
J. Fluid Mech. (2023), vol. 959, A26, doi:10.1017/jfm.2023.149

Frequency-tuned surfaces for passive control of
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The potential of frequency-tuned surfaces as a passive control strategy for reducing drag
in wall-bounded turbulent flows is investigated using resolvent analysis. These surfaces
are considered to have geometries with impedances that permit transpiration and/or slip at
the wall in response to wall pressure and/or shear and are tuned to target the dynamically
important structures of wall turbulence. It is shown that wall impedance can suppress the
modes resembling the near-wall cycle and the very-large-scale motions and the Reynolds
stress contribution of these modes. Suppression of the near-wall cycle requires a more
reactive impedance. In addition to these dynamically important modes, the effect of wall
impedance across the spectral space is analysed by considering varying mode speeds and
wavelengths. It is shown that the materials designed for suppression of the near-wall modes
lead to gain reduction over a wide range across the spectral space. Furthermore, a wall with
only shear-driven impedance is found to suppress turbulent structures over a wider range
in spectral space, leading to an overall turbulent drag reduction. Most importantly, the
present analysis shows that the drag-reducing impedance is non-unique and the control
performance is not sensitive to variations of the surface impedance within a favourable
range. This implies that specific frequency bandwidths can be targeted with periodic
material design.
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1. Introduction

Turbulent skin-friction drag is a major constituent of the total drag in many engineering
applications including air, sea, ground and fluid transportation. As an example,
approximately half of the total drag on an aircraft is due to skin-friction drag (Gad-el-Hak
1994). Hence, due to the significant economic and environmental benefits, reducing skin
friction has motivated considerable effort for the control of wall-bounded turbulence,
including active and passive control techniques. A particularly attractive passive control
concept, requiring no energy input and no complex control algorithms, is taking benefit
of the wall material properties through the interaction between the wall and the turbulent
flow, examples of which include perforated (Silvestri et al. 2017; Bhat et al. 2021; Jafari,
Cazzolato & Arjomandi 2022), permeable (Breugem, Boersma & Uittenbogaard 2006;
Kuwata & Suga 2017; Suga et al. 2018; Chavarin et al. 2020, 2021) and compliant
walls (Lee, Fisher & Schwarz 1993; Xu, Rempfer & Lumley 2003; Kim & Choi 2014;
Xia, Huang & Xu 2017). Based on the surface properties, these walls may suppress
and/or energise specific frequency bandwidths within the turbulent flow. While some of
the previous studies on permeable and compliant walls showed promising results, drag
increasing cases, arising from energised large-scale spanwise structures (Jiménez et al.
2001; Breugem et al. 2006; Kim & Choi 2014; Luhar, Sharma & McKeon 2015; Kuwata
& Suga 2017), were also found. The motivation of this study is to explore walls that
could be tuned to passively suppress the dynamically important energetic structures of wall
turbulence without significantly amplifying other scales, such that these frequency-tuned
walls could create an overall reduction in drag.

We consider a general framework in which walls are designed with geometries that
permit transpiration and/or slip in response to wall pressure and/or shear, and thus
passively interact with the turbulent flow. We seek to determine the potential of such
passive walls for reducing turbulent drag, thus shedding light on future surface designs.
In the present study, surface impedance is employed to describe the interaction of the
frequency-tuned walls with the turbulent flow in terms of a modified wall-boundary
condition, i.e. an impedance wall formulation. The surface impedance is commonly used
as an effective boundary condition for acoustic analysis of the interactions of a surface with
an acoustic field. In classical definitions, surface impedance defines a linear relationship
between pressure and the flow velocity normal to the surface, i.e. a pressure-driven
impedance. The classical pressure-driven impedance has been used in the literature, in
the form of coupled wall-normal and pressure boundary conditions, for modelling of
the boundary layer stability and transition over perforated surfaces (Burden 1969; Porter
1998; Luhar et al. 2015). While the classical impedance formulation in previous studies
correlates the wall-normal velocity and pressure at the wall, it does not account for the
presence of viscous flow over the surface. It has been shown in the impedance eduction
measurements in the presence of grazing flow (Renou & Aurégan 2011; Dai & Auregan
2016; Boden et al. 2017) that surface impedance is also correlated with the wall shear.
Hence, the effect of surface impedance on the turbulent flow can only be fully described if
its correlation with wall shear, i.e. wall-shear-driven impedance, is also considered. This
is also of significance for design of control strategies as the studies in the literature suggest
a potential for passive control driven by wall shear. For example, Fukagata et al. (2008)
showed that a compliant wall which could be deformed by both streamwise wall shear
stress and pressure could create up to 8 % drag reduction in a turbulent channel flow.
Investigating the application of a wall-shear-driven compliant surface with in-plane wall
deformations, Józsa et al. (2019) also found that passive streamwise in-plane motions of
the wall could create up to 3.8 % drag reduction (Reτ = 180), while passive spanwise wall
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fluctuations increased skin friction by more than 50 %. To our knowledge, despite previous
studies on pressure-driven passive control, specifically passive walls such as permeable
and compliant walls, a generalised theoretical model for pressure/shear-driven impedance
walls is lacking.

This study develops a theoretical framework to investigate the interaction between
the frequency-tuned walls and turbulent flows incorporating both pressure- and
wall-shear-driven impedance. This framework is particularly beneficial for design of
passive frequency-tuned walls and provides an understanding of the combined effects
of passive pressure-driven and wall-shear-driven control approaches. Furthermore, this
bulk approach based on surface impedance permits modelling of a surface with a general
geometry without the need to resolve geometric details. The latter not only requires large
and strenuous computations, but is also limited to the specific geometries considered.
Therefore, using the surface impedance formulation is advantageous for conducting a
generalised and thorough analysis of the application of the described walls as a passive
control strategy. As the classical impedance formulation only considers pressure-driven
control, an improved generalised impedance formulation developed by Gabard (2020)
is adopted in the present study. The generalised impedance defines a linear correlation
between surface traction and flow velocity including the effects of mean shear at the
surface (Gabard 2020), therefore incorporating both pressure- and wall-shear-driven
control schemes into the impedance tensor and considering a surface that allows either
or both transpiration and slip at the wall. This impedance formulation is introduced to
the resolvent analysis formulation of McKeon & Sharma (2010) to investigate the effect
of frequency-tuned surfaces on wall turbulence in the present study. By considering
both wall-shear- and pressure-driven impedance components, the developed framework
provides an improvement to the previous reduced-order models and can benefit design of
passive flow control strategies.

