ 1) · (1 ⊗ Ψ−1m)). (1.23)

1.7. Hardouin’s work

In this section, we review the work of Hardouin [37] on unipotent radicals of Tannakian groups in
positive characteristic. Let F be a field and (T , 𝜔) be a neutral Tannakian category over F with fiber
functor 𝜔. We denote by G𝑚 the multiplicative group over F. For an object U ∈ T , we denote by ΓU
the Galois group of U . Let 1 be the unit object for the tensor product and Y be a completely reducible
object, which means that Y is a direct sum of finitely many irreducible objects. We consider extensions
U ∈ Ext1 (1,Y) of 1 by Y , which means that we have a short exact sequence

0 → Y → U → 1 → 0.

For such an extension U , the Galois group ΓU of U is isomorphic to the semi-direct product

ΓU = 𝑅𝑢 (U ) � ΓY ,

where 𝑅𝑢 (U ) stands for the unipotent part of ΓU . Therefore, with the knowledge of ΓY , we reduce the
computation of ΓU to that of its unipotent part. In [37], Hardouin proves several fundamental results
which characterize 𝑅𝑢 (U ) in terms of the extension group Ext1(1,Y). In the next result, we keep the
same notation as above, and we remind the reader that the action of a group G on a module V is isotypic
if the module V is the direct sum of irreducible isomorphic G-modules.

Theorem 1.16 (Hardouin [37], Theorem 2). Assume that

1. every ΓY -module is completely reducible,
2. the center of ΓY contains G𝑚,
3. the action of G𝑚 on 𝜔(Y) is isotypic,
4. ΓU is reduced.

Then there exists a smallest sub-object V of Y such that U/V is a trivial extension of 1 by Y/V . Further,
the unipotent part 𝑅𝑢 (U ) of the Galois group ΓU is equal to 𝜔(V).

As a consequence, Hardouin proves the following corollary which states that algebraic relations
between the extensions are exactly given by the linear relations. We continue with the above notation.

Corollary 1.17 (Hardouin [37], Corollary 1). Let E1, . . . , E𝑛 be extensions of 1 by Y . Assume that

1. every ΓY -module is completely reducible,
2. the center of ΓY contains G𝑚,
3. the action of G𝑚 on 𝜔(Y) is isotypic,
4. ΓE1 , . . . , ΓE𝑛 are reduced.

If E1, . . . , E𝑛 are End(Y)-linear independent in Ext1(1,Y), then the unipotent radical of the Galois
group ΓE1⊕...⊕E𝑛 of the direct sum E1 ⊕ . . . ⊕ E𝑛 is isomorphic to 𝜔(Y)𝑛.

We remark that we will apply this theorem and its corollary in §3.6 to the t-motives X ⊗𝑛
𝜌 and X𝑛 (𝑏),

which are defined in §2.2 and §3.2.

2. Constructing t-motives connected to periods

From now on, we investigate the problem of determining algebraic relations between special zeta values
and periods attached to 𝜌, the canonical, sign-normalized rank 1 Drinfeld module attached to X of the
previous section. For the Carlitz module, this was done by Chang and Yu [23] using the machinery of
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Papanikolas [47] (see Section 1.6). For our setting, we will also need the results of Hardouin [37] (see
Section 1.7).

2.1. The t-motive associated to 𝜌

We follow the construction given by Chang-Papanikolas [18], Sections 3.3 and 3.4. Recall that B is the
integral closure of A in the Hilbert class field H. We consider 𝜌 : F𝑞 [𝑡] −→ 𝐵{𝜏} from Definition 1.3
as a Drinfeld F𝑞 [𝑡]-module of rank 2 by forgetting the y action. We recall

𝜌𝑡 = 𝜃 + 𝑥1𝜏 + 𝜏2, 𝑥1 ∈ 𝐵

(see [36, §3] for more details on this construction). For u = 𝑢 ∈ C∞, we denote the associated Anderson
generating function 𝐸𝑢 (𝑡) := 𝐸 ⊗1

u (𝑡) given by Equation (1.16). This function extends meromorphically
to all of C∞ with simple poles at 𝑡 = 𝜃𝑞𝑖 , 𝑖 ≥ 0. Further, it satisfies the functional equation

𝜌𝑡 (𝐸𝑢 (𝑡)) = exp𝜌 (𝑢) + 𝑡𝐸𝑢 (𝑡).

In other words, we have

𝜃𝐸𝑢 (𝑡) + 𝑥1𝐸𝑢 (𝑡)
(1) + 𝐸𝑢 (𝑡)

(2) = exp𝜌 (𝑢) + 𝑡𝐸𝑢 (𝑡).

Now we fix an F𝑞 [𝑡]-basis 𝑢1 = 𝜋𝜌 and 𝑢2 = 𝜂𝜋𝜌 of the period lattice Λ𝜌 of 𝜌. We set 𝐸𝑖 := 𝐸𝑢𝑖 for
𝑖 = 1, 2. We define the following matrices:

Φ𝜌 =

(
0 1

𝑡 − 𝜃 −𝑥 (−1)
1

)
∈ Mat2×2(𝐾 [𝑡]), Υ =

(
𝐸1 𝐸 (1)

1
𝐸2 𝐸 (1)

2

)
∈ Mat2×2(T),

Θ =

(
0 𝑡 − 𝜃
1 −𝑥1

)
∈ Mat2×2(𝐾 [𝑡]), 𝑉 =

(
𝑥1 1
1 0

)
∈ Mat2×2 (𝐾).

Then we set

Ψ𝜌 := 𝑉−1(Υ(1) )−1.

Since 𝑉 (−1)Φ𝜌 = Θ𝑉 and Υ(1) = ΥΘ, we get

Ψ (−1)
𝜌 = Φ𝜌Ψ𝜌 .

2.2. The t-motive associated to 𝜌⊗𝑛

Let 𝑛 ≥ 2 be an integer. Recall the definition of 𝜌⊗𝑛 from Definition 1.3. By forgetting the y-action, the
Anderson A-module 𝜌⊗𝑛 can be considered as an Anderson F𝑞 [𝑡]-module given by

𝜌⊗𝑛
𝑡 = 𝑑 [𝜃] + 𝐸𝜃𝜏

(see (1.14) for explicit formulas of 𝑑 [𝜃] and 𝐸𝜃 ). For u = (𝑢1, . . . , 𝑢𝑛)
� ∈ Mat𝑛×1 (C∞), recall the

associated Anderson generating function 𝐸 ⊗𝑛
u (𝑡) given by Equation (1.16). It satisfies the functional

equation

𝜌𝑡 (𝐸
⊗𝑛
u (𝑡)) = Exp⊗𝑛

𝜌 (u) + 𝑡𝐸 ⊗𝑛
u (𝑡).
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As n is fixed throughout this section, to simplify notation, we will suppress the dependence on n and
denote the coordinates of

𝐸 ⊗𝑛
u (𝑡) := (𝐸u,1, . . . , 𝐸u,𝑛)

�, (2.1)

and similarly for other vector valued functions. Recall the definitions of the functions ℎ𝑖 and the
coefficients 𝑎𝑖 and 𝑏𝑖 from Proposition 1.4. For 1 ≤ 𝑖 ≤ 𝑛, we set

Θ𝑖 =

(
0 1

𝑡 − 𝜃 −𝑎𝑖

)
, 𝜙𝑖 =

(
0 1

𝑡 − 𝜃 −𝑏𝑖

)
.

From Proposition 1.4, we have(
ℎ𝑖+1
ℎ𝑖+2

)
=

(
0 1

𝑡 − 𝜃 −𝑏𝑖

) (
ℎ𝑖

ℎ𝑖+1

)
= 𝜙𝑖

(
ℎ𝑖

ℎ𝑖+1

)
.

We define

Φ⊗𝑛
𝜌 = 𝜙𝑛 . . . 𝜙1 =

(
0 1

𝑡 − 𝜃 −𝑏𝑛

)
· · ·

(
0 1

𝑡 − 𝜃 −𝑏1

)
∈ Mat2×2(𝐾 [𝑡]).

It follows that (
ℎ1
ℎ2

) (−1)
=

(
ℎ𝑛+1
ℎ𝑛+2

)
= Φ⊗𝑛

𝜌

(
ℎ1
ℎ2

)
.

Now we fix u1 = Π𝑛 and u2 = 𝑑 [𝜂]Π𝑛 such that {u1, u2} is a basis of the period lattice Λ⊗𝑛
𝜌 of 𝜌⊗𝑛,

where Π𝑛 is defined in Proposition 1.6(d). We denote by 𝐸 ⊗𝑛
𝑖 = 𝐸 ⊗𝑛

u𝑖 for 𝑖 = 1, 2. When the dimension
n is fixed, we will often drop the ⊗𝑛 from our notation to avoid clutter. Then

𝜌𝑡 (𝐸
⊗𝑛
𝑖 ) = Exp⊗𝑛

𝜌 (u𝑖) + 𝑡𝐸 ⊗𝑛
𝑖 = 𝑡𝐸 ⊗𝑛

𝑖 .

If we set

Θ = Θ𝑛 . . .Θ1 =

(
0 1

𝑡 − 𝜃 −𝑎𝑛

)
· · ·

(
0 1

𝑡 − 𝜃 −𝑎1

)
∈ Mat2×2(𝐾 [𝑡]),

and

Υ =

(
𝐸1,1 𝐸2,1
𝐸1,2 𝐸2,2

)
∈ Mat2×2(T), (2.2)

then we obtain

Υ(1) = ΘΥ.

We define

𝑉 =

(
𝑎𝑛 1
1 0

)
∈ Mat2×2 (𝐾).

Note that V is symmetric and

𝑉 (−1) =

(
𝑏𝑛 1
1 0

)
.
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We claim that

𝑉 (−1)Φ⊗𝑛
𝜌 = (Θ�)𝑉. (2.3)

In fact, recall from Proposition 1.4 that 𝑏𝑖 = 𝑎𝑛−𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑎𝑛 = 𝑏𝑞
𝑛 . It is clear that for any

𝑥 ∈ C∞, we have (
𝑡 − 𝜃 0

0 1

) (
0 1

𝑡 − 𝜃 𝑥

)
=

(
0 𝑡 − 𝜃
1 𝑥

) (
𝑡 − 𝜃 0

0 1

)
.

