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ABSTRACT. The nonlinear (in terms of the large-scale magnetic 
field) effect of the modification of the magnetic force by an advanced 
small-scale magnetohydrodynamic (MHD) turbulence is considered. 
The phenomenon is due to the generation of magnetic fluctuations at 
the expense of hydrodynamic pulsations. It results in a decrease of 
the elasticity of the large-scale magnetic field. 

The renormalization group (RNG) method was employed for the 
investigation of the MHD turbulence at the large magnetic Reynolds 
number . It was found that the level of the magnetic fluctuations can 
exceed that obtained from the equipartition assumption due to the 
inverse energy cascade in advanced MHD turbulence. 

This effect can excite an instability of the large-scale magnetic 
field due to the energy transfer from the small-scale turbulent pul-
sations. This instability is an example of the inverse energy cascade 
in advanced MHD turbulence. It may act as a mechanism for the 
large-scale magnetic ropes formation in the solar convective zone and 
spiral galaxies. 

1. Introduction 

Investigations of fully developed magnetohydrodynamic (MHD) 
turbulence is important in view of various cosmic applications. Ran-
dom motions of a conducting fluid can generate both regular large-
scale magnetic fields (see, for example, Moffatt 1978, Krause and 
Rädler 1980, Zeldovich et al. 1983) and magnetic fluctuations (Zel-
dovich et al. 1990). A source of energy of the regular large-scale 
magnetic field is the turbulent pulsations. It means, that the energy 
is transported from the small scales of the turbulent pulsations to the 
large ones. This process is consequence of helicity (a— effect) and can 
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be considered as an example of an inverse energy cascade in advanced 
MHD turbulence. 

While the dissipation of the energy of the regular magnetic field 
due to a turbulent magnetic diffusion can be interpreted as a direct 
energy cascade since the energy is transported from large scales to the 
small ones. The a— effect and the turbulent magnetic diffusion are 
linear in the large-scale regular magnetic field. 

In this paper an another example of the inverse energy cascade 
in advanced MHD turbulence is considered. It is nonlinear in the 
large-scale magnetic field effect of modification of the magnetic force 
by an advanced small-scale MHD turbulence. 

The renormalization group (RNG) method was used for the in-
vestigation of the MHD turbulence (see, for example, Moffatt 1981, 
Kichatinov 1985, Yakhot and Orszag 1986, McComb 1990). The RNG 
method comprises a change of real turbulence by a medium with effec-
tive turbulent transport coefficients. This procedure allows to derive 
equations for the turbulent transport coefficients: turbulent viscosity, 
turbulent magnetic diffusion and turbulent magnetic coefficients. The 
latter determine the contribution of the turbulence in the large-scale 
regular magnetic force. 

2. The R N G method and turbulent transport coefficients 

Let us consider fully developed MHD turbulence with Re 1 
and Rm 1 , where Re = uo/o/^o is the Reynolds number, Rm = 
uolo/ητη is the magnetic Reynolds number, Iq is the maximal scale of 
turbulence, Uo is the characteristic turbulent velocity, UQ is the kine-
matic viscosity, r/m = c2/4πσ is the magnetic diffusion, c is the light 
speed, σ is the electrical conductivity of the fluid. Let the dissipa-
tion due to the molecular viscosities PQ and r/m is intrinsic only in the 
region I < Id , where /ο · 

Numerous works on turbulence are confined of a study of the 
large-scale properties of flows by averaging the equations over the 
pulsations of all scales of the turbulence (see, for example, Monin 
and Yaglom 1975, McComb 1990). While the averaging in the RNG 
method is performed up to the scale inside the inertial interval of 
the turbulence. So the turbulent transport coefficients depend on the 
scale of the averaging. Next step of the RNG method consists in a 
step by step increasing of the scale of the averaging. This procedure 
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allows to derive equations for the turbulent transport coefficients. The 
RNG method for this problem requires to find an equation invariant 
under the renormalization of the turbulent transport coefficients. The 
recent results (Kleeorin et al. 1990) with a simple model for the high 
order closure procedure were used for deriving the equation. 

Let the averaging over the small-scale region of the spectrum of 
the turbulent pulsations up to the scale /* is performed. The averaged 
equations for velocity ν and magnetic fields Η have the form 

^ ( ^ + ( v " v ) v ) = _ v ( p + Q i , f r ) + ê ( H " v ) H + I / A v + f ' ( 1 ) 

c?H 
= curliy χ H - 7]curlH + cE), (2) 

\J l> 

where div\ = 0 , ρ is the pressure, f is the external force, Ε is the 
external electric field. The turbulent coefficients ν , η , Qp and Qs 

depend on the scale of averaging /* . If /* tends to the dissipation 
scale Id , the functions ν and η reach the molecular magnitudes UQ , 
77 m , and the magnetic coefficients QP,QS —» 1 . The latter determine 
the contribution of the turbulence in the large-scale regular magnetic 
force (Kleeorin et al. 1990). 