The remainder of this paper is organised as follows. The resolvent analysis and
impedance formulations are presented in § 2. Section 3 describes the effect of wall
impedance on modes throughout the spectral space, including those resembling the
near-wall cycle (as categorised by Smits, McKeon & Marusic 2011) and very-large-scale
motions (VLSMs), with a streamwise length scale of λx > 5–10δ that appear in the
logarithmic region of the turbulent boundary layer at high Reynolds numbers and have a
modulating effect on smaller-scale turbulent activity (Mathis, Hutchins & Marusic 2009;
Smits et al. 2011). Section 4 compares control approaches based on shear-driven and
pressure-driven impedances, and the effect of Reynolds numbers on the results is discussed
in § 5. Further discussions on design of frequency-tuned surfaces are presented in § 6.
Finally, conclusions are drawn in § 7.

2. Methodology

This section describes the modelling approach implemented for investigation of the
effect of frequency-tuned surfaces on a fully developed turbulent channel flow. The
frequency-tuned surface is introduced via an impedance formulation for the boundary
conditions for the Navier–Stokes equations (NSEs). The induced change in the turbulent
flow structure is analysed through the resulting change in the structure and amplification
of the resolvent modes determined from resolvent analysis which are compared with the
modes of the uncontrolled flow (a smooth impermeable wall). An overview of the resolvent
formulation is provided in § 2.1, and the impedance boundary condition accounting for the
frequency-tuned surfaces is described in § 2.2. The numerical implementation is described
in § 2.3, and finally verification of the conducted modelling is presented in § 2.4.
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2.1. Resolvent analysis
Resolvent analysis interprets the Fourier transformation of NSEs as a forcing-response
system with feedback. In this formulation, the linear terms of the NSEs are driven by the
feedback forcing, i.e. the nonlinear terms of the NSEs, to generate a velocity and pressure
response. A low-order representation of the flow field is provided based on a gain-based
decomposition of the forcing-response transfer function. This low-order formulation has
been shown to reproduce the key structural features of wall turbulence (McKeon 2017).
Specific resolvent modes have been associated with dynamically important structures of
wall turbulence such as the near-wall cycle and VLSMs (Moarref et al. 2013; Sharma
& McKeon 2013; McKeon 2017). It has been shown that these modes can be used as
low-order models for assessment of control techniques (Luhar, Sharma & McKeon 2014b;
Luhar et al. 2015; Nakashima, Fukagata & Luhar 2017; Toedtli, Luhar & McKeon 2019;
Chavarin et al. 2021). The reader is referred to McKeon (2017) and Toedtli et al. (2019)
for an in-depth discussion of the resolvent analysis and its application for evaluation of
control techniques.

For a fully developed turbulent channel flow that is stationary in time t and homogenous
in streamwise x and spanwise z directions, the Fourier-transformed NSEs after Reynolds
decomposition can be expressed as[

uk
pk

]
=

(
−iω

[
I

0

]
−

[Lk −∇k
∇T

k 0

])−1 [
I
0

]
f k = H̃kf k. (2.1)

Here, u = [u, v,w]T represents the streamwise u, wall-normal v and spanwise w velocity
fields, and p is the pressure field. I and ω are the identity matrix and angular frequency,
respectively. Each wavenumber–frequency combination k = (κx, κz, ω) represents a flow
structure, or mode, with streamwise and spanwise wavelengths λx = 2π/κx and λz =
2π/κz. These modes propagate downstream at streamwise wave speed c = ω/κx (the
wave speed normalised with friction velocity is c+). Also, ∇k = [iκx, ∂/∂y, iκz]T and ∇T

k
represent the gradient and divergence operators (where T shows the transpose) and Lk is
the linear Navier–Stokes operator. As shown in (2.1), the resolvent operator, H̃k, maps the
nonlinear forcing fk = (−u · ∇u)k to a velocity uk and pressure response pk, where the
Fourier coefficient uk and pk denote the wall-normal variation in magnitude and phase of
the velocity and pressure field for each mode k. The special case of k = (0, 0, 0) represents
the mean velocity profile u0 = [U( y), 0, 0]T. Note that all parameters are normalised with
the friction velocity and half-channel height.

The resolvent operator H̃k depends on the linear operator Lk, where

Lk =
⎡
⎣−iκxU + Re−1

τ ∇2
k −∂U/∂y 0

0 −iκxU + Re−1
τ ∇2

k 0
0 0 −iκxU + Re−1

τ ∇2
k

⎤
⎦ . (2.2)

Here, Reτ = uτH/ν is the friction Reynolds number based on the half-channel height H
and ∇2

k = [−κ2
x + ∂2/∂y2 − κ2

z ] is the Fourier-transformed Laplacian.
A discretised singular value decomposition (SVD) of the resolvent operator yields a

set of orthonormal forcing f k,m and response modes [uk,m, pk,m]T ordered based on the
input–output gain σk,m. To ensure orthonormality of the resulting forcing and response
modes under an L2 energy norm, the resolvent operator of (2.1) is scaled such that

[W u 0]
[

uk
pk

]
=

(
[W u 0] H̃kW −1

f

)
W f f k, (2.3)
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or
W uuk = H̃k

S
W f f k. (2.4)

Here, H̃k
S is the scaled resolvent operator; W u and W f are diagonal matrices containing

numerical quadrature weights, which ensure that the SVD of the resolvent operator,

H̃k
S =

∑
m

ψk,mσk,mφ
∗
k,m (2.5)

yields forcing modes f k,m = W−1
f φk,m and velocity response modes uk,m = W −1

u ψk,m
with unit energy over the channel cross-section. Hence, (2.1)–(2.5) show that forcing
in the direction of the mth singular forcing mode with unit amplitude f k,m creates a
response in the direction of the mth singular response mode amplified by the singular
value, i.e. σk,m[uk,m, pk,m].

As shown by McKeon & Sharma (2010), the forcing-response transfer function tends to
be low rank at the wavenumber–frequency combinations associated with the energetic
structures in wall turbulence. Since a rank-1 approximation of the resolvent operator
H̃k

S ≈ ψk,1σk,1φ
∗
k,1 is shown to represent the characteristics of the most energetic modes

of wall-bounded turbulence (Moarref et al. 2013), the rank-1 approximation is retained
for the remainder of this study (refer to the Appendix for justification of this assumption
and analysis of higher ranks) and for convenience the subscript 1 is dropped. The rank-1
velocity and pressure fields will be referred to as the ‘resolvent modes’ and the rank-1
singular value σk,1 referred to as ‘amplification’ or ‘gain’ for the remainder of this article.
The effect of wall impedance on the turbulent flow will be described in terms of velocity
and pressure response for singular modes of dynamic significance in wall turbulence. In
the present approach, only the shape and amplification of resolvent modes determined
from the SVD are analysed, which is equivalent to considering unit amplitude forcing for
all k.

