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The Weinberg–Salam electroweak theory for leptons

We shall now couple the lepton fields to all the gauge boson fields: the electromag-
netic field, the W + and W − fields, and the Z field. We know that at low energies
the theory must reproduce the phenomenology of Chapter 9. This consideration
and the principles of U (1) × SU (2) local gauge symmetry determine the couplings
uniquely.

We have seen how the Higgs mechanism gives mass to the W± and Z bosons. To
give mass to the charged leptons: the electron, the muon, the tau, they too must be
coupled to the Higgs field. We shall finally arrive at the Weinberg–Salam unified
theory of the electroweak interaction.

12.1 Lepton doublets and the Weinberg–Salam theory

We shall first construct a Lagrangian density for lepton fields that is invariant under
U(1) and SU(2) transformations. The left-handed electron spinor eL and the electron
neutrino spinor νeL are put together in an SU(2) doublet, like the Higgs fields in
equation (11.1),

L =
(

νeL

eL

)
=

(
LA

LB

)
. (12.1)

We are now again specialising our notation; two-component left-handed and right-
handed spinors were denoted by ψL and ψR, respectively, in Chapter 6. Under an
SU(2) transformation, this doublet transforms in exactly the same way as the Higgs
doublet:

L → L′ = UL. (12.2)

Since SU(2) transformations mix the two spinor fields making up the doublet,
to maintain Lorentz invariance only fields with the same Lorentz transformation
properties can be combined together into a doublet.
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118 Weinberg–Salam electroweak theory for leptons

From the phenomenology of Chapter 9 the right-handed lepton fields do
not couple to the W boson field so that eR and νeR are invariant under SU(2)
transformations:

eR → e′
R = eR. νeR → ν ′

eR = νeR. (12.3)

To be consistent with the transformation rule (12.2), all SU(2) gauge derivatives
must be of the same form, ∂μ + i(g2/2)Wμ, where g2sin θw=e, as in (11.8) and
(11.38). This is a consequence of the non-Abelian nature of the group SU(2).
However, there is no similar constraint on the coupling constant to the U(1) gauge
field Bμ. (See Problem 12.1.) We may take

DμL = [∂μ+i(g2/2)Wμ+i(g′/2)Bμ)]L, (12.4)

where g′ remains at our disposal. We must choose g′ so that the neutrino is neutral
and the electron has charge −e. The terms in DμL which couple to the electromag-
netic field Aμ are linear combinations of W 3

μ and Bμ. Using (11.7) and (11.29) the
terms in Aμ are(

∂μ + {i(g2/2) sin θw + i(g′/2) cos θw}Aμ, 0
0, ∂μ + {−i(g2/2) sin θw + i(g′/2) cos θw}Aμ

) (
νeL

eL

)
.

The gauge derivatives ∂μνeL and (∂μ − ieAμ)eL which leave the neutrino electrically
neutral but impart electric charge −e to eL, are obtained with the choice

g′ cos θw = −g2 sin θw = −e.

The complete gauge derivative of the left-handed fields is then

DμL =
(

∂μ + i(e/ sin 2θw)Zμ, i{e/(
√

2 sin θw)}W +
μ

i{e/(
√

2 sin θw)}W −
μ , ∂μ − ieAμ − ie cot(2 θw)Zμ

) (
νeL

eL

)
(12.5)

where we have used (11.7), (11.17) and (11.29).
The gauge derivative of eR must be of the form

DμeR= [∂μ+i(g′′/2)Bμ]eR. (12.6a)

Since the electron has charge −e we take g′′ = −2e/cos θw = −2g1, (see (11.38))
so that, using (11.29) again,

DμeR= [(∂μ−ieAμ) + ie tan θw Zμ]eR. (12.6b)

With g′′ = −2g1 and g′ = −g1, it can easily be checked that, under a local
U (1) × SU (2) transformation

L → L′ = eiθ (x)U(x)L,

eR → e′
R = e2iθ(x)eR,
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12.1 Lepton doublets and the Weinberg–Salam theory 119

the gauge derivatives satisfy

Dμ
′L′ = (∂μ + i(g2/2)Wμ

′ + i(g′/2)Bμ
′)L′ = eiθUDμL

Dμ
′eR

′ = (∂μ + i(g′′/2)Bμ
′)eR

′ = e2iθDμeR,

where the fields Bμ and Wμ transform as in (11.4b) and (11.6).
We can now construct a gauge invariant and Lorentz invariant expression for the

dynamical part of the Lagrangian density for the electron and the electron neutrino:

Le
dyn = L†σ̃ μiDμL + e†

RσμiDμeR + ν+
eRσμi∂μνeR. (12.7)

The gauge invariance follows from our construction of the gauge derivatives, and
the Lorentz invariance from the spinor properties set out in Section 5.4. (Remember
that the σ̃μ matrices act on the spinor indices, whereas the SU(2) transformation
acts independently on the components of the doublet of spinor fields.) Note that
besides the interaction with the electromagnetic field we have fully determined,
from the factor DμL, all the interactions with the heavy vector bosons.