Then the claim follows immediately:

𝑉 (−1)Φ⊗𝑛
𝜌 =

(
𝑏𝑛 1
1 0

) (
0 1

𝑡 − 𝜃 −𝑏𝑛

)
· · ·

(
0 1

𝑡 − 𝜃 −𝑏1

)
=

(
𝑡 − 𝜃 0

0 1

) (
0 1

𝑡 − 𝜃 −𝑏𝑛−1

)
· · ·

(
0 1

𝑡 − 𝜃 −𝑏1

)
=

(
0 𝑡 − 𝜃
1 −𝑏𝑛−1

) (
𝑡 − 𝜃 0

0 1

) (
0 1

𝑡 − 𝜃 −𝑏𝑛−2

)
· · ·

(
0 1

𝑡 − 𝜃 −𝑏1

)
= · · ·

=

(
0 𝑡 − 𝜃
1 −𝑏𝑛−1

)
· · ·

(
0 𝑡 − 𝜃
1 −𝑏1

) (
𝑡 − 𝜃 0

0 1

)
=

(
0 𝑡 − 𝜃
1 −𝑎1

)
· · ·

(
0 𝑡 − 𝜃
1 −𝑎𝑛−1

) (
𝑡 − 𝜃 0

0 1

)
=

(
0 𝑡 − 𝜃
1 −𝑎1

)
· · ·

(
0 𝑡 − 𝜃
1 −𝑎𝑛−1

) (
0 𝑡 − 𝜃
1 −𝑎𝑛

) (
𝑎𝑛 1
1 0

)
= (Θ�)𝑉.

We set

Ψ⊗𝑛
𝜌 := 𝑉−1((Υ�) (1) )−1 ∈ Mat2×2(L).

Thus, we get

(Ψ⊗𝑛
𝜌 ) (−1) = Φ⊗𝑛

𝜌 Ψ⊗𝑛
𝜌 .

Remark 2.1. From the previous discussion, we have

(Ψ⊗𝑛
𝜌 )−1 = (Υ�) (1)𝑉 =

(
𝑎𝑛𝐸

(1)
1,1 + 𝐸 (1)

1,2 𝐸 (1)
1,1

𝑎𝑛𝐸
(1)
2,1 + 𝐸 (1)

2,2 𝐸 (1)
2,2

)
.

By direct calculations (see Lemma 3.3), we show that

[Ψ⊗𝑛
𝜌 ]−1

𝑖,1 (𝜃) = u𝑖,𝑛 ∈ 𝐾𝜋𝑛
𝜌 ,

where u𝑖,𝑛 is the nth coordinate of the period u𝑖 for 𝑖 = 1, 2.

Remark 2.2. As 𝐸𝑖, 𝑗 ∈ T for 1 ≤ 𝑖, 𝑗 ≤ 2 by Proposition 1.6, it follows that (Ψ⊗𝑛
𝜌 )−1 ∈ Mat2×2 (T). By

[35, Remark 3.1, Part 2], it implies that (Ψ⊗𝑛
𝜌 )−1 ∈ Mat2×2(T𝜃 ).
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2.3. Galois groups

We denote by X ⊗𝑛
𝜌 the pre t-motive associated to 𝜌⊗𝑛. The following proposition gives some basic

properties of this pre t-motive (compare to [18], Theorem 3.5.4).

Proposition 2.3.
1) The pre t-motive X ⊗𝑛

𝜌 is a t-motive.
2) The t-motive X ⊗𝑛

𝜌 is pure.
3) Its Galois group ΓX ⊗𝑛

𝜌
is Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾 . In particular, it is a torus.

Proof. For Part 1, since X ⊗𝑛
𝜌 is an A-motive of rank 1, it follows from [38], Proposition 2.3.24, Part b

that X ⊗𝑛
𝜌 is uniformizable as an A-motive. This implies that X ⊗𝑛

𝜌 is uniformizable as an F𝑞 [𝑡]-motive.
Thus, Part 1 follows immediately.

For Part 2, if 𝑛 = 1, then 𝜌 is a Drinfeld F𝑞 [𝑡]-module. By [38], Example 2.2.5, we know that 𝜌 is
pure. Thus, the motive N (viewed as a t-motive) is pure, which implies 𝑁𝑛 is also pure as a t-motive, by
[38], Proposition 2.3.11(e). Hence, we get the purity of X ⊗𝑛

𝜌 .
We now prove Part 3. To calculate the Galois group ΓX ⊗𝑛

𝜌
associated to the t-motive X ⊗𝑛

𝜌 , we will
use [41], Theorem 5.1.2. We claim that the t-motive X ⊗𝑛

𝜌 verifies all the conditions of this theorem. In
fact, it is a pure uniformizable dual F𝑞 [𝑡]-motive thanks to Part 2. Further, it has complex multiplication
since EndC∞ (X ⊗𝑛

𝜌 ) = EndC∞ (𝜌⊗𝑛) = 𝐴 by [33], Lemma 7.3. Thus, we apply [41], Theorem 5.1.2 to the
t-motive 𝜌⊗𝑛 to obtain

ΓX ⊗𝑛
𝜌

= Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾 . �

Remark 2.4. 1) We note that the Galois group associated to the A-motive 𝜌⊗𝑛 is also equal to
Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾 (see [38], Example 2.3.29).

2) We should mention a similar result of Pink and his collaborators that completely determines the
Galois group of a Drinfeld A-module (see [38], Theorem 2.6.3 and also [19], Theorem 3.5.4 for more
details). It states that if M is the t-motive associated to a Drinfeld A-module defined over 𝐾 , then

Γ𝑀 = CentGL(𝐻Betti (𝑀 )) EndC∞ (𝑀).

Proposition 2.5. The entries of Ψ⊗𝑛
𝜌 are regular at 𝑡 = 𝜃, and we have

tr. deg𝐾𝐾 (Ψ⊗𝑛
𝜌 (𝜃)) = dim ΓX ⊗𝑛

𝜌
.

Proof. By [47], Proposition 3.3.9 (c) and Section 4.1.6, there exists a matrix 𝑈 ∈ GL2(F𝑞 (𝑡)) such
that Ψ̃ = Ψ⊗𝑛

𝜌 𝑈 is a rigid analytic trivialization of Φ⊗𝑛
𝜌 and Ψ̃ ∈ GL2 (T). By [4], Proposition 3.1.3,

the entries of Ψ̃ are entire functions in the variable t. Thus, in particular, the entries of Ψ̃ and 𝑈−1 are
regular at 𝑡 = 𝜃. This implies that the entries of Ψ⊗𝑛

𝜌 are regular at 𝑡 = 𝜃.
Further, since 𝐾 (Ψ⊗𝑛

𝜌 (𝜃)) = 𝐾 (Ψ̃(𝜃)), by Theorem 1.15, we have

tr. deg𝐾𝐾 (Ψ⊗𝑛
𝜌 (𝜃)) = tr. deg𝐾𝐾 (Ψ̃(𝜃)) = dim ΓX ⊗𝑛

𝜌
.

The proof is finished. �

2.4. Endomorphisms of t-motives

We write down explicitly the endomorphism of X ⊗𝑛
𝜌 given by 𝑦 ∈ 𝐴. In [34], Proposition 4.2 gives a

formula for 𝑦𝑔𝑖 for the basis elements 𝑔𝑖 of Proposition 1.4. Using the same strategy, and replacing the
𝑔𝑖 by ℎ𝑖 , a short argument shows that there exist 𝑦𝑖 , 𝑧𝑖 ∈ 𝐻 such that for 1 ≤ 𝑖 ≤ 𝑛, we have

𝑦ℎ𝑖 = 𝜂ℎ𝑖 + 𝑦𝑖ℎ𝑖+1 + 𝑧𝑖ℎ𝑖+2 + ℎ𝑖+3.
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We deduce that there exists 𝑀𝑦 ∈ Mat2×2(𝐾 [𝑡]) such that the endomorphism y expressed in terms of
the basis {ℎ1, ℎ2} is represented by 𝑀𝑦 :

𝑦

(
ℎ1
ℎ2

)
= 𝑀𝑦

(
ℎ1
ℎ2

)
.

Since 𝐴 � F𝑞 [𝑡] + 𝑦F𝑞 [𝑡], using the formulas above for any element 𝑎 ∈ 𝐴, we can find a matrix
𝑀𝑎 ∈ Mat2×2 (𝐾 [𝑡]) such that the endomorphism induced by multiplication by a on X ⊗𝑛

𝜌 in the basis
{ℎ1, ℎ2} is represented by 𝑀𝑎:

𝑎

(
ℎ1
ℎ2

)
= 𝑀𝑎

(
ℎ1
ℎ2

)
.

Lemma 2.6. With the above notation, the (1, 1)th coordinate 𝑀𝑎,1,1 |𝑡=𝜃 ∈ 𝐾×, and similarly,
𝑀𝑎,2,1 |𝑡=𝜃 = 0.
Proof. (Compare to [18], Proposition 4.1.1) Specializing the above equality at Ξ and recalling that
ℎ1 (Ξ) ≠ 0 and ℎ2 (Ξ) = 0 by (1.10), we obtain 𝑀𝑎,1,1 |𝑡=𝜃 = 𝑎(𝜃) ∈ 𝐾× and 𝑀𝑎,2,1 |𝑡=𝜃 = 0. �

3. Constructing t-motives connected to logarithms

3.1. Logarithms attached to 𝜌

We keep the notation of Section 2.1. Following Chang-Papanikolas (see [18], Section 4.2), for 𝑢 ∈ C∞
with exp𝜌 (𝑢) = 𝑣 ∈ 𝐾 , we consider 𝐸𝑢 the associated Anderson generating function associated to u
given by (1.16). We set

ℎ𝑣 =

(
𝑣
0

)
∈ Mat2×1(𝐾), Φ𝑣 =

(
Φ𝜌 0
ℎ�𝑣 1

)
∈ Mat3×3(𝐾 [𝑡]).

We define

𝑔𝑣 = 𝑉

(
−𝐸 (1)

𝑢

−𝐸 (2)
𝑢

)
=

(
−(𝑡 − 𝜃)𝐸𝑢 − 𝑣

−𝐸 (1)
𝑢

)
∈ Mat2×1(T),

Ψ𝑣 =

(
Ψ𝜌 0

𝑔�𝑣 Ψ𝜌 1

)
∈ Mat3×3(T).

Then we get

Φ�
𝜌 𝑔

(−1)
𝑣 = 𝑔𝑣 + ℎ𝑣 ,

and

Ψ (−1)
𝑣 = Φ𝑣Ψ𝑣 .

The associated pre-motive X𝑣 is, in fact, a t-motive in the sense of Papanikolas as is proved in [19, §4.2].
For 𝑣 := exp𝜌 (𝜁𝜌 (𝑏, 1)) ∈ 𝐻, we call the corresponding t-motive X𝑣 the zeta motive associated to

𝜁𝜌 (𝑏, 1).

3.2. Logarithms attached to 𝜌⊗𝑛

We now switch to the case for 𝑛 ≥ 2 and use freely the notation of Section 2.2. We fix u ∈ Mat𝑛×1 (C∞)
with Exp⊗𝑛

𝜌 (u) = v ∈ Mat𝑛×1(𝐾), and we consider 𝐸 ⊗𝑛
u the Anderson generating function associated

to u given by Equation (1.16). Recall that

𝜌𝑡 (𝐸
⊗𝑛
u (𝑡)) = Exp⊗𝑛

𝜌 (u) + 𝑡𝐸 ⊗𝑛
u (𝑡) = v + 𝑡𝐸 ⊗𝑛

u (𝑡). (3.1)
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Thus, we get (
𝐸u,𝑖+1
𝐸u,𝑖+2

)
=

(
0 1

𝑡 − 𝜃 −𝑎𝑖

) (
𝐸u,𝑖

𝐸u,𝑖+1

)
+

(
0
−𝑣𝑖

)
= Θ𝑖

(
𝐸u,𝑖

𝐸u,𝑖+1

)
+

(
0
−𝑣𝑖

)
.