To evaluate the potential of frequency-tuned surfaces for the control of wall turbulence,
their impact on the Reynolds stress generation is also investigated. As discussed by
Luhar et al. (2015), a suppression in the generation of Reynolds stress can be achieved
through: (a) a reduction in the magnitude of or a change in the form of the nonlinear
forcing that leads to a reduction of the magnitude of velocity response, (b) a reduction
in the forcing-response gain or (c) a change in mode structure leading to a reduction
in the Reynolds stress contribution from highly amplified resolvent modes. The present
analysis will identify the effectiveness of the frequency-tuned surfaces as a control scheme
through mechanisms (b) and (c) on a linear mode-by-mode basis noting that mechanism
(a) requires knowledge of the nonlinear interactions, via the weighting factors (McKeon,
Sharma & Jacobi 2013) or statistical estimation methods (Towne, Lozano-Durán & Yang
2019), which themselves require data from experiment or simulation. While a more
complete model would require knowledge of the nonlinear interactions and the coupling
between the resolvent modes, previous studies have shown that analysis of the resolvent
modes alone can provide valuable insight into the turbulent flow structure and can
approximate the response of the full nonlinear system to control. Despite the considered
simplifications in the present approach, it can determine control-induced drag reduction in
trends which agree with direct numerical simulation (DNS) results, as shown by Toedtli
et al. (2019). In addition, the present approach based on the mode-by-mode analysis
provides valuable knowledge for optimal design of surfaces that have specific spatial
periodicity that is tuned to specific frequencies, i.e. frequency-tuned surfaces, and are not
aimed for overall drag reduction. Hence, a pattern search is adopted in the present approach
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to find the wall impedance which favourably affects the turbulent flow structures with a
focus on suppression of the resolvent modes resembling the near-wall cycle and VLSMs.

Favourable is defined as: (a) a reduction in forcing-response amplification (σk) relative
to the uncontrolled flow, and (b) a reduction in the channel-integrated Reynolds stress
contribution from the resolvent mode (RS), defined as (Luhar et al. 2015)

RSk =
∫ 2

0
σ 2

k Re(u∗
kvk)( y − 1) dy. (2.6)

The weighted channel-integrated Reynolds stress in (2.6) is proportional to the turbulent
component of friction coefficient in the turbulent channel flow.

2.2. Impedance boundary condition
The frequency-tuned surface is modelled by a generalised complex impedance. We
implement the generalised impedance proposed by Gabard (2020) that correlates the forces
inserted onto the surface by the fluid to the velocity vector via Cauchy stresses. This
generalised complex impedance is defined as

Z̄ =
[

Z̄tt Z̄tn
Z̄nt Z̄nn

]
, (2.7)

and

Z̄ .
(

ūt
ūn

)
=

( −τ̄nt
p̄ − τ̄nn

)
. (2.8)

Here, ¯ represents dimensional variables, t is a unit vector tangent to the surface and
n is the wall-normal unit vector pointing into the surface; Z̄nn represents the classical
acoustic impedance known as the inverse of admittance, i.e. Z̄nn correlates the pressure
at the surface to wall-normal velocity and if Z̄nt = 0, then: Z̄nn = p̄/v̄. This form of
complex impedance in combination with a dynamic boundary condition to account for
wall movements was previously used by Luhar et al. (2015) to simulate a compliant wall
(note that the impedance surfaces in the current study do not allow any wall deformation
or displacements). In (2.8), Z̄tt incorporates the effect of streamwise wall shear stress; Z̄tn
and Z̄nt are related to the tangential force generated by the wall-normal velocity component
and the normal force created by the streamwise velocity component, respectively. The
non-diagonal components of the impedance tensor will be non-zero as, for instance for
a perforated surface with the perforations made at an angle to the wall normal (Gabard
2020).

We apply the concept of generalised impedance for modelling the frequency-tuned
surfaces and consider that the surface impedance affects the forces inserted on the flow at
the wall boundary by permitting slip and/or transpiration. The effect of surface impedance
is introduced as boundary conditions relating the fluctuating pressure and streamwise
wall shear stress to the fluctuating streamwise and wall-normal velocities. Hence, the
impedance boundary conditions at the bottom wall (y = 0) are expressed as

−Zxxuk(0)+ Zxyvk(0) = 1
Reτ

∂u
∂y
(0), (2.9)

Zyxuk(0)− Zyyvk(0) = pk(0). (2.10)

Note that here the wall-normal vector (y axis) is pointing outward of the wall and all
parameters are normalised with friction velocity (specifically Z = Z̄/ρuτ ). We define the
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boundary conditions such that a passive surface with a positive solely real Zyy allows
transpiration into the wall at high pressure regions. Accordingly, it is ensured that the wall
surface receives more energy than it provides to the fluid. Similarly, a passive surface with
a positive solely real Zxx is defined to allow a negative slip velocity when at high shear
stresses. Equations (2.9) and (2.10) together with the no-slip condition for the spanwise
velocity (wk = 0) are applied within the resolvent before computing the SVD to introduce
the effect of the frequency-tuned surface at the bottom wall.

At the top wall (y = 2), the boundary conditions are expressed with a sign change to
account for the change of wall-normal direction opposite to the channel y axis, and are
given as

−Zxxuk(2)− Zxyvk(2) = − 1
Reτ

∂u
∂y
(2), (2.11)

Zyxuk(2)+ Zyyvk(2) = pk(2). (2.12)

As described in § 2.1, to determine the effect of surface impedance, the resolvent modes
for the channel with impedance boundary conditions are compared with the uncontrolled
flow with the standard no-slip boundary conditions (uk = vk = wk = 0) at the lower and
upper walls.

2.3. Numerical implementation
A MATLAB code based on the resolvent code of a turbulent channel flow by Toedtli et al.
(2019) is developed and employed in the present study. The resolvent operator is discretised
in the wall-normal direction (y) using a spectral collocation method on Chebyshev points.
The mean velocity profile U( y) needed for the resolvent operator is computed from the
eddy viscosity model given by Reynolds & Tiederman (1967). It is assumed that the
surface impedance does not alter the mean velocity profile and the same mean profile
is applied to the case of the frequency-tuned surface. As discussed by Toedtli et al. (2019),
a sufficient estimation for the response of the nonlinear system to control can be obtained
by using the canonical mean velocity profile.

