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Abstract

In this paper we show that a locally connected and locally compact metric image of a generalized
graph under a reflexive open mapping is a generalized graph; further, we characterize all acyclic
generalized graphs X with the property that any locally one-to-one reflexive open mapping of X
into a Hausdorff space is globally one-to-one. Several problems are posed and some examples
are given.
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Whyburn [11, page 182] has shown that an open image of a graph (that is, a
one-dimensional connected polytope) is a graph. Eberhart, Fugate and Gordh
generalize this result, showing that the weakly confluent image of a graph is
a graph [5, Theorem II.6]. In [1], we proved that the metric open image
of a generalized graph (that is, a connected space embeddable into a graph)
is a generalized graph, too. A generalization of open mappings is the class
of reflexive open mappings. Recall that a (continuous) mapping / from a
topological space onto another topological space is said to be reflexive open
if f~\f(U)) is open whenever U is open (see [4, page 597]). Therefore the
following problem is natural.
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344 Stanislaw Miklos [2]

PROBLEM 1. Characterize the class of all images of generalized graphs
under reflexive open mappings.

An important subclass of reflexive open mappings are one-to-one mappings
(see [3]). So we have

PROBLEM 2. Characterize the class of all images of generalized graphs
under one-to-one mappings.

In this paper we give a partial answer to Problems 1 and 2. Namely we
reduce the class of images of generalized graphs under one-to-one mappings
and also reflexive open mappings to locally connected and locally compact
metric spaces. Moreover, we characterize all acyclic generalized graphs X
with the property that any locally one-to-one reflexive open mapping of X
into a Hausdorff space is globally one-to-one.

Lelek and McAuley [9, page 320] have proved the following

THEOREM A (Lelek and McAuley). If a locally connected and locally com-
pact metric space Y is a one-to-one continuous image of the line, then Y is
homeomorphic to one of the five objects (I)-(V) listed in Figure 1.

OO
(i) (n) (ni)

O
(IV) (V) (VI)

O
(VII) (VIII) (IX)

FIGURE 1

By an open arc we mean the homeomorphic image of the line and by a
half-open arc we mean the homeomorphic image of the half-line.
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Applying these notions and using the same argument as in the proof of [9,
Theorem 1] we get

THEOREM I. If a locally connected and locally compact metric space Y is
a one-to-one continuous image of the half-open arc, then Y is homeomorphic
to one of the three objects (VI)-(VIII) of Figure 1.

Now we prove a proposition which will be used later to obtain a stronger
result (Theorem 2 below).

PROPOSITION. Let X be a generalized graph, Y a locally connected and
locally compact metric space, and let f be a one-to-one mapping from X onto
Y. Then Y is a generalized graph.

PROOF. If X is either an open arc or a half-open arc, then Theorems A
and 1 imply that f{X) is a generalized graph. Thus let X be an arbitrary
generalized graph different from an open arc and a half-open arc. Further,
if X is a graph, then / is a homeomorphism, whence f{X) is a graph. If
X is not a graph (that is, if X is not compact), then there exists a graph
G and a homeomorphic embedding h: X —• G such that G\h{X) is a finite
set of end points of G (see [1, Theorem l(iii)]). We put G' = h(X) and
G\G' = {ei,e2,...,en}. For i = 1,2,...,n, let e\ denote a ramification point
of G' adjacent to e,, and let each arc e,'e, be ordered from e\ to et. Further, let
a[,a'2,a

l
v... be an infinite increasing sequence tending to e,-, where a[ — e\

and a'j e e,V,\{e,}, whenever j e {1,2,3, . . .} . For / = 1 , 2 «we consider
the set Hl = f\°°=l cl{g(x): x > a)}, where g: G' -+ Y is defined by g = fh~\
Since Y is locally connected and locally compact, we conclude that H' is ei-
ther empty or a singleton (compare with the proof of [9, Theorem 1]). Now,
if H' = 0 for / = 1,2,...,«, then g is a homeomorphism, whence Y is a
generalized graph. If we have H' = {p} for some / € {1,2, . . . ,«}, then the
mapping g is not a homeomorphism because the function g'1: Y —> G' is not
continuous at the point p. Thus, if q e g~l(p), then OTdqG' < ordp Y, where
ordzZ denotes the Menger-Urysohn order at a point z in a space Z (see [11,
page 48] or [8, page 274]). The point p is contained in the intersection of at
most n sets / / ' . Thus, since g is one-to-one we have ordpY < ordqG' + n.
Further, since the number of the sets H' which are non-empty is finite and
G' is a generalized graph, we have that (1) all points of Y are of some finite
order, and (2) almost all points of Y are of order two. Since Y is connected
as a continuous image of a connected space, it must be a generalized contin-
uum, that is, a connected and locally compact space. Hence by (1), (2) and
[1, Theorem l(v)] Y is a generalized graph. The proof is complete.
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The proposition can be generalized as follows.

THEOREM 2. Let X be a generalized graph, Y a locally connected and locally
compact metric space, and let f be a reflexive open mapping from X onto Y.
Then Y is a generalized graph.

PROOF. From [12, Theorem 5] (compare with [4, Theorem 3.6]), / fac-
tors uniquely as / = hm where m: X —* m(X) is an open mapping and
h: m{X) —> Y is a one-to-one mapping. Since X is a generalized graph and
Y is metric, m(X) is also a generalized graph (see [1, Theorem 2]). Thus, by
the proposition, Y is a generalized graph and the proof is complete.