We define the vector 𝑓v := ( 𝑓v,1, 𝑓v,2)
� given by

𝑓v = Θ𝑛 · · ·Θ2

(
0
𝑣1

)
+ Θ𝑛 · · ·Θ3

(
0
𝑣2

)
+ · · · +

(
0
𝑣𝑛

)
. (3.2)

It follows that (
𝐸u,1
𝐸u,2

) (1)
= Θ

(
𝐸u,1
𝐸u,2

)
−

(
𝑓v,1
𝑓v,2

)
.

Here, we recall

Θ =

(
0 1

𝑡 − 𝜃 −𝑎𝑛

)
· · ·

(
0 1

𝑡 − 𝜃 −𝑎1

)
and

Υ =

(
𝐸1,1 𝐸2,1
𝐸1,2 𝐸2,2

)
∈ Mat2×2(T).

They verify

Υ(1) = ΘΥ.

We set

Θv =

(
Θ −( 𝑓v,1, 𝑓v,2)

�

0 1

)
∈ Mat3×3 (𝐾 [𝑡]), Υv =

(
Υ (𝐸u,1, 𝐸u,2)

�

0 1

)
∈ Mat3×3(T). (3.3)

Then we get

Υ(1)
v = ΘvΥv.

Now we are ready to construct the associated rigid analytic trivialization. Recall that

𝑉 =

(
𝑎𝑛 1
1 0

)
.

Note that V is symmetric. We set

𝑊 = diag(𝑉, 1) =
(
𝑉 0
0 1

)
∈ GL3(𝐾),

Φv = (𝑊 (−1) )−1(Θ�
v )𝑊 =

(
Φ⊗𝑛

𝜌 0
(ℎv,1, ℎv,2) 1

)
∈ Mat3×3(𝐾 [𝑡]),

Ψv = 𝑊−1((Υ�
v )

(1) )−1 =

(
Ψ⊗𝑛

𝜌 0
(𝑔v,1, 𝑔v,2)Ψ⊗𝑛

𝜌 1

)
∈ Mat3×3 (T).

Remark 3.1. Note that by direct calculations, we obtain

(𝑔v,1, 𝑔v,2)Ψ
⊗𝑛
𝜌 = −(𝑎𝑛𝐸

(1)
u,1 + 𝐸 (1)

u,2 , 𝐸
(1)
u,1).
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Further, we will show below that 𝑔v,1 (𝜃) = 𝑢𝑛 − 𝑣𝑛, where 𝑢𝑛 and 𝑣𝑛 are the last coordinate of u and v,
respectively (see Lemma 3.3).

Thus, we get

Ψ (−1)
v = ΦvΨv.

The associated pre-motive Xv is in fact a t-motive because it is an extension of two t-motives (see for
example [38], Lemma 2.3.25).

3.3. Period calculations

In this section, we show explicitly how to obtain the periods and zeta values discussed in the previous
section from evaluations of the entries of the rigid analytic trivialization Ψv, for fixed u and v as in the
previous section.

Lemma 3.2. Let 𝐸 ⊗𝑛
u be defined as above. Then

Res𝜃 (𝐸
⊗𝑛
u 𝑑𝑡) =

����
Res𝜃 (𝐸u,1𝑑𝑡)

...
Res𝜃 (𝐸u,𝑛𝑑𝑡)

���� = −u.

Proof. Write u = (𝑢1, . . . , 𝑢𝑛)
� ∈ C𝑛

∞. As in the proof of [34, Prop. 6.5], we have the identity

𝐸 ⊗𝑛
u =

∞∑
𝑗=0

𝑄 𝑗

(
𝑑 [𝜃] ( 𝑗) − 𝑡Id𝑛

)−1
u( 𝑗) ,

and we find that only the 𝑗 = 0 term contributes to the residue. Then, using the cofactor expansion of
(𝑑 [𝜃] ( 𝑗) − 𝑡Id𝑛)

−1 from [34, Pg. 26], we find that

Res𝜃 (𝐸
⊗𝑛
u 𝑑𝑡) =

����
Res𝜃

(
( 𝑢1

𝜃−𝑡 + 𝑟1 (𝑡))𝑑𝑡
)

...
Res𝜃

(
( 𝑢𝑛

𝜃−𝑡 + 𝑟𝑛 (𝑡))𝑑𝑡
)���� = −

����
𝑢1
...
𝑢𝑛

����,
where 𝑟𝑖 (𝑡) is some function in powers of (𝜃 − 𝑡)𝑘 for 𝑘 ≤ −2, and hence does not contribute to the
residue (see [34, (57)] and preceding discussion for more details). �

Lemma 3.3. Let 𝐸 ⊗𝑛
u = (𝐸u,1, . . . , 𝐸u,𝑛)

� as above and let 𝑎𝑖 be the defining coefficients for the Drinfeld
t-module action as in Proposition 1.4. Then if we write Exp⊗𝑛

𝜌 (u) := v = (𝑣1, . . . , 𝑣𝑛)
�,

𝑎𝑛𝐸
(1)
u,1 (𝜃) + 𝐸 (1)

u,2 (𝜃) = −𝑢𝑛 + 𝑣𝑛.

Proof. As in (3.1), we have that

𝜌⊗𝑛
𝑡 (𝐸 ⊗𝑛

u ) = (𝑑 [𝜃] + 𝐸𝜃𝜏) (𝐸
⊗𝑛
u ) = Exp⊗𝑛

𝜌 (u) + 𝑡𝐸 ⊗𝑛
u .

Rearranging terms gives

𝐸𝜃 (𝐸
⊗𝑛
u ) (1) = (𝑡 − 𝑑 [𝜃])𝐸 ⊗𝑛

u + Exp⊗𝑛
𝜌 (u).
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Both sides of the above equation are regular at 𝑡 = 𝜃 in each coordinate, so evaluating at 𝑡 = 𝜃, using
the formula for 𝐸𝜃 and taking the last coordinate gives

𝑎𝑛𝐸
(1)
u,1 (𝜃) + 𝐸 (1)

u,2 (𝜃) = 𝐸u,𝑛 (𝑡 − 𝜃)
��
𝑡=𝜃

+ 𝑣𝑛.

Finally, from our analysis in Lemma 3.2, we see that 𝐸u,𝑛 has a simple pole at 𝑡 = 𝜃, and thus the
right-hand side of the above equation is simply the residue at 𝑡 = 𝜃. Thus,

𝑎𝑛𝐸
(1)
u,1 (𝜃) + 𝐸 (1)

u,2 (𝜃) = Res𝜃 (𝐸u,𝑛𝑑𝑡) + 𝑣𝑛 = −𝑢𝑛 + 𝑣𝑛. �

Proposition 3.4. With all notation as above, the elements 𝜋𝑛
𝜌 and 𝑢𝑛 are contained in 𝐾 (Ψv(𝜃)).

Proof. As above, we have that 𝐾 (Ψv(𝜃)) = 𝐾 (Υv (𝜃)). Then note that

𝐸 (1)
𝑖, 𝑗 (𝜃), 𝐸

(1)
u,𝑖 (𝜃) ∈ 𝐾 (Υv(𝜃))

for 1 ≤ 𝑖, 𝑗 ≤ 2 by construction. Then by Lemma 3.3, we see that the last coordinates of u1, u2, u are
contained in 𝐾 (Υv (𝜃)), where u1, u2 are an F𝑞 [𝑡]-basis for the period lattice of 𝜌⊗𝑛 and u is a vector
such that Exp⊗𝑛

𝜌 (u) = v ∈ 𝐾 . From [34, Thm. 6.7], we know that the last coordinate of Π𝑛 is an algebraic
multiple of 𝜋𝑛

𝜌 , and thus it follows that 𝜋𝑛
𝜌 and 𝑢𝑛 are contained in 𝐾 (Ψv(𝜃)). �

We next prove a lemma about the linear relations between the entries of 𝐾 (Ψ⊗𝑛
𝜌 (𝜃)). Let 𝜋𝜌 and

Π𝑛 be generators of the period lattices of exp𝜌 and Exp⊗𝑛
𝜌 , respectively, as A-modules. Then recall

that {𝜋𝜌, 𝜂𝜋𝜌} and {Π𝑛, 𝑑 [𝑦]Π𝑛} are bases for Λ𝜌 and Λ⊗𝑛
𝜌 , respectively, as F𝑞 [𝑡]-modules. Also for

u ∈ C𝑛
∞, we recall the definition of 𝐺u from 1.17 and define

𝐺
⊗𝑛

u = −𝑦𝐸 ⊗𝑛
u + 𝐸 ⊗𝑛

𝜂u ,

and note that this equals [−1]𝐺⊗𝑛
u , where [−1] represents the inverse of the group law on the elliptic

curve X. We will denote the coordinates of 𝐺⊗𝑛
u := (𝐺u,1, . . . , 𝐺u,𝑛) and similarly for 𝐺u.

Recall thatΨ𝜌 andΨ⊗𝑛
𝜌 are the 2×2 rigid analytic trivialization matrices from §2.1–2.2. The following

lemma gives 𝐾-linear relations between the entries of these matrices evaluated at 𝑡 = 𝜃 and thus allows
us to find a smaller set of generators for the following fields, which notably include powers of the period.
Lemma 3.5. We have the following facts:

◦ for 𝑛 = 1, we have 𝐾 (Ψ𝜌 (𝜃)) = 𝐾 (𝐸 (1)
𝜋𝜌 (𝜃), 𝐸

(2)
𝜋𝜌 (𝜃)).

◦ for 𝑛 ≥ 2, we have 𝐾 (Ψ⊗𝑛
𝜌 (𝜃)) = 𝐾 (𝐸 (1)

Π𝜌 ,1 (𝜃), 𝐸
(1)
Π𝜌 ,2(𝜃)).