For the present study, a grid resolution study was conducted which showed that
for N � 400, the singular values converged to within O(10−7) and O(10−4) for the
uncontrolled and controlled flow cases, respectively. Similarly, the Reynolds stress
contribution, RSk, was found to converge to within O(10−4) for N � 400 for both
uncontrolled and controlled cases. Therefore, N = 400 was used in this study, and
N = 800 was used only for the plots showing the wall-normal profiles (such as figure 9).

2.4. Modelling verification and comparison with previous simulations
In order to verify the predictions of resolvent analysis with the impedance boundary
conditions, the developed model is used for estimation of flow response to compliant and
porous walls, and the results are compared with DNS results from three different studies.
It is important to note that the current model does not reproduce the entire flow field
and the results are presented for one (or individual) resolvent modes. The model does not
consider the feedback to the mean flow and assumes broadband forcing. In addition, the
impedance formulation does not consider movement of the interface between the flow
and the subsurface as opposed to the compliant walls in DNS simulations that move
and deform. Considering these differences between the resolvent modelling approach and
DNSs, lack of quantitative agreement and precise match of profiles is to be expected.
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Figure 1. Resolvent analysis predictions for the passive streamwise-shear-driven impedance study by Józsa
et al. (2019): (a) Reynolds shear stress profiles from DNS results by Józsa et al. (2019), and (b) Reynolds shear
stress contribution of the resolvent mode representing the near-wall cycle. The black solid lines show the base
flow and the dashed blue lines correspond to the control case. (c) The ratio of drag for control to base flow for
different damping ratios obtained for the near-wall resolvent mode in comparison with total drag determined
from DNS. The filled blue circles show the predictions by resolvent analysis and the unfilled black circles show
the DNS results by Józsa et al. (2019).

However, it is demonstrated that the developed model is able to predict the impacts of
surface porosity and compliance on the key structural features of turbulence (in terms of
variations in resolvent modes).

First, a passive compliant wall driven by streamwise shear (Józsa et al. 2019) is
considered. As found by the DNS of Józsa et al. (2019), a passive shear-driven compliant
wall control reduces Reynolds shear stress specifically at its peak which is associated with
the near-wall cycle (figure 1a). We employ resolvent analysis to evaluate the effect of
the compliant wall by focusing only on the resolvent mode representing the near-wall
cycle using a surface impedance tensor. For this compliant wall, Zyy = Zyx = Zxy = 0
and Zxx is calculated using a mass–spring–damper model. The wall properties are used
to calculate its mechanical admittance cp = iω/(ω2Λm + iωΛd −Λs) (Landahl 1962)
with Λm, Λd and Λs representing the normalised mass, damping and spring coefficients
(which as shown by Nagy & Paál (2019) can also be applied for shear-driven impedance).
This mechanical admittance is correlated to the normalised impedance as: Zxx = 1/Reτ cp.
For the compliant wall of Józsa et al. (2019), the mass, damping and spring coefficients
normalised by the bulk channel velocity wereΛ′

m = 4,Λ′
d = 1 andΛ′

s = 0.5, which when
normalised by friction velocity translate into Λm = 0.252, Λd = 0.063 and Λs = 0.0315.
Using these values at Reτ = 180 and for the resolvent mode representing the near-wall
cycle (κx, κz, c+) = (1, 11, 10), it is found that Zxx = −0.0004 + 0.014i (with a negative
sign applied to account for conversion of coordinates).

Figure 1(b) presents the predictions of resolvent analysis for Zxx = −0.0004 + 0.014i on
the turbulent Reynolds shear stress of the near-wall resolvent mode, and figure 1(c) shows
the effect of the damping of the passive wall on drag reduction (in terms of ratio of drag of
the controlled flow to drag of base flow which for the model is calculated from (2.6)). Note
that we are comparing results predicted by resolvent analysis for a single resolvent mode
(the near-wall mode) with the full DNS results. While the Reynolds shear stress profile (of
base and controlled flows) and the drag reductions do not describe the full flow, it is shown
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Figure 2. Gain ratios for spanwise-constant modes (κz = 0) over a range of streamwise wavenumbers and wave
speeds for the passive pressure-driven compliant wall by Kim & Choi (2014) predicted by resolvent analysis:
(a) considering only the wall impedance, and (b) considering both impedance and the wall motion. The +
symbol represents the two-dimensional waves observed in DNS of Kim & Choi (2014).

that the model is able to predict the response of the flow to shear-driven control and drag
reduction in trends that agree with DNS results.

The second comparison is made for a pressure-driven compliant wall simulated by
Kim & Choi (2014), in which large-amplitude two-dimensional waves were found to
emerge. To model this compliant wall (case II in the study of Kim & Choi 2014), we
determine Zyy from the mechanical admittance formulation using the mass–spring–damper
model (Zyy = 1/cp) and Zxx = Zxy = Zyx = 0. Here, as given by Kim & Choi (2014),
Λm = 2 and the spring and damper coefficients normalised with the bulk velocity are
1 and 0.5, which translate into 440 and 10.5, respectively, when normalised with friction
velocity. Figure 2 shows the gain ratios of two-dimensional resolvent modes (κz = 0) over
a range of streamwise wavenumbers, κx, and wave speeds, c+ for this wall impedance at
Reτ = 140. Gain ratio is defined as the ratio of singular value of the compliant wall to
the base flow for each mode. As shown in figure 2(a), the predictions of the resolvent
analysis show a region of high amplification at (κx, c+) ≈ (4.5, 6.5) to (κx, c+) ≈ (8, 5).
However, these modes correspond to a larger streamwise wavelength compared with that
found in the DNS results with λx = 2.4h (κx = 2.6). The main reason for this difference
is lack of wall movement in the current model. This is demonstrated in figure 2(b), in
which, in addition to the impedance boundary condition, wall movement is incorporated
in the boundary conditions using a linearised approximation by the equation derived
by Luhar et al. (2015) (vk(0) = −iωηk, where ηk is the Fourier coefficient for wall
displacement). With consideration of wall movement, the amplified modes correspond
closely to those predicted in the DNS study. This comparison also suggests that the
deteriorating mechanisms observed over compliant walls are closely correlated with the
wall movement.

Finally, an analogy between surface impedance and permeability is adopted and the
resolvent predictions are compared with the results of a previous DNS study of a
zero-pressure-gradient boundary layer over a Darcy-type porous wall (Jiménez et al.
2001). Surface permeability, K, is interpreted as the inverse of pressure-driven impedance
resistance, i.e. Re(Zyy), and for a surface with Zyy = K−1 (noting that permeability can
be interpreted as a time-averaged impedance). The developed model is used to predict
the two-dimensional resolvent modes (κz = 0) for a wall with Zyy = 18.52 (and Zxy =
Zyx = Zxx = 0) representing the porous wall of Jiménez et al. (2001). Figure 3(a) shows
the ratio of singular values for the porous wall over an impermeable wall (base flow) at
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Figure 3. Resolvent analysis predictions for the porous wall of Jiménez et al. (2001): (a) ratio of porous to
impermeable wall singular values σkc/σk0 for spanwise-constant resolvent modes for a range of streamwise
wavenumbers and wave speeds at Reτ = 180; (b) wall-normal and streamwise velocity fields for the amplified
mode at (κx, κz, c+) ≈ (1.2, 0, 12.5). The + symbol in (a) shows the wavenumber and speed of rollers
identified in the DNS study by Jiménez et al. (2001).