Finally, we must give mass to the charged leptons. A gauge and Lorentz invariant
contribution to the Lagrangian density that will impart mass to the electron but leave
the neutrino massless is (neutrino mass will be introduced in Chapter 19)

Le
mass = −ce[(L†�)eR + e†R(�†L)]

= −ce[(ν†
L�A + e†L�B)eR + e†R(�†

AνL + �
†
BeL)],

(12.8)

where � is the Higgs doublet field and ce is a dimensionless coupling constant.
After symmetry breaking (see (11.23)), Le

mass becomes

Le
mass = −ceφ0(e†LeR + e†ReL) − ceh√

2

(
e†LeR + e†ReL

)
. (12.9)

Comparing this with the Dirac Lagrangian density (5.12), we identify ceφ0 with
the electron mass me. Introducing mass by following the principles of symmetry
has left us no option but to introduce an interaction between the electron field and
the Higgs field h(x). Hence the coupling constant to the Higgs field is

ce√
2

= me√
2φ0

= 2.01 × 10−6 (12.10)

(using (11.39)). It is just as well that ce is small: we do not want this term to upset
the calculations of QED!

The total Lagrangian density Le for the electron and its neutrino is given by
(12.7) and (12.8):

Le = Le
dyn + Le

mass. (12.11)
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120 Weinberg–Salam electroweak theory for leptons

From Le we can pick out the terms

L
e

Dirac = ν
†
eLσ̃ μi(∂μνeL)+e†Lσ̃ μi(∂μ − ieAμ)eL + ν

†
eRσμi∂μνeR

+ e†Rσμi(∂μ − ieAμ)eR − me
(
e†LeR + e†ReL

)
,

(12.12)

which correspond to the expressions we found in Chapter 6 and Chapter 7 for a
Dirac massless neutrino, and a Dirac electron of mass me and charge −e in an
electromagnetic field.

The Lagrangian densities Lμ and Lτ for the muon and tau leptons and their neu-
trinos differ from (12.11) only in their mass parameters and, hence, their couplings
to the Higgs field:

cμ√
2

= mμ√
2φ0

= 4.15 × 10−4,
cτ√

2
= mτ√

2φ0

= 6.98 × 10−3. (12.13)

The coupling constant g2 of the SU(2) gauge theory, or, equivalently, the Weinberg
angle θw (see (11.38)), which determines the coupling to the W ± and Z fields, must
be the same for all leptons, a feature of the theory that is forced on us by the SU(2)
group, and that is known as lepton universality.

The complete Lagrangian density Lws of the Weinberg–Salam theory (Wein-
berg, 1967; Salam, 1968) is the sum of the lepton contributions, and the boson
contributions given by (11.31) and (11.32):

Lws = Le + Lμ + Lτ + Lbosons, (12.14)

The form of Lws has been determined by considerations of symmetry: invariance
under Lorentz transformations, and under U(1) and SU(2) transformations. Massive
bosons and leptons appear through the Higgs mechanism of local symmetry break-
ing. It has been proved by t’Hooft (1976), who introduced radically new methods
of analysis, that the theory is renormalisable. We shall see in Chapter 13 that there
is a great body of data that supports it.