Consequently, for each 𝑛 ≥ 1, we have 𝐾 (Ψ⊗𝑛
𝜌 (𝜃)) = 𝐾 (𝜋𝑛

𝜌 ,𝑊𝑛) for quantities 𝑊𝑛 ∈ C∞.
Proof. To ease the exposition, we will assume that 𝑝 = char(F𝑞) ≥ 3, so that we may assume the elliptic
curve X has Weierstrass equation given by 𝑦2 = 𝑡3 + 𝑎𝑡 + 𝑏 with 𝑎, 𝑏 ∈ F𝑞 and such that inversion on
X is given by [−1] : (𝑡, 𝑦) ↦→ (𝑡,−𝑦). The lemma is also true for 𝑝 = char(F𝑞) = 2, and the proof is
similar, but calculations are more cumbersome. Particularly, the negation map is more complicated, and
this requires more sophisticated analysis. Additionally, we give the full details for the case 𝑛 ≥ 2. The
details for the case for 𝑛 = 1 are similar, and we leave them to the interested reader. By our definition of
𝐺⊗𝑛

Π𝑛
, we can write

�����
𝑦 1 0 0
−𝑦 1 0 0
0 0 𝑦 1
0 0 −𝑦 1

�����
�������

𝐸 (1)
Π𝑛 ,1

𝐸 (1)
𝑑 [𝑦 ]Π𝑛 ,1
𝐸 (1)
Π𝑛 ,2

𝐸 (1)
𝑑 [𝑦 ]Π𝑛 ,2

�������
=

�������
𝐺 (1)

Π𝑛 ,1

𝐺
(1)
Π𝑛 ,1

𝐺 (1)
Π𝑛 ,2

𝐺
(1)
Π𝑛 ,2

�������
,

https://doi.org/10.1017/fms.2023.94 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.94


26 N. Green and T. Ngo Dac

and, in particular, we note that the above matrix is invertible in Mat4×4(K). By inverting the above
matrix, this allows us to write each of the Anderson generating functions 𝐸 (1)

𝑑 [𝑦 ]Π𝑛 ,𝑘
for 𝑘 = 1, 2 as a

K-linear combination of the functions 𝐺 (1)
Π𝑛 ,𝑘

and 𝐺
(1)
Π𝑛 ,𝑘 . Further, from Proposition 1.6(d), we get the

formula 𝑔2 · 𝐺Π𝑛 ,1 = 𝑔1 · 𝐺Π𝑛 ,2. Note that the functions 𝑔𝑖 ∈ 𝐾 (𝑡, 𝑦). Taken together, these two facts
allow us to write the functions 𝐸 (1)

𝑑 [𝜂 ]Π𝑛 ,1
(𝜃) and 𝐸 (1)

𝑑 [𝜂 ]Π𝑛 ,2
(𝜃) as 𝐾-linear combinations of 𝐸 (1)

Π𝑛 ,1(𝜃)

and 𝐸 (1)
Π𝑛 ,2 (𝜃). As 𝐾 (Ψ⊗𝑛

𝜌 (𝜃)) = 𝐾 (Υ(𝜃)) (Υ is defined in (2.2)), and this allows us to conclude that
𝐾 (Ψ⊗𝑛

𝜌 (𝜃)) = 𝐾 (𝐸 (1)
Π𝑛 ,1 (𝜃), 𝐸

(1)
Π𝑛 ,2 (𝜃)). Finally, setting u = Π𝑛 and v = 0 in Lemma 3.3 shows that a

𝐾-linear combination of 𝐸 (1)
Π𝑛 ,1(𝜃) and 𝐸 (1)

Π𝑛 ,2 (𝜃) equals the last coordinate of Π𝑛, which is an algebraic
multiple of Π𝑛

𝑛 by Proposition 1.6(e). It remains to take an additional linearly independent combination
of 𝐸 (1)

Π𝑛 ,1(𝜃) and 𝐸 (1)
Π𝑛 ,2 (𝜃), which we set equal to 𝑊𝑛, to finish the proof. �

3.4. An application of Hartl-Juschka’s work to period calculations

In this section, we maintain the notation from the previous section of u1, u2 being a generating set for the
period lattice Λ⊗𝑛

𝜌 and u ∈ C𝑛
∞. We wish to apply Corollaries 2.5.23 and 2.5.24 from Hartl and Juschka

[38] (originally due to Anderson in unpublished work) to give a more conceptual method for period
calculations with an aim towards generalizing these arguments to curves of arbitrary genus. We restate
[38, Cors. 2.5.23, 2.5.24] here for the convenience of the reader, but we first translate their notation into
our setting. By definition, 𝜎 acts by the matrix Φ⊗𝑛

𝜌 on a C∞[𝑡]-basis {ℎ1, ℎ2} of 𝑁𝑛. Explicitly, for
𝑧 ∈ 𝑁𝑛, we express 𝑧 = 𝑎ℎ1 + 𝑏ℎ2 with 𝑎, 𝑏 ∈ C∞[𝑡] and we get

𝜎(𝑧) = 𝜎(𝑎ℎ1 + 𝑏ℎ2) = 𝜎

(
(𝑎, 𝑏)

(
ℎ1
ℎ2

))
= (𝑎, 𝑏) (−1)Φ⊗𝑛

𝜌

(
ℎ1
ℎ2

)
.

Thus, we see that if we view 𝑁𝑛 as a free C∞[𝑡]-module, then 𝜎 acts by inverse twisting and right
multiplication by Φ⊗𝑛

𝜌 . Transposing, we get a left multiplication:

𝜎

(
𝑎
𝑏

)
=
(
Φ⊗𝑛

𝜌

)� (𝑎
𝑏

) (−1)
, 𝑎, 𝑏 ∈ F𝑞 [𝑡] .

By [45, Lemma 3.4.1], 𝛿0 extends to 𝑁𝑛 ⊗C∞ [𝑡 ] T𝜃 , where T𝜃 is a Tate algebra of functions with
radius of convergence |𝜃 |∞ (see §1.1.2).

Corollary 3.6. (This is [38, Cor. 2.5.23 and 2.5.24]) Let 𝑁𝑛 and Φ⊗𝑛
𝜌 be as above. Further, let w ∈ T2

𝜃
satisfy

(𝜎 − 1) (w) = (Φ⊗𝑛
𝜌 )�w(−1) − w = z ∈ 𝑁𝑛. (3.4)

Then

Exp⊗𝑛
𝜌 (𝛿0 (w + z)) = 𝛿1 (z).

Further, if z = 0, then 𝛿0(w) ∈ Λ⊗𝑛
𝜌 and the set of all such w forms a spanning set for the periods.

So, we wish to look for vectors w ∈ T2
𝜃 which satisfy (3.4) for some 𝑧 ∈ 𝑁𝑛.

Lemma 3.7. For Υ as in (2.2), we have

(Φ⊗𝑛
𝜌 )�

(
𝑉�Υ(1)

) (−1)
= 𝑉�Υ(1) .
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Proof. From (2.3), we have that (Φ⊗𝑛
𝜌 ) = (𝑉 (−1) )−1Θ�𝑉 , and then substituting in gives

(Φ⊗𝑛
𝜌 )�(𝑉�Υ(1) ) (−1) = ((𝑉 (−1) )−1Θ�𝑉)�(𝑉�Υ(1) ) (−1)

= 𝑉�Θ((𝑉 (−1) )−1)�)(𝑉�Υ(1) ) (−1)

= 𝑉�(ΘΥ)

= 𝑉�(Υ(1) ). �

We comment that 𝑉�Υ(1) = ((Ψ⊗𝑛
𝜌 )−1)� ∈ Mat2×2(T𝜃 ) by Remark 2.2, but to save on notation, we

shall denote 𝑃 := 𝑉�Υ(1) ∈ Mat2×2(T𝜃 ) and denote the columns of P by 𝑃𝑖 ∈ T
2
𝜃 . Thus, for 𝑖 = 1, 2, we

have (Φ⊗𝑛
𝜌 )�𝑃 (−1)

𝑖 −𝑃𝑖 = 0, and therefore the vectors 𝑃𝑖 satisfy the conditions of Lemma 3.6. So we get

Exp⊗𝑛
𝜌 (𝛿0 (𝑃𝑖 + 0)) = 𝛿1(0) = 0. (3.5)

Lemma 3.8. For u ∈ Mat𝑛×1 (C∞) with Exp⊗𝑛
𝜌 (u) = v ∈ Mat𝑛×1 (𝐾), we let 𝐸 ⊗𝑛

u be the Anderson
generating function (with coordinates denoted as in (2.1)) associated to u and let 𝐸u,∗ = (𝐸u,1, 𝐸u,2)

�

and 𝑃u := 𝑉�𝐸 (1)
u,∗ ∈ T2

𝜃 . Then 𝑃u satisfies the conditions of Lemma 3.6; that is,

(Φ⊗𝑛
𝜌 )�(𝑃u) − 𝑃u = 𝑉� 𝑓v,

where 𝑓v is the vector defined in Section 3.2 and 𝑉� 𝑓v ∈ 𝐾 [𝑡]2.

Proof. As stated as in Section 3.2, we find that Θ𝐸u,∗ = 𝐸 (1)
u,∗ + 𝑓v. We then calculate that

(Φ⊗𝑛
𝜌 )�(𝑉�𝐸 (1)

u,∗ )
(−1) = 𝑉�Θ((𝑉 (−1) )−1)�(𝑉 (−1) )�𝐸u,∗

= 𝑉�Θ𝐸u,∗

= 𝑉�𝐸 (1)
u,∗ +𝑉� 𝑓v. �

Thus, 𝑃u satisfies the conditions for Lemma 3.6, and we can write

Exp⊗𝑛
𝜌 (𝛿0 (𝑃u +𝑉� 𝑓v)) = 𝛿1 (𝑉

� 𝑓v). (3.6)

Proposition 3.9. For a fixed n, with all notation as above, the quantities 𝜋𝑛
𝜌 and 𝑢𝑛 are contained in

𝐾 (Ψv(𝜃)).

Proof. By definition, we have that 𝐾 (Ψv(𝜃)) = 𝐾 (Υv (𝜃)), and we further see that 𝐾 (Υv (𝜃)) =
𝐾 (𝑃(𝜃), 𝐸 (1)

u,1 (𝜃), 𝐸
(1)
u,2 (𝜃)), for 𝑃 ∈ Mat2×2 (T𝜃 ) defined in the proof of Lemma 3.7. Lemma 3.6 implies

that 𝛿0 (𝑃𝑖) for 𝑖 = 1, 2 is in the period lattice, and we deduce that the vectors 𝛿0 (𝑃𝑖) must form a gen-
erating set for the period lattice over F𝑞 [𝑡]. This implies that some A-linear combination of 𝛿0 (𝑃1) and
𝛿0 (𝑃2) (via the Lie⊗𝑛

𝜌 (A)-action of A) equals Π𝑛, the fundamental period. Since the bottom coordinate
of Π𝑛 is a 𝐾-multiple of 𝜋𝑛

𝜌 , it implies that 𝜋𝑛
𝜌 ∈ 𝐾 (Ψv(𝜃)).

We now perform a similar analysis on Equation (3.6). To proceed, we need to better understand the
vector 𝑓v := ( 𝑓v,1, 𝑓v,2)

� for v chosen as in Lemma 3.8.
We recall from Section 2.2 that

Θ𝑖 =

(
0 1

𝑡 − 𝜃 𝑎𝑖

)
, 𝜙𝑖 =

(
0 1

𝑡 − 𝜃 𝑏𝑖

)
, 𝑉 =

(
𝑎𝑛 1
1 0

)
.

If we denote

𝑋 =

(
𝑡 − 𝜃 0

0 1

)
,
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then we have the following equalities from (2.3):

Θ�
𝑛𝑉 = 𝑉 (−1)𝜙𝑛 = 𝑋, Θ�

𝑛−𝑖𝑋 = 𝑋𝜙𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1.