Reτ = 180. Figure 3(a) shows a region of high amplification between (κx, c+) ≈ (1, 12)
and (κx, c+) ≈ (2, 14), with singular value ratios of ≈ 1.6. The wavelength at this peak
region corresponds closely to the spanwise rollers identified by Jiménez et al. (2001) which
were found to emerge over the porous wall with a wavelength of λx/H = 5 propagating
downstream at a speed of c+ = 12.5 (shown by the + symbol in figure 3a). Figure 3(b)
shows the streamwise wall-normal velocity field for this amplified mode over the porous
wall. The counter rotating spanwise rollers which represent those observed in the DNS
study (figure 7 in Jiménez et al. 2001) are clearly identified. Hence, it is shown that the
present analysis with the impedance formulation can predict amplification of the spanwise
rollers over the porous wall, in agreement with the results of Jiménez et al. (2001).

3. Results

The effectiveness of frequency-tuned walls as a control method is evaluated through
analysis of its impact on the near-wall cycle and VLSMs in §§ 3.1 and 3.2. As discussed
in the literature (Luhar et al. 2014b, 2015; Luhar, Sharma & McKeon 2016), suppression
of these modes is a starting point for achieving an effective control. In § 3.3, the effect of
surface impedance on other scales is considered. The results in this section are presented
for Reτ = 2000, which is the lowest Reynolds number at which the VLSMs are known
to become prominent (Smits et al. 2011). Note that we assume a general geometry that
permits slip and transpiration as provided by the analysis

3.1. Effect of wall impedance on near-wall modes
In this section, the modes resembling the near-wall cycle corresponding to k =
(κx, κz, c+) = (12,±120, 10) are considered. This wavenumber–speed combination at
Reτ = 2000 corresponds to λ+x = 2πReτ /κx ≈ 103 and λ+z = 2πReτ /κz ≈ 102, which
represent the near-wall cycle (McKeon & Sharma 2010). First, diagonal impedance tensors
(Zxy = Zyx = 0) are considered and a pattern search is conducted to find impedance
values (Zxx and Zyy) that lead to a reduction of mode gain and Reynolds shear stress
contribution. Figure 4 shows the ratios of controlled to uncontrolled mode gain, σkc/σk0,
and channel-integrated Reynolds stress contribution, RSkc/RSk0, for a range of Zxx and
Zyy values. First, sweeps over individual parameters (only non-zero Zxx and only non-zero
Zyy) are conducted and next both Zxx and Zyy are varied. The blue regions in the figures

959 A26-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.149


Frequency-tuned surfaces for control of wall turbulence

100 101

Re(Zxx)
10–1

100

101

Im
(Z
xx

)

1

100 101

Re(Zxx)
10–1

100

101

Im
(Z
xx

)

1

0.8

0.9

1.0

σkc/σk0

0

0.4

0.8

1.2

RSkc/RSk0

100 101

Re(Zyy)
10–1

100

101

Im
(Z
yy

)

1

100 101

Re(Zyy)
10–1

100

101

Im
(Z
yy

)

1

0.6

1.0

2.0

5.0

8.0

σkc/σk0

0.01

0.10

1.00

10.00

50.00

RSkc/RSk0

100 101

Re(Zxx)
10–1

100

101

Im
(Z
xx

)

1

100 101

Re(Zyy)
10–1

100

101

Im
(Z
yy

)

1

0

1

2

3

4

RSkc/RSk0

0.1

1.0

10.0

100.0

RSkc/RSk0

(a) (b)

(c) (d )

(e) ( f )

Figure 4. Contour maps showing the ratio of control to uncontrolled flow singular values σkc/σk0 and
channel-integrated Reynolds stress RSkc/RSk0 for the resolvent modes resembling the near-wall cycle over a
range of Zxx and Zyy values for a diagonal impedance tensor (Zxy = Zyx = 0). (a,b) Ratios of singular value and
Reynolds stress for a sweep over Zxx at Zyy = 0, (c,d) ratios of singular value and Reynolds stress for a sweep
over Zyy at Zxx = 0, (e) Reynolds stress ratios for a sweep over Zxx at Zyy = 0.2 + 3i (the + symbol in c,d) and
( f ) Reynolds stress ratios for a sweep over Zyy at Zxx = 0.5 + 0.5i (the + symbol in a,b). The ◦ and × symbols
in (e, f ) show the favourable and unfavourable cases referred to in figure 5.

show the Zxx and Zyy values which reduce the amplification and Reynolds shear stress
contribution compared with the uncontrolled flow and suppress the near-wall mode.

Figure 4(a,b) shows the effect of Zxx on the near-wall mode considering Zyy = 0, i.e.
a wall that permits only slip and no transpiration. It is found that this impedance can
weaken the near-wall mode mainly for Zxx values with a larger imaginary component
(more reactive than resistive) especially for Re(Zxx) < 1. A solely real Zxx will amplify
the near-wall mode and increase its Reynolds shear stress if Re(Zxx) > 0.4. The largest
reductions in amplification and Reynolds stress contribution, 15 % and 23 %, are achieved
for Re(Zxx) ≈ Im(Zxx) < 0.2. Figure 4(c,d) shows the effect of Zyy on the near-wall mode
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considering Zxx = 0, i.e. a wall that permits only transpiration. Here, cases with Re(Zyy) ≈
Im(Zyy) ≈ 0.1 significantly amplify the resolvent mode and increase its Reynolds stress
contribution. Only Zyy values with a larger imaginary component (Im(Zyy) > 2) suppress
the near-wall mode. The largest reductions in mode gain and Reynolds shear stress
contribution of the resolvent mode are 5 % and 15 %, which are almost insensitive to
the value of Zyy in its favourable range (the blue zone in figure 4c,d). The combined
effects of both Zxx and Zyy are considered in figure 4(e, f ) in which, for brevity, only the
channel-integrated Reynolds shear stress is shown. Figure 4(e) shows a sweep over Zxx
for a constant Zyy = 0.2 + 3i, which, as shown in panels (c,d), is favourable in terms of
suppression of the near-wall resolvent mode. Similarly, figure 4( f ) shows a sweep over
Zyy for Zxx = 0.5 + 0.5i. In both cases, combinations of Zxx and Zyy exist that suppress
the near-wall mode and reduce its Reynolds stress contribution. The results show that the
favourable range of Zxx is changed when Zyy is non-zero. As shown in figure 4(a), for a
purely shear-driven impedance, a more reactive Zxx suppresses the near-wall mode, while
for combined pressure- and shear-driven impedance, figure 4(e), the effective angle of Zxx
is different. However, as shown in figure 4(d, f ), the effective angle of Zyy is the same
for a zero and a non-zero Zxx. The pattern searches are conducted for other values of Zxx
and Zyy and it is found that, in general, the limiting factor in reduction of mode gain and
Reynolds shear stress is Zyy, which suppresses the near-wall mode for values with larger
imaginary components while a purely real Zyy is mostly unfavourable and increases RSkc
(similar to the observations in figure 4d, f ). Furthermore, as shown in the contour maps,
for favourable ranges of Zxx and Zyy, σkc/σk0 and RSkc/RSk0 remain almost constant and
the flow response becomes insensitive to the impedance values. This suggests that, with
the increase of surface impedance, the resulting dynamics overwhelms the dynamics of
the uncontrolled near-wall mode.