12.2 Lepton coupling to the W ±

The coupling of the electron and the electron neutrino to the W + and W − gauge
fields is given by the appropriate terms in (12.5) and (12.7), which are

Lew = −
(

g2/
√

2
)
ν
†
eLσ̃ μeLW +

μ −
(

g2/
√

2
)

e†Lσ̃ μνeLW −
μ

= −
(

g2/
√

2
)

[ jμ†
e W +

μ + jμ
e W −

μ ]. (12.15)

The right-handed fields do not contribute to this interaction. As in Chapter 9 the
currents are defined as

jμ
e = e†Lσ̃ μνeL, jμ†

e = ν
†
eLσ̃ μeL. (12.16)
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12.3 Lepton coupling to the Z 121

There are similar muon and tau currents, giving a total lepton current

jμ =
(

e†Lσ̃ μνeL + μ
†
Lσ̃ μνμL + τ

†
Lσ̃ μντL

)
, (12.17)

and total interaction Lagrangian density

LlW = −(g2/
√

2)
[

jμ†W +
μ + jμW −

μ

]
. (12.18)

The effective Llepton used in the discussion of muon decay in Section 9.4 can be
obtained as the low energy limit of the Weinberg–Salam theory. Since the mass
Mw is so large, at low energies the term M2

wW −
μ W +μ in (11.31) dominates in the

W contribution to the Lagrangian density, and

Lw ≈ M2
wW −

μ W +μ −
(

g2/
√

2
)

[ jμ†W †
μ + jμW −

μ ]. (12.19)

Physical field configurations correspond to stationary values of the action. Varying
W +

μ and W −
μ independently gives the field equations

M2
wW −

μ =
(

g2/
√

2
)

j †μ , M2
wW +

μ =
(

g2/
√

2
)

jμ, (12.20)

and using these in (12.19) gives

Lw ≈ −1

2
g2

2 M−2
w j †μ jμ. (12.21)

Lw is equivalent to the effective Llepton of (9.8) if we make the identification

GF = g2
2

4
√

2M2
w

= e2

4
√

2M2
w sin2 θw

. (12.22)

Taking Mw = 80.33 Gev, Mz = 91.187 GeV, sin2 θw = 1 − M2
w/M2

z , gives GF =
1.12 × 10−5 GeV−2, which is in good agreement with the accepted experimental
value, 1.166 × 10−5 GeV−2. Historically, the knowledge of GF, together with an
estimate of θw (see Section 13.1) was used to predict the masses of the W± and Z
bosons, and the CERN proton–antiproton collider was then built to find them.

12.3 Lepton coupling to the Z

The coupling of the leptons to the Z field can be extracted from the terms involving
Zμ in (12.7):

LeZ = −ν
†
eLσ̃ μνeL

(
e

sin(2θw)

)
Zμ + e†Lσ̃ μeL

(
e cos(2θw)

sin(2θw)

)
Zμ

−e†RσμeR(e tan θw)Zμ (using (12.5) and (12.6b))

= −e

sin(2θw)
( jneutral)μZμ,
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122 Weinberg–Salam electroweak theory for leptons

where

( jneutral)
μ = ν

†
eLσ̃ μνeL − cos(2θw)e†Lσ̃ μeL

+ 2 sin2 θwe†RσμeR. (12.23)

There are similar expressions for Lμz and Lτz. Note that the right-handed charged
lepton fields also couple to the Z field but not the right-handed neutrino.

The low energy limit of Lz may be obtained in the same way as we obtained
the low energy limit Lw in Section 12.2, with the same identification of coupling
constants, and is identical with the effective Lagrangian density (9.15) if, comparing
(12.23) with (9.17),

cA = −1

2
, cV = −1

2
+ 2 sin2 θw. (12.24)

The low energy muon neutrino–electron elastic scattering cross-sections calcu-
lated from the effective Lagrangian density are

σ (νμ + e− → νμ + e−) = G2
Fs

π

[
4

3
sin4 θw − sin2 θw + 1

4

]
, (12.25)

σ (ν̄μ + e− → ν̄μ + e−) = G2
Fs

π

[
4

3
sin4 θw − 1

3
sin2 θw + 1

12

]
, (12.26)

where s is the square of the centre of mass energy and Eν � me (see Perkins, 1987,
p. 327).

These low energy (� Mz, Mw) cross-sections have been measured at CERN
(CHARM II Collaboration, 1994), and their ratio yields an estimate for sin2 θw =
0.2324 ± 0.0083.

The Fermi constant GF is also known experimentally from low energy phenom-
ena, and e is of course well known. Hence within the framework of the Weinberg–
Salam theory the masses of the Z and W± gauge bosons can be estimated from low
energy data alone, using (12.22) and (11.37). (Earlier estimates of sin2 θw came
from neutrino–nuclear scattering.)