By the definition of 𝑓v (3.2), we find that

𝑉� 𝑓v = 𝑉�Θ𝑛 · · ·Θ2

(
0
𝑣1

)
+𝑉�Θ𝑛 · · ·Θ3

(
0
𝑣2

)
+ · · · +𝑉�

(
0
𝑣𝑛

)
.

Then, in anticipation of calculating 𝛿0 (𝑉
� 𝑓v), using the above equalities, we find that

(ℎ1, ℎ2)𝑉
� 𝑓v = (ℎ1, ℎ2)

(
𝑉�Θ𝑛 · · ·Θ2

(
0
𝑣1

)
+𝑉�Θ𝑛 · · ·Θ3

(
0
𝑣2

)
+ · · · +𝑉�

(
0
𝑣𝑛

))
=
(
(0, 𝑣1)Θ

�
2 · · ·Θ�

𝑛𝑉 + · · · + (0, 𝑣𝑛−1)Θ
�
𝑛𝑉 + (0, 𝑣𝑛)𝑉

) (ℎ1
ℎ2

)
= ((0, 𝑣1)𝑋𝜙𝑛−2 · · · 𝜙1 + · · · + (0, 𝑣𝑛−2)𝑋𝜙1 + (0, 𝑣𝑛−1)𝑋 + (0, 𝑣𝑛)𝑉)

(
ℎ1
ℎ2

)
.

Now recall that (see Section 2.2) (
ℎ𝑖+1
ℎ𝑖+2

)
= 𝜙𝑖

(
ℎ𝑖

ℎ𝑖+1

)
.

Since (0, 𝑣𝑖)𝑋 = (0, 𝑣𝑖), it follows that

(ℎ1, ℎ2)𝑉
� 𝑓v = ((0, 𝑣1)𝑋𝜙𝑛−2 · · · 𝜙1 + · · · + (0, 𝑣𝑛−2)𝑋𝜙1 + (0, 𝑣𝑛−1)𝑋 + (0, 𝑣𝑛)𝑉)

(
ℎ1
ℎ2

)
= (0, 𝑣1)

(
ℎ𝑛−1
ℎ𝑛

)
+ · · · + (0, 𝑣𝑛−2)

(
ℎ2
ℎ3

)
+ (0, 𝑣𝑛−1)

(
ℎ1
ℎ2

)
+ (𝑣𝑛, 0)

(
ℎ1
ℎ2

)
= 𝑣1ℎ𝑛 + · · · + 𝑣𝑛ℎ1.

Thus, we find that

𝛿0 (𝑉
� 𝑓v) = 𝛿1 (𝑉

� 𝑓v) =
����
𝑣1
...
𝑣𝑛

���� = v.

Then, returning to (3.6), we find that

Exp⊗𝑛
𝜌 (𝛿0 (𝑃u) + v) = v = Exp⊗𝑛

𝜌 (u).

Thus, the two quantities in the exponential functions in the above equality differ by a period, so there
exists some 𝑎 ∈ 𝐴 such that

𝛿0(𝑃u) + v = u + 𝑑 [𝑎]Π𝑛,

where 𝑑 [𝑎] denotes the action of a under Lie(𝜌⊗𝑛). By our above analysis of 𝛿0, we conclude that the
bottom coordinate 𝛼 of 𝛿0 (𝑃u) is equal to

𝛼 = 𝑎𝑛𝐸
(1)
u,1 (𝜃) + 𝐸 (1)

u,2 (𝜃) = 𝑢𝑛 − 𝑣𝑛 + 𝑎𝜋𝑛
𝜌 .

Since we have proved above that 𝜋𝑛
𝜌 ∈ 𝐾 (Ψv(𝜃)) and since 𝑣𝑛 ∈ 𝐾 , it follows that 𝑢𝑛 ∈ 𝐾 (Ψv(𝜃)) as

well. �

https://doi.org/10.1017/fms.2023.94 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.94


Forum of Mathematics, Sigma 29

3.5. Independence in Ext1T (1,X ⊗𝑛
𝜌 )

For 𝑏 ∈ 𝐵 and v := Exp⊗𝑛
𝜌 (𝑍𝑛 (𝑏)) ∈ Mat𝑛×1 (𝐻), where 𝑍𝑛 (𝑏) is the log-algebraic vector of Theorem

1.8, we call the corresponding t-motive X𝑛 (𝑏) := Xv the zeta t-motive associated to 𝜁𝜌 (𝑏, 𝑛). We also
denote by Φ𝑛 (𝑏) := Φv and Ψ𝑛 (𝑏) := Ψv the corresponding matrices. As in §3.2, we put

Φv =

(
Φ⊗𝑛

𝜌 0
(ℎv,1, ℎv,2) 1

)
∈ Mat3×3 (𝐾 [𝑡]).

We have a short exact sequence

0 −→ X ⊗𝑛
𝜌 −→ X𝑛 (𝑏) −→ 1 −→ 0,

where 1 is the trivial pre-t-motive, equal to 𝐾 [𝑡] with 𝜎-action given by the inverse Frobenius twist.
We follow closely [19], Section 4.2. The group Ext1T (1,X ⊗𝑛

𝜌 ) has the structure of a K-vector
space by pushing along X ⊗𝑛

𝜌 . With the above notation, for 𝑎 ∈ 𝐴 whose corresponding matrix is
𝑀𝑎 ∈ Mat2×2(𝐾 [𝑡]) as in §2.4, the extension 𝑎∗Xv is represented by the matrix(

Φ⊗𝑛
𝜌 0

(ℎv,1, ℎv,2)𝑀𝑎 1

)
∈ Mat3×3 (𝐾 [𝑡]).

We will show the following proposition (compare to [18], Theorem 4.4.2):

Proposition 3.10. Suppose that u1, . . . , u𝑚 ∈ Mat𝑛×1 (C∞) with Exp⊗𝑛
𝜌 (u𝑖) = v𝑖 ∈ Mat𝑛×1(𝐾). If

𝜋𝑛
𝜌 , u1,𝑛, . . . , u𝑚,𝑛 are linearly independent over K, then the classes of Xv𝑖 (1 ≤ 𝑖 ≤ 𝑛) in Ext1T (1,X ⊗𝑛

𝜌 )

are linearly independent over K.

Proof. The proof follows closely that of [18], Theorem 4.4.2. Suppose that there exist 𝑒1, . . . , 𝑒𝑚 ∈ 𝐾 not
all zero so that 𝑁 = 𝑒1∗𝑋1 + . . . + 𝑒𝑚∗𝑋𝑚 is trivial in Ext1T (1,X ⊗𝑛

𝜌 ). We can suppose that for 1 ≤ 𝑖 ≤ 𝑚,
𝑒𝑖 belongs to A and is represented by 𝑀𝑖 ∈ Mat2×2(𝐾 [𝑡]). Then the extension 𝑁 = 𝑒1∗𝑋1 + . . . + 𝑒𝑚∗𝑋𝑚

is represented by ℎv1𝑀1 + . . . + ℎv𝑚𝑀𝑚 and we have

Φ𝑁 =

(
Φ⊗𝑛

𝜌 0∑𝑚
𝑖=1 ℎv𝑖𝑀𝑖 1

)
∈ Mat3×3 (𝐾 [𝑡]),

Ψ𝑁 =

(
Ψ⊗𝑛

𝜌 0
(
∑𝑚

𝑖=1 𝑔v𝑖𝑀𝑖)Ψ⊗𝑛
𝜌 1

)
∈ Mat3×3(T).

Since this extension is trivial in Ext1T (1,X ⊗𝑛
𝜌 ), there exists a matrix

𝛾 =

(
Id2 0

(𝛾1, 𝛾2) 1

)
∈ Mat3×3 (𝐾 [𝑡])

such that 𝛾 (−1)Φ𝑁 = diag(Φ⊗𝑛
𝜌 , 1)𝛾. By [47], Section 4.1.6, there exists

𝛿 =

(
Id2 0

(𝛿1, 𝛿2) 1

)
∈ Mat3×3 (F𝑞 (𝑡))

such that 𝛾Ψ𝑁 = diag(Ψ⊗𝑛
𝜌 , 1)𝛿. It follows that

(𝛾1, 𝛾2) + (

𝑚∑
𝑖=1

𝑔v𝑖𝑀𝑖) = (𝛿1, 𝛿2) (Ψ
⊗𝑛
𝜌 )−1.
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Specializing the first coordinates at 𝑡 = 𝜃 and recalling that by Lemma 2.6, we have (𝑀𝑖)2(𝜃) ∈ 𝐾× and
(𝑀𝑖)2,1(𝜃) = 0, we obtain

𝛾1 (𝜃) +
𝑚∑
𝑖=1

𝑔v𝑖 ,1 (𝜃) (𝑀𝑖)2(𝜃) = 𝛿1(𝜃) [(Ψ
⊗𝑛
𝜌 )−1]2(𝜃) + 𝛿2 (𝜃) [(Ψ

⊗𝑛
𝜌 )−1]2,1(𝜃).

By Lemma 3.3, we have 𝑔v𝑖 ,1 (𝜃) = u𝑖,𝑛 − v𝑖,𝑛 and [(Ψ⊗𝑛
𝜌 )−1]2(𝜃), [(Ψ⊗𝑛

𝜌 )−1]2,1(𝜃) ∈ 𝐾𝜋𝑛
𝜌 . Since

(𝑀𝑖)2(𝜃) ∈ 𝐾× (see Section 2.4), we get a nontrivial 𝐾-linear relation between 1, u1,𝑛, . . . , u𝑚,𝑛, 𝜋
𝑛
𝜌 . By

[33], page 29 (proof of Theorem 7.1), it implies a nontrivial K-linear relation between u1,𝑛, . . . , u𝑚,𝑛, 𝜋
𝑛
𝜌 .

Thus, we get a contradiction. �

3.6. An application of Hardouin’s work

We now apply Hardouin’s work to our context to determine the Galois groups of the t-motives defined
in the previous sections. We work with the neutral Tannakian category of t-motives T over 𝐹 = F𝑞 (𝑡)
defined in §1.6 endowed with the fiber functor 𝜔 : 𝑀 ↦→ 𝐻Betti(𝑀). By the proof of [33], Lemma 7.2,
we know that X ⊗𝑛

𝜌 is irreducible. Then we consider this irreducible object Y = X ⊗𝑛
𝜌 and extensions of

1 by X ⊗𝑛
𝜌 . Hardouin’s work turns out to be a powerful tool and allows us to prove the proposition below

which generalizes the results of Papanikolas [47] (for the Carlitz module C) and Chang-Yu [23] (for the
tensor powers 𝐶⊗𝑛 of the Carlitz module).

Proposition 3.11. Let 𝑛 ≥ 1 be an integer with (𝑞 − 1) � 𝑛 and b be an element in B. Then the unipotent
radical of ΓX𝑛 (𝑏) is equal to the F𝑞 (𝑡)-vector space F𝑞 (𝑡)2 of dimension 2. In particular,

dim ΓX𝑛 (𝑏) = dim ΓX ⊗𝑛
𝜌

+ 2 = 4.