Based on the trends observed in figure 4, two cases of favourable and unfavourable wall
impedance are selected and the effect of wall impedance on mode structure is discussed.
Figure 5 shows the wall-normal profiles of the velocity and pressure fields and the
normalised Reynolds stress contribution of the resolvent mode resembling the near-wall
cycle for the uncontrolled and controlled flows with favourable and unfavourable wall
impedance tensors. For the uncontrolled case, the resolvent mode structure is consistent
with the previous studies (McKeon & Sharma 2010; Luhar et al. 2014b, 2015), where the
streamwise velocity reaches its peak at the critical layer, y+

c (the wall-normal height where
the mode speed is equal to the mean velocity), and the wall-normal velocity peaks further
away from the wall. The streamwise and wall-normal velocities for this mode have a phase
difference of ≈π at y+

c resulting in the peak of Reynolds stress contribution at the critical
layer. The wall-normal and pressure fields maintain a constant phase with y and a constant
phase difference of ≈π/2.

For the favourable wall impedance, figure 5(d–f ), the wall-normal velocity is modified
substantially compared with the uncontrolled case, having a non-zero and constant
magnitude near the wall, y+ < 5, i.e. wall transpiration (note that it is assumed that the
wall can support the given impedance with a geometry that can support transpiration
and/or slip). The phase of wall-normal velocity is no longer constant below the critical
layer approaching the wall. Hence, the phase difference between wall-normal velocity and
pressure fields is reduced near the wall. Also, the phase difference between streamwise and
wall-normal velocity fields is reduced near the wall below the critical layer. These changes
yield a modification in the Reynolds shear stress distribution at the proximity of the wall.
The peak of Reynolds shear stress remains almost consistent with the uncontrolled case.
However, the Reynolds shear stress contribution of this mode is reduced significantly
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Figure 5. Profiles showing the wall-normal variation in structure for the resolvent mode resembling the
near-wall cycle: (a,d,g) amplitude and (b,e,h) phase for the streamwise velocity (solid lines), wall-normal
velocity (dashed lines) and pressure fields (dotted lines); (c, f,i) the normalised Reynolds stress contribution.
(a–c) Represent the uncontrolled flow (the impermeable wall), (d–f ) represent a favourable wall impedance
(Zxx = 3 + 3i, Zyy = 0.2 + 3i, Zxy = Zyx = 0) and (g–i) represent an unfavourable wall impedance (Zxx =
0.5 + 0.5i, Zyy = 0.5 + 0.5i, Zxy = Zyx = 0). The dotted horizontal lines show the location of the critical layer
for this resolvent mode at y+ ≈ 15.

due to the reduction of the mode amplification (since it is proportional to σ 2
k as given

in (2.6)). The main drag reduction mechanism here therefore is suppression of the mode
and reduction of the mode gain.

959 A26-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.149


A. Jafari, B.J. McKeon and M. Arjomandi

100 101

Re(Zxy)
10–1

100

101
Im

(Z
xy

)

Im
(Z
yx

)

1

100 101

Re(Zyx)
10–1

100

101

1

0.8

1.0

1.5

RSkc/RSk0

0.4

1.0

5.0

RSkc/RSk0(a) (b)

Figure 6. Contour maps showing the ratio of control to uncontrolled flow channel-integrated Reynolds stress
RSkc/RSk0 for the resolvent modes resembling the near-wall cycle over a range of (a) Zxy values and Zyx = 0,
and (b) Zyx values and Zxy = 0 for a favourable diagonal wall impedance (Zxx = 3 + 3i,Zyy = 0.2 + 3i). The
+ symbols show the favourable impedance values presented in parts (d) and (e) in figure 7, respectively.

For the unfavourable wall impedance, figure 5(g–i), the wall impedance yields large slip
and transpiration velocities at the wall. The peak of the streamwise velocity is also shifted
closer to the wall below the critical layer (y+ < y+

c ). Consequently, the peak of Reynolds
stress is shifted slightly to below the critical layer. For this case, the phase difference
between streamwise and wall-normal velocities is reduced below the critical layer which
modifies the Reynolds shear stress near the wall.

After determination of the favourable and unfavourable ranges of the diagonal
components of the impedance tensor, the gain and Reynolds stress contribution of the
near-wall mode were calculated over a sweeping range of the non-diagonal components
(positive values of Zxy and Zyx). Note that it is expected that the results will not
change by sweeping over the non-diagonal components followed by sweeping over
diagonal components as indicated from some trials. The results showed that, for the
diagonal components, Zxx and Zyy, in the unfavourable ranges of figure 4, the near-wall
mode remains unfavourable, insensitive to the variations of the non-diagonal impedance
components. For a favourable diagonal impedance, the gain of near-wall mode was found
to be insensitive to Zxy, but there exists only a favourable range of Zxy and Zyx which
reduce the Reynolds shear stress contribution of the near-wall mode. Figure 6(a,b) shows
RSkc/RSk0 for sweeps over Zxy and Zyx, respectively. Only values of Re(Zxy) ≈ Im(Zxy) <
2 reduce the channel-integrated Reynolds stress and large values of Zxy increase the
Reynolds stress contribution of this mode. As shown in figure 6(b), the channel-integrated
Reynolds shear stress increases compared with the base flow for Re(Zyx) < 2 and 0.2 <
Im(Zyx) < 3.