12.4 Conservation of lepton number and conservation of charge

The Weinberg–Salam Lagrangian density LWS has also further independent global
U(1) symmetries. It is invariant under the U(1) transformation Le → eiαLe, eR →
eiαeR, where α is a constant phase (see (12.7) and (12.9)). Using the device (by
now familiar) of varying α so that α → α + δα(x), where δα is space and time
dependent, the first-order variation in the action comes from the dynamical part of
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12.5 CP symmetry 123

Le
dyn (equation (12.7)), and is

δS = −
∫

L†σ̃ μL∂μ(δα) d4x −
∫

e†RσμeR∂μ(δα) d4x

=
∫ [

∂μ(L†σ̃ μL) + ∂μ

(
e†RσμeR

)]
(δα) d4x,

on integrating by parts. Setting δS = 0 for arbitrary δα yields

∂μ

(
ν
†
L σ̃ μνL + e†Lσ̃ μeL

) + ∂μ

(
e+

R σμeR
) = 0,

or

∂μ

(
Jμ

e

) = 0, (12.27)

where

J 0
e = ν

†
LνL + e†LeL + e†ReR,

J i
e = ν

†
Lσ̃ iνL + e†Lσ̃ i eL + e†Rσ i eR.

(12.28)

Equation (12.28), which we may write as

∂ J 0
e

∂t
+ ∇ · Je = 0, (12.29)

expresses the conservation of electron lepton number. Similar U(1) transformations
applied to the muon and tau parts of Lws give the conservation of muon lepton
number, and tau lepton number. We will see in Chapter 19 that the inclusion of
Dirac neutrino mass into the Standard Model reduces these three conservation laws
to one.

As in Chapters 4 and 5, the inhomogeneous Maxwell equations can be obtained
by varying Aμ. There are contributions to the electric current from the charged W ±

fields, as well as from the charged leptons. Conservation of charge follows from
Maxwell’s equations, but can be obtained more directly from the U(1) symmetry
apparent in each term of the Weinberg–Salam Lagrangian density (12.14):

eL → eiαeL, eR → eiαeR; μL → eiαμL, μR → eiαμR; τL

→ eiατL, τR → eiατR; W +
μ → e−iαW +

μ , W −
μ → eiαW −

μ . (12.30)

12.5 CP symmetry

We saw in Chapter 5 (equation (5.27)) that under space inversion a left-handed
spinor ψL transforms into a right-handed spinor ψR, and vice versa. The Weinberg–
Salam Lagrangian does not have space inversion symmetry, since only the left-hand
components of the lepton wave functions are coupled to the SU(2) gauge field Wμ.
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124 Weinberg–Salam electroweak theory for leptons

We also discussed in Chapter 7 the operation of charge conjugation,

ψC
L = −iσ 2ψ∗

R, ψC
R = iσ 2ψ∗

L,

which relates solutions of the Dirac equation for particles to solutions for antipar-
ticles. In the Weinberg–Salam theory there is no charge symmetry.

The Weinberg–Salam Lagrangian does exhibit a symmetry under the combined
CP (charge conjugation, parity) operation. This symmetry implies that the physics
of particles described in a right-handed coordinate system is the same as the physics
of antiparticles described in a left-handed coordinate system.

Under the combined CP operation, lepton fields transform according to

ψC P
L = −iσ 2ψ∗

L, ψC P
R = iσ 2ψ∗

R. (12.31)

The other fields in the electroweak theory transform as set out below:

Higgs field:

(
�C P

A

�C P
B

)
=

(
�∗

A

�∗
B

)
.

U(1) gauge fields: BC P
0 = −B0, BC P

i = Bi .
SU(2) gauge fields:

(
W 3

0 W 1
o − iW 2

0

W 1
0 + iW 2

0 −W 3
0

)C P

= −
(

W 3
0 W 1

0 + iW 2
0

W 1
0 − iW 2

0 −W 3
0

)
,

(
W 3

i W 1
i − iW 2

i

W 1
i + iW 2

i −W 3
i

)C P

=
(

W 3
i W 1

i + iW 2
i

W 1
i − iW 2

i −W 3
i

)
.

It follows that

W +C P
0 = −W −

0 , W +C P
i = W −

i ,

ZC P
0 = −Z 0, ZC P

i = Zi ,

AC P
0 = −A 0, AC P

i = Ai .