Proof. We claim that the assumptions of Theorem 1.16 are satisfied for the t-motive X ⊗𝑛
𝜌 since

1. By Proposition 2.3, the Galois group ΓX ⊗𝑛
𝜌

of X ⊗𝑛
𝜌 is a torus. Thus ΓX ⊗𝑛

𝜌
is completely reducible

(compare to [19], Corollary 3.5.7).
2. It is clear that the center of ΓX ⊗𝑛

𝜌
contains G𝑚,F𝑞 (𝑡) .

3. The action of G𝑚,F𝑞 (𝑡) on 𝐻Betti(X ⊗𝑛
𝜌 ) is isotypic. In fact, the weights are all equal to n.

4. The Galois groups of t-motives are reduced (see [47] and also [38], Proposition 2.6.2 for A-motives).

We apply Theorem 1.16 to the t-motive X𝑛 (𝑏) which is an extension of 1 by X ⊗𝑛
𝜌 . Thus there exists

a sub-object V of X ⊗𝑛
𝜌 such that X𝑛 (𝑏)/V is a trivial extension of 1 by X ⊗𝑛

𝜌 /V . As X ⊗𝑛
𝜌 is irreducible,

either V = 0 or V = X ⊗𝑛
𝜌 .

We claim that V = X ⊗𝑛
𝜌 . In fact, suppose that V = 0. We deduce that X𝑛 (𝑏) is a trivial extension

of 1 by X ⊗𝑛
𝜌 . It follows that 𝜋𝑛

𝜌 and 𝜁𝜌 (𝑏, 𝑛) are linearly dependent over K. We get a contradiction by
Proposition 3.10 and Theorem 1.10.

Since V = X ⊗𝑛
𝜌 , by Theorem 1.16, the unipotent radical of the Galois group ΓX𝑛 (𝑏) is equal to

𝐻Betti(𝑀) (X ⊗𝑛
𝜌 ) that is an F𝑞 [𝑡]-vector space of dimension 2. The Theorem follows immediately. �

As a consequence, we obtain a generalization of [23], Theorem 4.4.

Corollary 3.12. Let 𝑛 ≥ 1 be an integer. Then for any 𝑏 ∈ 𝐵, the quantities 𝜋𝜌 and 𝜁𝜌 (𝑏, 𝑛) are
algebraically independent over 𝐾 .

Proof. We find that 𝐾 (Ψv) = 𝐾 (Υv), where Υv is defined in (3.3). Apriori, the field 𝐾 (Υv) has 6
non-trivial generators given by evaluations of various Anderson generating functions. However, from
Lemma 3.5 we see that 𝐾 (Υv) = 𝐾 (𝜋𝑛

𝜌 ,𝑊𝑛, 𝐸u,1 (𝜃), 𝐸u,2 (𝜃)), where u = 𝑍𝑛 (𝑏) is the vector from
Theorem 1.8. Finally, by Lemma 3.3 and Proposition 3.4, we conclude that for some 𝑌𝑛 ∈ C∞, we have
𝐾 (𝜋𝑛

𝜌 ,𝑊𝑛, 𝐸u,1 (𝜃), 𝐸u,2 (𝜃)) = 𝐾 (𝜋𝑛
𝜌 ,𝑊𝑛, 𝜁𝜌 (𝑏, 𝑛), 𝑌𝑛). The corollary is then a direct consequence of

Proposition 3.11 and Theorem 1.15. �
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We obtain the following theorem which could be considered as a partial generalization of [19],
Theorem 5.1.5 in our context.

Theorem 3.13. Suppose that u1, . . . , u𝑚 ∈ Mat𝑛×1 (C∞) with Exp⊗𝑛
𝜌 (u𝑖) = v𝑖 ∈ Mat𝑛×1 (𝐾). If

𝜋𝑛
𝜌 , u1,𝑛, . . . , u𝑚,𝑛 are linearly independent over K, then they are algebraically independent over 𝐾 .

Proof. By Proposition 3.10, we deduce that the classes of Xv𝑖 (1 ≤ 𝑖 ≤ 𝑛) in Ext1T (1,X ⊗𝑛
𝜌 ) are linearly

independent over K. By Corollary 1.17, the unipotent part of the Galois group of the direct sum
Xv1 ⊕ . . . ⊕ Xv𝑛 is of dimension 2𝑛. Thus the Theorem follows immediately from Theorem 1.15. �

4. Algebraic relations among Anderson’s zeta values

4.1. Direct sums of t-motives

Let 𝑚 ∈ N, 𝑚 ≥ 1. To study Anderson’s zeta values 𝜁𝜌 (𝑏, 𝑛) for 1 ≤ 𝑛 ≤ 𝑚 and 𝜋𝜌 simultaneously, we
set

S := {𝑛 ∈ N : 1 ≤ 𝑛 ≤ 𝑚 such that 𝑝 � 𝑛 and (𝑞 − 1) � 𝑛},

and consider the direct sum t-motive

X (𝑏) :=
⊕
𝑛∈S

X𝑛 (𝑏)

and define block diagonal matrices

Φ(𝑏) :=
⊕
𝑛∈S

Φ𝑛 (𝑏), Ψ(𝑏) :=
⊕
𝑛∈S

Ψ𝑛 (𝑏).

Then Φ(𝑏) represents multiplication by 𝜎 on X (𝑏) and Ψ(𝑏) is a rigid analytic trivialization of Φ(𝑏).
We would like to understand the Galois group ΓX (𝑏) of the t-motiveX (𝑏) and to calculate the dimension
of this Galois group.

We first have

ΓX (𝑏) ⊆
⊕
𝑛∈S

ΓX𝑛 (𝑏) =
⊕
𝑛∈S

(
Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾 0

∗ 1

)
For 𝑛 = 1, the t-motive X1(𝑏) contains X𝜌. It follows that X𝜌 is also contained in X (𝑏). We consider
TX (𝑏) and TX𝜌 , the strictly full Tannakian subcategories of the category T of t-motives which are
generated by X (𝑏) and X𝜌 respectively. Thus we get a functor from TX𝜌 to TX (𝑏) . By Tannakian duality,
we have a surjective map of algebraic groups over F𝑞 (𝑡)

𝜋 : ΓX (𝑏) � ΓX𝜌 = Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾

where we have the last equality by Proposition 2.3. By Equation (1.23), this map 𝜋 is in fact the projection
on the upper left-most corner of elements of ΓX (𝑏) . We denote by 𝑈 (𝑏) the kernel of 𝜋. It follows that
𝑈 (𝑏) is contained in the unipotent group

𝑈 :=
⊕
𝑛∈S

(
Id2 0
∗ 1

)
.

We prove the following result similar to [23], Section 4.3.
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Proposition 4.1. We keep the previous notation. Then we have

𝑈 (𝑏) =
⊕
𝑛∈S

(
Id2 0
∗ 1

)
.

Proof. In fact, the strategy of Chang-Yu (see [23], Section 4.3) based on a weight argument indeed
carries over without much modification. For completeness, we sketch a proof of this Proposition.

We introduce a G𝑚,F𝑞 (𝑡) -action on 𝑈 (𝑏) and on the direct sum of unipotent groups

𝑈 =
⊕
𝑛∈S

(
Id2 0
∗ 1

)
.

On the matrix indexed by 𝑛 ∈ S , it is defined by

𝑎 ·

(
Id2 0
u 1

)
↦→

(
Id2 0
𝑎𝑛u 1

)
, 𝑎 ∈ G𝑚,F𝑞 (𝑡) .

Note that this action on 𝑈 (𝑏) agrees with the conjugation of G𝑚,F𝑞 (𝑡) on 𝑈 (𝑏).
For each 𝑛 ∈ S , we recall that

ΓX𝑛 (𝑏) =

(
Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾 0

∗ 1

)
.

We denote by 𝑈𝑛 (𝑏) the unipotent part of this Galois group. Thus

𝑈𝑛 (𝑏) =

(
Id2 0
∗ 1

)
and we have a short exact sequence

1 → 𝑈𝑛 (𝑏) → ΓX𝑛 (𝑏) → Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾 → 1.

Since X𝑛 (𝑏) is contained in X (𝑏), by Tannakian duality, we obtain a commutative diagram

1 −−−−−−→ 𝑈 (𝑏) −−−−−−→ ΓX (𝑏) −−−−−−→ Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾 −−−−−−→ 1

𝜑𝑛
⏐⏐ 𝜑𝑛

⏐⏐ 𝜒𝑛
⏐⏐ 

1 −−−−−−→ 𝑈𝑛 (𝑏) −−−−−−→ ΓX𝑛 (𝑏) −−−−−−→ Res𝐾/F𝑞 [𝑡 ]G𝑚,𝐾 −−−−−−→ 1.

Here the middle vertical arrow is surjective by Tannakian duality and the map 𝜒𝑛 is the character
𝑎 ↦→ 𝑎𝑛. We deduce that the induced map 𝑈 (𝑏) → 𝑈𝑛 (𝑏) is also surjective.

We suppose now that 𝑈 (𝑏) is of codimension 𝑟 > 0 in U. We identify U with the product

𝑈 �
∏
𝑛∈S
G2

𝑎,F𝑞 (𝑡)
.

Chang and Yu proved that there exist an integer 𝑛 ∈ S and a set J of r double indices 𝑖 𝑗 with 𝑖 ∈ S and
𝑗 ∈ {1, 2} such that if we denote by 𝑊(𝐽 ) the linear subspace of U of codimension r consisting of points
(𝑥𝑖 𝑗 ) satisfying 𝑥𝑖 𝑗 = 0 whenever 𝑖 𝑗 ∈ 𝐽, then 𝑊(𝐽 ) ∩𝑈𝑛 (𝑏) � 𝑈𝑛 (𝑏) and the composed map

𝑓𝑛 : 𝑊(𝐽 ) ↩→ 𝑈 (𝑏)
𝜑𝑛
−→ 𝑈𝑛 (𝑏)

is surjective.
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Recall that for 𝑘 ∈ S , the action ofG𝑚,F𝑞 (𝑡) on𝑈𝑘 (𝑏) is of weight k. Since 𝑝 � 𝑛, by [23], Lemma 4.7,
𝑓𝑛 maps 𝑊(𝐽 ) ∩𝑈𝑘 (𝑏) to zero for all 𝑘 ≠ 𝑛 in S . Thus, it maps 𝑊(𝐽 ) ∩𝑈𝑛 (𝑏) onto 𝑈𝑛 (𝑏) which has
strictly greater dimension. We obtain a contradiction.

As a consequence, we get 𝑈 (𝑏) = 𝑈 as required. The proof is complete. �

4.2. Algebraic relations among Anderson’s zeta values

As an immediate consequence of Proposition 4.1, we see that the radical unipotent of ΓX (𝑏) has
dimension 2|S |, and ΓX (𝑏) itself has dimension 2|S | + 2. By Theorem 1.15, we deduce the following
theorem.