The effect of the non-diagonal components of the impedance tensor on the near-wall
mode is further analysed by comparison of the predicted velocity fields with those of the
uncontrolled flow for the resolvent mode resembling the near-wall cycle. Figure 7(a,b)
shows the velocity fields of the near-wall mode for the uncontrolled flow in streamwise
wall-normal (x–y) and spanwise wall-normal (z–y) planes. Note that the cross-sectional
views in the (z–y) planes for all cases are shown at the location where the streamwise
velocity magnitude is maximum, which for the uncontrolled flow is shown by the
dashed line in figure 7(a). The counter rotating streamwise vortices and the periodic
ejections and sweeps commonly associated with the near-wall cycle are clearly seen
in figure 7(a,b). Figures 7(c)–7(e) show the velocity structure in the (z–y) plane for
a favourable diagonal impedance tensor (Zxx = 3 + 3i, Zyy = 0.2 + 3i shown by the
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Figure 7. Velocity structure for near-wall mode: (a) streamwise velocity amplitude in the streamwise
wall-normal plane for uncontrolled flow, (b–e) wall-normal and spanwise velocity fields in the spanwise
wall-normal plane. The dashed line in (a) shows the streamwise location where the magnitude of streamwise
velocity is maximum and the cross-sections for (b–e) are made. (a,b) Uncontrolled flow, (c) Zyx = Zxy = 0,
(d) Zyx = 1 + 5i and Zxy = 0, (e) Zxy = 1 + 1i and Zyx = 0 (Zxx = 3 + 3i,Zyy = 0.2 + 3i). The horizontal
dotted line in (b–e) shows the centreline of the streamwise vortices.

◦ symbol in figure 4) with different values of favourable Zyx and Zxy. For Zxy = Zyx = 0,
figure 7(c), the wall impedance reduces the magnitude of wall-normal velocity compared
with the uncontrolled flow. For the favourable non-diagonal impedances, Zyx = 1 + 5i (the
+ symbol in figure 6b) and Zxy = 1 + 1i (the + symbol in figure 6a), the wall-normal
velocity magnitude is further reduced and the streamwise vortices are shifted further away
from the wall. Furthermore, suctions and ejections at the wall in form of wall-normal
velocity opposing the streamwise vortices are observed near the wall (figure 7d). Therefore
favourable impedance tensors, either in diagonal or non-diagonal form, weaken the
streamwise vortices and reduce the magnitude of peak wall-normal velocity.

The results presented in this section show the possibility of suppressing the near-wall
cycle using frequency-tuned walls that permit transpiration and/or slip at the wall with a
more reactive impedance. As the near-wall cycle is dynamically dominant at low Reynolds
numbers, the results thus far suggest the potential of wall impedance in control of turbulent
flows at the low Reynolds numbers. While the wall impedance must be within a favourable
range (figures 4, 6), as shown by the results, the obtained gain and Reynolds stress
reduction are not sensitive to the variations of impedance amplitude within the favourable
range.

3.2. Effect of wall impedance on VLSMs
The effect of wall impedance on the modes resembling the VLSMs is considered in this
section. Based on previous studies (McKeon & Sharma 2010), the wavenumber–speed
combination of k = (κx, κz, c+) = (1,±10, 16) corresponding to λ+x ≈ 6h+ and λ+z ≈
0.6h+ is selected to represent the VLSMs. Similar to the previous section, first a
wall impedance with only diagonal components is considered and the mode gain and
Reynolds stress contribution are estimated for a range of Zxx and Zyy values. Figure 8(a)
shows the ratios of channel-integrated Reynolds shear stress for a sweep over Zxx.
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Figure 8. Contour maps showing the ratio of control to uncontrolled flow channel-integrated Reynolds stress
RSkc/RSk0 for the resolvent modes resembling VLSMs over a range of (a) Zxx (Zyy = 0) and (b) Zyy values
(Zxx = 0) for a diagonal impedance tensor (Zxy = Zyx = 0). The + and ◦ symbols show the favourable and
unfavourable cases referred to in figure 9.

For Re(Zxx) ≈ Im(Zxx) � 0.3, RSkc/RSk0 ≈ 1 while for Re(Zxx) ≈ Im(Zxx) < 10−1, the
resolvent mode is amplified and RSkc increases. No regions of reduction in σkc and RSkc are
identified for a sweep over Zxx when Zyy = 0. As shown in figure 8(b), wall impedance with
Re(Zyy) ≈ Im(Zyy) < 0.2 creates a reduction in RSkc with approximately 64 % reduction
in Reynolds stress contribution (RSkc/RSk0 = 0.36). Similar to the near-wall mode, the
achievable reductions in the Reynolds shear stress contribution of the VLSM mode are
not sensitive to the value of Zyy within its favourable range. When the non-diagonal
components of the impedance tensor are considered, it is shown that, if the diagonal
components are in the unfavourable range (the red zones of figure 8), the gain and
Reynolds stress contribution ratios remain larger than 1 for any values of the non-diagonal
components (similar to the observed effect on the near-wall modes). Similarly, for a
favourable diagonal impedance tensor, the VLSM mode is found to be insensitive to
variations of Zxy and Zyx.

Figure 9 shows the wall-normal profiles of the velocity and pressure fields, and figure 10
shows the velocity structure in the wall-normal spanwise plane for the mode resembling
the VLSMs for the uncontrolled flow and the controlled cases with diagonal wall
impedance. The velocity structure for the uncontrolled flow represents the characteristics
of VLSMs consistent with previous studies showing periodic velocity fields with large
streamwise roll cells (figure 10a). As shown by the wall-normal profiles of the uncontrolled
flow, the pressure and wall-normal velocity fields have a constant phase with y and a
constant phase difference of ≈π/2. Also, v and p have non-zero values at higher y+
locations as compared with u that fades to zero at y+ = 400. Furthermore, the phase of
the streamwise velocity decreases with y showing the mode inclination in downstream
direction. This mode actively contributes to the Reynolds stress mainly at the critical layer
location where streamwise and wall-normal velocities are ≈π out of phase.