(12.32)

Space derivatives of fields are replaced by their negatives.
To show that the Lagrangian density is invariant under these transformations

requires some care. We demonstrate it here for just one term, but one which involves
all the necessary steps in the complete argument, and we leave the remaining terms
to the reader. Consider then the term from the expression (12.7)

e†Rσμi[∂μ + i(g′′/2)Bμ]eR = l, say.
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Replacing the fields by their CP transforms, and ∂i by −∂i , gives

lC P = eT
R(σμ)Ti[∂μ − i(g′′/2)Bμ]e∗

R,

where we have used the results

(σ 2)2 = 1, σ 2σ iσ 2 = −(σ i )T.

The operators ∂μ now act on the conjugate fields. In fact lC P is not identical to l, but
differs from it only by a sum of total derivatives and, as explained in Section 3.1, a
total derivative is of no consequence. If we add to lC P the terms −i∂μ[eT

R(σμ)Te∗
R]

we obtain

−i
(
∂μeT

R

)
(σμ)T e∗

R + (
g′′/2

)
BμeT

R (σμ)T e∗
R.

Transposing this expression introduces another minus sign, since eR and eR
† are

fermion fields and hence anticommute. We then recover l.

12.6 Mass terms in L: an attempted generalisation

For later use, when the theory is extended to quarks, we finish this chapter by
contemplating a possible generalisation of our Lagrangian density. The coupling
of the three lepton families to the Higgs field was taken to be

Lmass = −
3∑

i=1

ci

[(
L†

i �
)

ri + r †i

(
�†Li

)]
,

where the sum is over the three lepton families, and we have modified the notation
of (12.8) in an obvious way. We might have taken a more general coupling,

Lgen
mass = −

∑ [
Gi j

(
L†

i �
)

r j + G∗
i j r

†
j

(
�†Li

)]
.

This preserves the U (1) × SU (2) symmetry with Gi j any 3 × 3 complex matrix.
We wish to show that this form has no essential difference from that already

introduced. This is because an arbitrary complex matrix can always be put
into real diagonal form with the help of two unitary matrices, UL and UR

(Appendix A):

G = UL
†CUR,

with Ci j = 0 for i 
= j .
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126 Weinberg–Salam electroweak theory for leptons

UL and UR are in general unique, except that both may be multiplied on the left
by the same ‘phase factor’ matrix⎛

⎝ eiα1 0 0
0 eiα2 0
0 0 eiα3

⎞
⎠ .

If we define ri
′ = URijr j , Li

′ = ULijL j we recover the original form for the
coupling to the Higgs field. Since the dynamical terms in the Lagrangian density
are of the same form after these unitary transformations (Problem 12.5), Lgen

mass is
just a more complicated expression of the same physics. The three phase factors
exp(iαk) correspond to the three U(1) symmetries which lead to electron, muon,
and tau number conservation.

Problems

12.1 Set the fields Wμ to be zero, and consider the dynamical Lagrangian density

L1 = L†σ̃ μi
(
∂μ + i

(
g′/2

)
Bμ

)
L.

With the gauge transformation (11.4b),

Bμ → Bμ
′ = Bμ + (2/g1) ∂μθ,

show that L1 is invariant if L transforms as

L → L′ = exp[−i( g′/g1)θ ]L.

Now set the fields Bμ to be zero, and consider

L2 = L†σ̃ μi(∂μ+i(g′/2)Wμ)L.

With the gauge transformation (11.6),

Wμ → Wμ
′ = UWμU† + (2i/g2)(∂μU)U†,

show that L2, can be made invariant only if

L → L′ = UL and g′ = g2.

12.2 Show that, to conform with the mathematical structure of Chapter 11, if two
fields are to be put together in an SU(2) doublet then they must differ by e
in electric charge.

12.3 Inspection of (12.9) shows that the Higgs boson can decay into an e+e− pair.
Show that, in the rest frame of the Higgs particle, the electron and positron must
have equal and opposite momenta and the same helicity (i.e. both positive or both
negative).
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Show that the final density of momentum states for the decay is

ρ(E f ) = V

(2π )2
pe Ee,

where pe and Ee are the momentum and energy of the electron.
Calculate the matrix elements for the transition, and hence show that to lowest

order in perturbation theory,

total decay rate = c2
e

16π
mH

(ve

c

)3
,

where ve is the electron velocity.

12.4 Show that the ratio of the leptonic partial width of the Higgs particle to its mass is
approximately

1

16π

(
mτ

φ0

)2

≈ 2 × 10−6.

12.5 Verify that the unitary transformations of Section 12.6 preserve the form of the
dynamical terms in the Lagrangian density.
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