REMARK 1. It is not difficult to check that local connectedness is an es-
sential condition in all theorems above (compare a remark in [9, page 321]).
For instance, the "Warsaw circle" (that is, the curve sin(l/x)) is a one-to-one
and continuous image of the half-line. However, by [6, Theorem 2] we infer
that local connectedness, in all theorems above, can be replaced by the con-
dition that Y is connected im kleinen or, more generally, by aposyndesis of
Y. Further, by [6, Theorem 4] it can be seen that planability of Y can be
substituted for local compactness in all theorems above.

Jungck [7, page 43] has proved that if a locally connected and a locally
compact metric space Y is the image of the line under a reflexive open map
which is either locally or globally one-to-one, then Y is homeomorphic to one
of the six objects (I)-(VI) above (Figure 1). From [12, Theorem 5] it is easy
to show the following

THEOREM 3. If a locally connected and locally compact metric space Y is
the image of the line under a reflexive open mapping, then Y is homeomorphic
to one of the nine objects (I)-(IX) above (see Figure 1).

Let a graph G, containing at least one end point e, be given. A generalized
graph G\{e} will be called a 1-generalized graph.

Using this notion we formulate the next result.

THEOREM 4. Any locally one-to-one reflexive open mapping of an acyclic
generalized graph X into a Hausdorff space Y is globally one-to-one if and
only if X is either a graph or a generalized graph.

PROOF. First we prove that, if an acyclic generalized graph X is a graph
or a 1-generalized graph, then any locally one-to-one reflexive open mapping
/ from X into a Hausdorff space Y is globally one-to-one. Indeed, if X is
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a graph, then / is open by [4, Corollary 3.7.2], whence it is a local home-
omorphism (for the definition see [11, page 199]) on X. Acyclicity of X
implies that / is a homeomorphism (see [2, Corollary 2]). If X is an acyclic
1-generalized graph we suppose on the contrary that there is some / which
is locally one-to-one but not globally one-to-one. Thus there are two dif-
ferent points a,b in X with f{a) = f(b). Since an arc ab is compact and
/ is locally one-to-one, there exists an arc cd in ab such that f(c) — f{d)
and / is globally one-to-one on the half-open arc cd\{d}. But then f(cd)
is homeomorphic to a simple closed curve S. We consider f~x{S). Since 5
is compact in the Hausdorff space Y, it is closed. Thus / ~ ' (S) is closed in
X. Let C be a component of f~l(S) containing the arc cd. Note that C
is atroidic. Otherwise, C contains a ramification point r. Since / is locally
one-to-one, there is a closed neighbourhood U of r such that the partial map-
ping f\U: U —> S is globally one-to-one. Since U contains a ramification
point, also S contains a ramificiation point, a contradiction. Further, since
A' is a 1-generalized graph, C is either an arc or a half-open arc, and hence
C contains at least one end point e (of C). Let V be an open neighborhood
of e such that the partial mapping f\ V is one-to-one. Further, consider a
component K of f~\f(V)) such that K n V = 0 and K n cd # 0 . Note
that if f(e) = f(c) = f(d), then K n cd - {/?}, where p e f~l(f(e)), and
if f(e) ^ f(c) = f(d), then K n cd is either an arc or a half-open arc with
an end point q e f~x(f{e)). Thus K n erf is not open in cd, and moreover
we conclude K is not open in X. Hence f~l(f(V)) is not open in X, con-
trary to reflexive openness of / . This contradiction shows that / is globally
one-to-one.

Second, let X be an acyclic generalized graph which is neither a graph
nor a 1-generalized graph. We show that there exists a locally one-to-one
reflexive open mapping from X into a Hausdorff space Y which is not globally
one-to-one. Indeed, since X is neither a graph nor a 1-generalized graph, it
contains an open arc A which is closed in X (see the definition of an open
arc). Let ab be an arc in A whose interior contains all ramification points
of X contained in A, and let B and C be components of A\ab. Define a
mapping / on X in such a way that the partial mappings f\X\B and f\X\C
are homeomorphisms and f(A) is homeomorphic to a simple closed curve.

It is easy to verify that Y = f{X) is a generalized graph and / is open
(thus reflexive open) and locally one-to-one because f\X\B and f\X\C are
homeomorphisms. However, / is not globally one-to-one because f(A) is
homeomorphic to the simple closed curve. The proof is complete.

As a consequence of Theorem 4 we get the following corollary.
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COROLLARY [7, Theorem (9.4)]. Any locally one-to-one and reflexive open
map f of the half-line into a Hausdorff space is globally one-to-one.

REMARK 2. Acyclicity of the generalized graph ^ is a necessary hypothesis
in Theorem 4 even if we additionally assume that X is a graph. Indeed, for
X and Y being graphs as in Figure 2, it is easy to define a locally one-to-
one reflexive open mapping from X onto Y which is not globally one-to-one.
However any locally one-to-one reflexive open mapping on a graph is a local
homeomorphism. Graphs admitting a local homeomorphism which is not a
homeomorphism are characterized in [10].

o o-
FIGURE 2

PROBLEM 3. Characterize all non-compact generalized graphs X with the
property that any locally one-to-one and reflexive open mapping from X into
a Hausdorff space is globally one-to-one.
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