Theorem 4.2. Let 𝑏 ∈ 𝐵. Then the elements of the set

{𝜋𝜌} ∪ {𝜁𝜌 (𝑏, 𝑛), 1 ≤ 𝑛 ≤ 𝑚 such that 𝑝 � 𝑛 and (𝑞 − 1) � 𝑛}

are algebraically independent over 𝐾 .

We present a slight generalization of the above theorem by taking account of the p-power relations.
Let {𝑏1, . . . , 𝑏ℎ} be a K-basis of H with 𝑏𝑖 ∈ 𝐵. Since the extension 𝐻/𝐾 is separable, it follows that
for any 𝑏 ∈ 𝐵, we can write 𝑏 = 𝑎1𝑏

𝑝𝑚

1 + . . . + 𝑎ℎ𝑏
𝑝𝑚

ℎ with 𝑎1, . . . , 𝑎ℎ ∈ 𝐾 . Thus, we get

𝜁𝜌 (𝑏, 𝑝
𝑚𝑛) =

∑
𝐼 ⊆𝐴

𝜎𝐼 (𝑏)

𝑢𝑝𝑚𝑛
𝐼

=
ℎ∑

𝑖=1
𝑎𝑖

(∑
𝐼 ⊆𝐴

𝜎𝐼 (𝑏𝑖)

𝑢𝑛
𝐼

) 𝑝𝑚

=
ℎ∑

𝑖=1
𝑎𝑖𝜁𝜌 (𝑏𝑖 , 𝑛)

𝑝𝑚 .

Theorem 4.3. Let {𝑏1, . . . , 𝑏ℎ} be a K-basis of H with 𝑏𝑖 ∈ 𝐵. We consider the set

A = {𝜋𝜌} ∪ {𝜁𝜌 (𝑏𝑖 , 𝑛) : 1 ≤ 𝑖 ≤ ℎ, 1 ≤ 𝑛 ≤ 𝑚 such that 𝑞 − 1 � 𝑛 and 𝑝 � 𝑛}.

Then the elements of A are algebraically independent over 𝐾 .

Proof. The proof of Theorem 4.3 follows identically to that of Theorem 4.2. �

5. Algebraic relations among Goss’s zeta values

In this section, we investigate algebraic relations among Goss’s zeta values. This section owes its very
existence to B. Anglès. In particular, the proofs of Proposition 5.2 and Corollary 5.4 are due to him. For
more details about the theory of L series and Goss’s zeta values, we refer the interested reader to [32],
Section 8.

5.1. Goss’s map

We set 𝜋 := 𝑡/𝑦, which is a uniformizer of 𝐾∞. Set 𝜋1 = 𝜋, and for 𝑛 ≥ 2, choose 𝜋𝑛 ∈ 𝐾
×

∞ such that
𝜋𝑛

𝑛 = 𝜋𝑛−1. If 𝑧 ∈ Q, 𝑧 = 𝑚
𝑛! for some 𝑚 ∈ Z, 𝑛 ≥ 1, we set

𝜋𝑧 := 𝜋𝑚
𝑛 .

Let F𝑞 be the algebraic closure of F𝑞 in 𝐾∞ and let

𝑈∞ :=
{
𝑥 ∈ 𝐾∞, 𝑣∞(𝑥 − 1) > 0

}
.
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Then 𝐾
×

∞ = 𝜋Q × F
×

𝑞 ×𝑈∞. Therefore, if 𝑥 ∈ 𝐾
×

∞, one can write in a unique way

𝑥 = 𝜋𝑣∞ (𝑥) sgn(𝑥)〈𝑥〉, sgn(𝑥) ∈ F×𝑞 , 〈𝑥〉 ∈ 𝑈∞.

Let 𝐼 ∈ I (𝐴). Then there exists an integer ℎ ≥ 1 such that 𝐼ℎ = 𝑥𝐴, 𝑥 ∈ 𝐾×. We set 〈𝐼〉 := 〈𝑥〉
1
ℎ ∈ 𝑈∞.

Then one shows (see [32], Section 8.2) that the map called Goss’s map

[·]𝐴 : I (𝐴) → 𝐾
×

∞

𝐼 ↦→ 〈𝐼〉𝜋−
deg 𝐼
𝑑∞

is a group homomorphism such that

∀𝑥 ∈ 𝐾×, [𝑥𝐴]𝐴 =
𝑥

sgn(𝑥)
.

Observe that for all 𝐼 ∈ I (𝐴), we have sgn([𝐼]𝐴) = 1.
Let 𝐸/𝐾 be a finite extension and let 𝑂𝐸 be the integral closure of A in E. Let I (𝑂𝐸 ) be the group

of non-zero fractional ideals of 𝑂𝐸 . We denote by 𝑁𝐸/𝐾 : I (𝑂𝐸 ) → I (𝐴) the group homomorphism
such that if 𝔓 is a maximal ideal of 𝑂𝐸 and 𝑃 = 𝔓 ∩ 𝐴, we have

𝑁𝐸/𝐾 (𝔓) = 𝑃

[
𝑂𝐸
𝔓 : 𝐴𝑃

]
.

Note that if 𝔓 = 𝑥𝑂𝐸 , 𝑥 ∈ 𝐸×, then 𝑁𝐸/𝐾 (𝔓) = 𝑁𝐸/𝐾 (𝑥)𝐴, where 𝑁𝐸/𝐾 : 𝐸 → 𝐾 also denotes the
usual norm map.

5.2. Goss’s zeta functions and Goss’s zeta values

We recall the definition of Goss’s zeta functions introduced in [32], Chapter 8. Let S∞ = C×∞ ×Z𝑝 be the
Goss ‘complex plane’. The group action of S∞ is written additively. Let 𝐼 ∈ I (𝐴) and 𝑠 = (𝑥; 𝑦) ∈ S∞;
we set

𝐼𝑠 := 〈𝐼〉𝑦𝑥deg 𝐼 ∈ C×∞.

We have a natural injective group homomorphism: Z → S∞, 𝑗 ↦→ 𝑠 𝑗 =
(
𝜋−

𝑗
𝑑∞ , 𝑗

)
. Observe that

𝐼𝑠 𝑗 = [𝐼]
𝑗
𝐴.

Let 𝐸/𝐾 be a finite extension and let 𝑂𝐸 be the integral closure of A in E. Let ℑ be a non-zero ideal
of E. We have

∀ 𝑗 ∈ Z, 𝑁𝐸/𝐾 (ℑ)𝑠 𝑗 =

[
𝑂𝐸

ℑ

] 𝑗

𝐴

.

Letting 𝑠 ∈ S∞, the following sum converges in C∞ (see [32], Theorem 8.9.2):

𝜁𝑂𝐸 (𝑠) :=
∑
𝑑≥0

∑
ℑ∈I (𝑂𝐸 ) ,ℑ⊂𝑂𝐸 ,
deg(𝑁𝐸/𝐾 (ℑ))=𝑑

𝑁𝐸/𝐾 (ℑ)−𝑠 .
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The function 𝜁𝑂𝐸 : S∞ → C∞ is called the zeta function attached to 𝑂𝐸 and [·]𝐴. Observe that

∀ 𝑗 ∈ Z, 𝜁𝑂𝐸 ( 𝑗) := 𝜁𝑂𝐸 (𝑠 𝑗 ) =
∑
𝑑≥0

∑
ℑ∈I (𝑂𝐸 ) ,ℑ⊂𝑂𝐸 ,
deg(𝑁𝐸/𝐾 (ℑ))=𝑑

[
𝑂𝐸

ℑ

]− 𝑗

𝐴

.

In particular,

𝜁𝑂𝐸 (1) =
∏
𝔓

����1 −
1[

𝑂𝐸
𝔓

]
𝐴

����
−1

∈ 𝐾
×

∞,

where 𝔓 runs through the maximal ideals of 𝑂𝐸 .
Recall that 𝜌 : 𝐴 → 𝐵{𝜏} is the sign-normalized rank one Drinfeld module given in Section 1.3,

where B is the integral closure of A in H, the Hilbert class field. By [6], Proposition 2.1, the following
product converges to an element in 𝑈∞ ∩ 𝐾×

∞:

𝐿𝐴(𝜌/𝑂𝐸 ) :=
∏
𝔓

[Fitt𝐴(𝑂𝐸/𝔓]𝐴

[Fitt𝐴(𝜌(𝑂𝐸/𝔓))]𝐴
,

where 𝔓 runs through the maximal ideals of 𝑂𝐸 .
We have the following crucial fact (see [6], Proposition 3.4) which provides a deep connection

between the special L-values and the Goss’s zeta value at 1.

Proposition 5.1. Let 𝐸/𝐾 be a finite extension such that 𝐻 ⊂ 𝐸 . Then

𝐿𝐴(𝜌/𝑂𝐸 ) = 𝜁𝑂𝐸 (1).

5.3. Relations with Anderson’s zeta values

Recall that B is the integral closure of A in H, the Hilbert class field of K. Let z be an indeterminate over
𝐾∞ and recall that T𝑧 (𝐾∞) denotes the Tate algebra in the variable z with coefficients in 𝐾∞. Recall that

𝐻∞ = 𝐻 ⊗𝐾 𝐾∞,

T𝑧 (𝐻∞) = 𝐻 ⊗𝐾 T𝑧 (𝐾∞).

For 𝑛 ∈ Z, we set

𝑍𝐵 (𝑛; 𝑧) =
∑
𝑑≥0

∑
ℑ∈I (𝐵) ,ℑ⊂𝐵,

deg(𝑁𝐻/𝐾 (ℑ))=𝑑

[
𝐵

ℑ

]−𝑛

𝐴

𝑧𝑑 .

Then, by [32], Theorem 8.9.2, for all 𝑛 ∈ Z, 𝑍𝐵 (𝑛; .) defines an entire function on C∞, and

∀𝑛 ∈ N, 𝑍𝐵 (−𝑛; 𝑧) ∈ 𝐴[𝑧] .

Observe that

∀𝑛 ∈ Z, 𝑍𝐵 (𝑛; 𝑧) ∈ T𝑧 (𝐾∞)
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and

∀𝑛 ≥ 1, 𝑍𝐵 (𝑛; 𝑧) =
∏
𝔓

����1 −
𝑧deg(𝑁𝐻/𝐾 (𝔓))[

𝐵
𝔓

]𝑛
𝐴

����
−1

∈ T𝑧 (𝐾∞)
×.

Finally, we note that

𝑍𝐵 (𝑛; 1) = 𝜁𝐵 (𝑛).

Recall that 𝐺 = Gal(𝐻/𝐾). Then 𝐺 � Gal(𝐻 (𝑧)/𝐾 (𝑧)) acts on T𝑧 (𝐻∞). We denote by T𝑧 (𝐻∞)[𝐺]

the non-commutative group ring where the commutation rule is given by

∀ℎ, ℎ′ ∈ T𝑧 (𝐻∞),∀𝑔, 𝑔
′ ∈ 𝐺, ℎ𝑔.ℎ′𝑔′ = ℎ𝑔(ℎ′)𝑔𝑔′.