Now let us change the scale of the averaging on a small value 
I Ak |<C , where the wave number k* = . After that we carry 
out the reaveraging Eqs. (l)-(2) over the turbulent pulsations. Now 
in the region k < k*— | Ak \ the fields V and Β are regular ones. 
An region k > k*— | Ak | corresponds to the turbulent pulsations. 
Because of Eqs. (l)-(2) have been already averaged up to the scale 

= 5 it is enough to average the equations over pulsations of 
the velocity u and the magnetic field h located in the small region 
ife*- I Ak |<| k |< Κ . Here v = V + u , H = B + h , V = < v > 
, Β = < Η > , and the angle brackets denote averaging over the 
ensemble of turbulent pulsations in the region k | Ak |< | k |< . 
Then the equations for the 'mean' fields V and Β are 
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-r^AVj - f j = ^ - ( S a i j ) , (3 ) 

dB 
- curljiy χ Β - rçcur/B + cE) = curlj < u x h > , (4) 

where the generalized Maxwell-stress tensor (including the Reynolds 
turbulent -stress tensor) is 

= -Qp^-z——Sij + —^ < h{hj > —p < UiUj >, (5) 
θ7Γ 47Γ 

6{j is the Kronecker delta. To obtain a closed system of equations it 
is important to find the dependence of the second moments < hihj > 
, < U{Uj > and < U{hj > on the 'mean' fields V and Β . To this 
end substracting Eq. (3) from Eq. (1) and Eq. (4) from Eq. (2), and 
transforming to the k— and Ω— spaces, one can get the equations for 
the turbulent fields. After that it is possible to determine the second 
moments. 

Let us make a comment. Here we introduce the background MHD 
turbulence. It is the turbulence without the regular large-scale fields 
( V = 0 and Β = 0). The goal of this paper is a study of the shift 
from the background turbulence level due to the the presence of the 
regular large-scale fields. It is important for the investigation of the 
interaction of the large-scale magnetic field with the turbulence. Thus, 
the background MHD turbulence is supposed to be given. The back-
ground MHD turbulence is equivalent to an introduction of effective 
external forces. These external fields are called stirring forces in the 
RNG method (see, for example, McComb 1990). 

We consider quadratic (in terms of the large-scale magnetic field) 
effects. It means, that Β2/8π <C< pu2 > /2 . Finding the second 
moments one gets the expression for the generalized Maxwell-stress 
tensor and effective electric field (Kleeorin and Rogachevskii 1992) 

f dVn dVm\ A Β2
 Γ Β τη Bn A ^ / Λ \ 

= P{dB^ + dR-JAu- Q? mn + (6) 
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cd Ε = curl < u x h > = -ΑηαιτΙΒ. (7) 

Here the change of the turbulent coefficients depends on Δ&. Substi-
tution expressions (6)-(7) in Eqs. (3)-(4) shows that the form of these 
equations is coincide with Eqs. (l)-(2). It means, that these equations 
are invariant under the procedure of the reaveraging. Passed to the 
limit Ak —» 0 , one can get the equations for the turbulent viscosity, 
turbulent magnetic diffusion and turbulent magnetic coefficients 

(11) 

Here Pm(k) = v(k)fr(k) = Rm/Re is the effective magnetic Prandtl 
number, Wo(k) and M0(k) are spectra of the hydrodynamic and mag-
netic pulsations of the background MHD turbulence. 

It is seen from Eq. (10) that a state in which 

( l 2 ) 

is special. In this case Q3(k) = const = 1 and 

< « * > = ( - £ w d T S + 2 ^ ) d k ) > · ( i s ) 

It means, that the effective magnetic pressure Ρ = QP(B2/8π) is al-
ways positive. Eq. (12) corresponds to the 'effective' energy equiparti-
tion. Note, that the 'usual' equipartition state is Wo(k) = Mo(k)/4np 

dQp dQs Qp Pm 
dk 

= 4 
dk 3 v2k2{\ + Pm) W o { k ) - §Tp M o { k ) 
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. Comparison of the expression and (12) shows that in the case of 
Qs < 1 and Pm < 1 a level of the magnetic fluctuations can exceed 
that obtained from the 'usual' equipartition assumption. 

We choose spectrum of the background turbulence on the ba-
sis of the results of numerical simulations (Meneguzzi et al. 1981) 
confirmed by analitical estimates (Kleeorin et al. 1986). In the 
model there are magnetic fluctuations Mo(fc) of the background tur-
bulence in the small scales k > km λ/Rmko , where ko = Iq1 

. They are determined by (12). While for k < km M0{k) = 0 
and the spectrum of the hydrodynamic pulsations in this region is 
W0(k) = (ß — 1)(UQ/&O) * (k/k0)~ß . Here uo is the characteristic 
turbulent velocity in the scale lo . Solution of the system (8)-(ll) 
describes a dependence of the turbulent transport coefficients on k . 
For k = ko they determine the large-scale effects and have the form 

v* ~ VTr η* ^ 1.31/T, Q*s - Rm-3ß/14, Q*p ~ -Rm^1, (14) 

where ντ = (uo/&o)\/7(/? — l)/30(/3 + 1) . From equations for the 
second moments one can get the level of the magnetic fluctuations 
in the present of the large-scale regular magnetic field (Kleeorin and 
Rogachevskii 1992). It is 

< h2 > - < h2 > + ln(i?m) - Β 2 . (15) 

This result is in agreement with one got after application of the high 
order closure procedure (Kleeorin et al. 1990). It is confirmed also by 
numerical simulation by Brandenburg et al. 1992. 

From (14) it is seen that the elasticity of the large-scale magnetic 
field decrease and the 'effective' magnetic pressure Ρ = QP(B2/8π) 
changes the sign. This phenomenon results in an excitation of a large-
scale MHD instability. It leads to formation of inhomogeneities of 
the regular magnetic field on account of the energy transported from 
the small-scale turbulent pulsations. This instability is an example 
of the inverse energy cascade in MHD turbulence. It may act as a 
mechanism for the large-scale magnetic ropes formation in the solar 
convective zone and spiral galaxies (Kleeorin et al. 1990, Kleeorin 
and Rogachevskii 1990). 
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