Let 𝑛 ∈ Z. One can show (see [6], Lemma 3.5) that the following infinite sum converges in
T𝑧 (𝐻∞)[𝐺]:

L(𝜌/𝐵; 𝑛; 𝑧) :=
∑
𝑑≥0

∑
𝐼 ∈I (𝐴) ,𝐼 ⊂𝐴,

deg 𝐼=𝑑

𝑧deg 𝐼

𝜓(𝐼)𝑛
𝜎𝐼 .

Furthermore, for all 𝑛 ≥ 1, we have

L(𝜌/𝐵; 𝑛; 𝑧) =
∏
𝑃

(
1 −

𝑧deg 𝑃

𝜓(𝑃)𝑛
𝜎𝑃

)−1

∈ (T𝑧 (𝐻∞)[𝐺])×

and for all 𝑛 ≤ 0,

L(𝜌/𝐵; 𝑛; 𝑧) ∈ 𝐵[𝑧] [𝐺] .

Note that

𝜁𝜌 (., 𝑛) = L(𝜌/𝐵; 𝑛; 1) ∈ (𝐻∞[𝐺])×.

We observe that L(𝜌/𝐵; 𝑛; 𝑧) induces a T𝑧 (𝐾∞)-linear map L(𝜌/𝐵; 𝑛; 𝑧) : T𝑧 (𝐻∞) → T𝑧 (𝐻∞).
Since T𝑧 (𝐻∞) is a free T𝑧 (𝐾∞)-module of rank [𝐻 : 𝐾] (recall that T𝑧 (𝐾∞) is a principal ideal
domain), detT𝑧 (𝐾∞) L(𝜌/𝐵; 𝑛; 𝑧) is well-defined. We also observe that 𝜁𝜌 (., 𝑛) induces a 𝐾∞-linear map
𝜁𝜌 (., 𝑛) : 𝐻∞ → 𝐻∞, and we denote by det𝐾∞

𝜁𝜌 (., 𝑛) its determinant. Recall that ev : T𝑧 (𝐻∞) → 𝐻∞

is the 𝐻∞-linear map given by

∀ 𝑓 ∈ T𝑧 (𝐻∞), ev( 𝑓 ) = 𝑓 |𝑧=1 .

Observe that if {𝑒1, . . . , 𝑒ℎ} is a K-basis of 𝐻/𝐾 (recall that ℎ = [𝐻 : 𝐾]), then

𝐻∞ = ⊕ℎ
𝑖=1𝐾∞𝑒𝑖 ,

T𝑧 (𝐻∞) = ⊕ℎ
𝑖=1T𝑧 (𝐾∞)𝑒𝑖 .

We deduce that

det𝐾∞
𝜁𝜌 (., 𝑛) = ev

(
detT𝑧 (𝐾∞)L(𝜌/𝐵; 𝑛; 𝑧)

)
.
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By [6], Theorem 3.6, we have

detT𝑧 (𝐾∞)L(𝜌/𝐵; 𝑛; 𝑧) = 𝑍𝐵 (𝑛; 𝑧).

In particular,

det𝐾∞
𝜁𝜌 (., 𝑛) = 𝜁𝐵 (𝑛).

5.4. Algebraic relations among Goss’s zeta values

The class number Cl(𝐴) of A equals to the number of rational points 𝑋 (F𝑞) on the elliptic curve X
and also to the degree of extension [𝐻 : 𝐾]. For a prime ideal 𝔭 of A of degree 1 corresponding to
an F𝑞-rational point on X, we denote by 𝔭+ the subset of elements in 𝔭 of sign 1 and consider the sum
(compare to [36], Section 6 and [33], Section 6):

𝜁𝐴(𝔭, 𝑛) =
∑

𝑎∈𝔭−1 ,
sgn(𝑎)=1

1
𝑎𝑛

, 𝑛 ∈ N.

We will see that the sums 𝜁𝐴(𝔭, 𝑛) where 𝔭 runs through the set P of prime ideals of A of degree 1 are
the elementary blocks in the study of Goss’s zeta values on elliptic curves. For the rest of this section,
it will be convenient to slightly modify these sums as follows.
Proposition 5.2. Let 𝑛 ∈ N. For 𝜎 ∈ 𝐺 = Gal(𝐻/𝐾), we set

𝜁𝐴(𝜎, 𝑛) :=
∑
𝑑≥0

∑
𝐼 ∈I (𝐴) ,𝐼 ⊂𝐴,

deg(𝐼 )=𝑑,
𝜎𝐼=𝜎

1
[𝐼]𝑛𝐴

.

Then the elements 𝜁𝐴(𝜎, 𝑛) indexed by 𝜎 ∈ 𝐺 are algebraically independent over 𝐾 .
Proof. Let 𝜎 ∈ Gal(𝐻/𝐾) and 𝔭 be the corresponding ideal in P such that 𝜎𝔭 = 𝜎. We get

𝜁𝐴(𝜎, 𝑛) =
∑

𝐼 ∈I (𝐴) ,𝐼 ⊂𝐴,
𝜎𝐼=𝜎

1
[𝐼]𝑛𝐴

=
1

[𝔭]𝑛𝐴

∑
𝑎∈𝔭−1 ,

sgn(𝑎)=1

1
𝑎𝑛

=
1

[𝔭]𝑛𝐴
𝜁𝐴(𝔭, 𝑛),

and ∑
𝐼 ∈I (𝐴) ,𝐼 ⊂𝐴,

𝜎𝐼=𝜎

1
𝜓(𝐼)𝑛

=
1

𝜓(𝔭)𝑛

∑
𝑎∈𝔭−1 ,

sgn(𝑎)=1

1
𝑎𝑛

=
1

𝜓(𝔭)𝑛
𝜁𝐴(𝔭, 𝑛).

Thus, we obtain

𝜁𝐴(𝜎, 𝑛) =
𝜓(𝔭)𝑛

[𝔭]𝑛𝐴

∑
𝐼 ∈I (𝐴) ,𝐼 ⊂𝐴,

𝜎𝐼=𝜎

1
𝜓(𝐼)𝑛

.

Note that 𝜓 (𝔭)𝑛

[𝔭]𝑛 belongs to 𝐾
×. It follows that for 𝑏 ∈ 𝐵, we can express

𝜁𝜌 (𝑏, 𝑛) =
∑
𝜎∈𝐺

𝑎𝜎 (𝑏) 𝜁𝐴(𝜎, 𝑛)

with some coefficients 𝑎𝜎 (𝑏) ∈ 𝐾 .
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By Theorem 4.3, if {𝑏1, . . . , 𝑏ℎ} ⊂ 𝐵 is a K-basis of H, then the elements 𝜁𝜌 (𝑏𝑖 , 𝑛) (1 ≤ 𝑖 ≤ ℎ) are
algebraically independent over 𝐾 . By the above discussion and the fact that

| 𝜁𝜌 (𝑏𝑖 , 𝑛), 1 ≤ 𝑖 ≤ ℎ | = | 𝜁𝐴(𝜎, 𝑛), 𝜎 ∈ 𝐺 | = [𝐻 : 𝐾],

the Proposition follows immediately. �

Let U be the p-Sylow subgroup of G where p is the characteristic ofF𝑞 . We setΔ := 𝐺/𝑈 = Gal(𝐹/𝐾)

where 𝐹 = 𝐻𝑈 . We write 𝑝𝑠 = |𝑈 | and set

𝐺 = Hom(𝐺, F
×

𝑞) = Hom(Δ , F
×

𝑞) � Δ ,

with |Δ | ∈ Z×𝑝 .
For 𝛿 ∈ Δ , we set

𝑍 (𝑛, 𝛿) =
∑

𝐼 ∈I (𝐴) ,𝐼 ⊂𝐴,
(𝐼 ,𝐹/𝐾 )=𝛿

1
[𝐼]𝑛𝐴

∈ 𝐾∞.

We see easily that

𝑍 (𝑛, 𝛿) =
∑

𝜎≡𝛿 (mod 𝑈 )

𝜁𝐴(𝜎, 𝑛).

By Proposition 5.2, 𝑍 (𝑛, 𝛿), 𝛿 ∈ Δ are algebraically independent over 𝐾 .
Let 𝜒 ∈ 𝐺, and we consider the value at 1 of Goss L-series attached to 𝜒 given by

𝐿(𝑛, 𝜒) =
∑
𝛿∈Δ

𝜒(𝛿)𝑍 (𝑛, 𝛿) =
∑

𝐼 ∈I (𝐴) ,𝐼 ⊂𝐴

𝜒((𝐼, 𝐹/𝐾))

[𝐼]𝑛𝐴
,

where (., 𝐹/𝐾) is the Artin map. It is clear that for all 𝛿 ∈ Δ ,

𝑍 (𝑛, 𝛿) =
1
|Δ |

∑
𝜒∈𝐺

𝜒(𝛿)−1𝐿(𝑛, 𝜒).

The above discussion combined with Theorem 4.3 implies immediately a transcendental result for
Goss’s zeta values.
Theorem 5.3. Let 𝑚 ∈ N, 𝑚 ≥ 1. Then the special values of Goss L-series

𝐺𝑛 = {𝜋𝜌} ∪ {𝐿(𝑛, 𝜒) : 𝜒 ∈ 𝐺, 1 ≤ 𝑛 ≤ 𝑚 such that 𝑞 − 1 � 𝑛 and 𝑝 � 𝑛}.

are algebraically independent over 𝐾 .
As a direct consequence, we obtain the following corollary:

Corollary 5.4. Let 𝑚 ∈ N, 𝑚 ≥ 1. Let L be an extension of K such that 𝐿 ⊂ 𝐻. We consider the following
set:

G𝐿 = {𝜋𝜌} ∪ {𝜁𝑂𝐿 (𝑛) : 1 ≤ 𝑛 ≤ 𝑚 such that 𝑞 − 1 � 𝑛 and 𝑝 � 𝑛}.

Then the elements of G𝐿 are algebraically independent over 𝐾 .
Remark 5.5. 1) When 𝐿 = 𝐾 , we have shown that 𝜁𝐴(1) is transcendental over K, which gives an
affirmative answer to an old question of D. Goss 3

3Personal communication in Spring 2016
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2) When 𝐿 = 𝐻, the above Theorem states that 𝜁𝐵 (1) is transcendental over K. It answers positively
to [10], Problem 4.1 in this case. Note that our proof is highly nontrivial.

Proof of Corollary 5.4. Let 𝑝𝑘 be the exact power of p that divides [𝐿 : 𝐾] and let 𝑁 = Gal(𝐹/𝐹∩𝐿) ⊆
Δ . We have (see for example [32], Section 8.10):

𝜁𝑂𝐿 (𝑛) =
���

∏
𝜒∈𝐺,𝜒 (𝑁 )={1}

𝐿(𝑛, 𝜒)
���
𝑝𝑘

.

Thus, Corollary 5.4 follows from Theorem 5.3. �
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