For a favourable drag-reducing pressure-driven diagonal impedance tensor (figure 9d–f ),
the peak of the wall-normal and streamwise velocity components and the streamwise
velocity gradient near the wall are significantly reduced. The phase difference between
wall-normal velocity and pressure fields is reduced at and slightly below the critical
layer. These changes lead to a significant reduction in the peak of Reynolds stress
and changes in its profile below the critical layer. A non-zero wall-normal velocity in
form of blowing/suction exists at the wall and the rollers are suppressed (figure 10b).
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Figure 9. Profiles showing the wall-normal variation in structure for the resolvent mode resembling VLSMs:
(a,d,g) amplitude and (b,e,h) phase for the streamwise velocity (solid lines), wall-normal velocity (dashed
lines) and pressure fields (dotted lines); (c, f,i) the normalised Reynolds stress contribution. (a–c) Represent the
uncontrolled flow (the impermeable wall), (d–f ) represent a favourable diagonal wall impedance (Zyy = 0.03 +
0.03i, Zxx = Zxy = Zyx = 0) and (g–i) represent an unfavourable diagonal wall impedance (Zyy = 0.3 + 0.8i,
Zxx = 0.1 + 0.1i, Zxy = Zyx = 0). The dotted horizontal lines show the location of the critical layer for this
mode at y+ ≈ 95.
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Figure 10. Wall-normal and spanwise velocity fields in the spanwise wall-normal plane for VLSM
mode: (a) uncontrolled flow, (b) favourable diagonal impedance (Zyy = 0.03 + 0.03i, Zxx = Zxy = Zyx = 0),
(c) unfavourable diagonal impedance (Zyy = 0.3 + 0.8i, Zxx = 0.1 + 0.1i, Zxy = Zyx = 0).

These observations show that the favourable wall impedance weakens the streamwise roll
cells through admitting wall transpiration.

For the unfavourable diagonal impedance, figure 9(g–i), the streamwise and wall-normal
velocity fields near the wall are altered, admitting both transpiration and slip at the wall.
The slip and transpiration at the wall and the change in phase difference between u and v
create a non-zero Reynolds stress at the wall (figure 9i). In this case, the rollers are shifted
closer to the wall (figure 10c). Despite the reduction in peak wall-normal velocity, the
concentration of peak Reynolds stress at the critical layer and near the wall and the largely
increased mode gain lead to an overall increase of channel-integrated Reynolds stress for
this case.

3.3. Effect of wall impedance in the spectral space
In the previous sections, the effects of wall impedance on individual resolvent modes that
resemble the coherent structures of dynamic importance have been discussed. However,
to evaluate the overall efficiency of wall impedance as a control method, it is necessary to
consider its effects on the other modes in the spectral space and with different propagation
speeds. For this investigation, two sample impedance tensors, which have been identified
as favourable drag-reducing cases, for the near-wall and VLSM modes in the previous
sections, are considered. Figure 11 shows the effect of the wall impedance tensors on the
gain ratio of other modes as functions of streamwise wavenumber κx and mode speed
c+ at κz = 0, κz = 10 and κz = 120. The propagation speed is considered in the range
of ≈ 0.1U+

CL − 1.0U+
CL as the structures with speeds larger than the channel centreline

velocity are known to have negligible energy contributions in real turbulent flows (McKeon
2017). Note that for modes with identical wavelengths, faster-moving modes with a
higher propagation speed are located further away from the wall as compared with the
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Figure 11. Contour maps showing the singular value ratios σkc/σk0 as a function of streamwise wavenumber
κx and mode speed c+ at (a,d) κz = 0 (spanwise constant), (b,e) κz = 10 (λ+z ≈ 0.6h+) and (c, f ) κz = 120
(λ+z ≈ 102). (a–c) Correspond to a favourable impedance tensor for the near-wall cycle (Zxx = 3 + 3i, Zyy =
0.2 + 3i, Zxy = Zyx = 0) and (d–f ) correspond to a favourable impedance tensor for the VLSMs (Zxx = 0.01 +
0.01i, Zyy = 0.03 + 0.03i, Zxy = Zyx = 0). The + symbol shows the VLSM mode (κx, κz) = (1, 10), and the ◦
represents the near-wall cycle (κx, κz) = (10, 120).

slower-moving modes (McKeon & Sharma 2010). Hence, the slower-moving modes have
a larger wall-pressure signature. With increase of mode speed, the structure moves further
away from the wall and its wall-pressure signature reduces. Above a wavelength-dependent
threshold speed, the modes become detached with a nearly zero wall-pressure signature.
Modes with a larger wavelength become detached at higher propagation speeds as they
have a larger wall-normal extent (McKeon 2017).

Figure 11(a–c) corresponds to a wall impedance tensor which suppresses the
near-wall mode (Zxx = 3 + 3i, Zyy = 0.2 + 3i, Zxy = Zyx = 0). Figure 11(a) shows that the
favourable impedance for the near-wall mode suppresses the spanwise-constant attached
slower-moving modes (κz = 0, κx > 1, and c+ < 18) while amplifying large faster-moving
modes (κx ≈ 0.1 and c+ > 18). It is noteworthy that, at the considered Reynolds number,
these modes have lower gain values and, therefore, the negative effect on these modes
will make an almost negligible contribution to the total drag. At κz = 10, figure 11(b),
slower-moving modes with κx > 10 and κx < 1 are suppressed, while other modes are
slightly amplified or unchanged, including the VLSM mode which is slightly amplified
with a sigma ratio of 1.2. For κz = 120, figure 11(c), the wall impedance reduces the
gain ratio of shorter faster-moving modes (κx > 10 and c+ < 15) and has negligible
effect on other modes. For the specific wavenumber–frequency combination of (κx, κz) =
(10, 120), slower-moving modes with c+ � 10 are classified as attached to the wall,
and as the propagation speed increases the modes become detached and the peak of
wall-normal velocity moves further away from the wall located at the critical layer (Luhar,
Sharma & McKeon 2014a). Therefore, the gain ratios in figure 11(c) show that a wall
impedance favourable for the near-wall mode suppresses the attached modes while having
no significant effect on detached modes far from the wall.
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Figure 11(d–f ) shows the effect of a wall impedance which favourably suppresses the
VLSMs (Zxx = 0.01 + 0.01i, Zyy = 0.03 + 0.03i, Zxy = Zyx = 0) in the spectral space.
For both spanwise-constant modes and κz = 10, it suppresses energetic structures at
0.2 < κx < 2 and c+ ≈ 15, while either having no significant effect on or amplifying the
other modes. This impedance is found to significantly amplify detached spanwise-constant
large-scale structures at 0.1 < κx < 3 (figure 11d). At κz = 10 and κz = 120, the wall
impedance amplifies large-scale structures with κx < 1 and κx < 10, respectively. Note
that, while these results are presented for diagonal impedance tensors, similar effects in
the spectral space were found for non-diagonal tensors. The spectral analysis in this section
therefore suggests that a wall impedance tensor that can favourably suppress the near-wall
modes also weakens a large range of other wavenumbers and is therefore more likely to
have an overall drag-reducing effect than a wall that is targeted at suppression of VLSMs.

4. Shear-driven vs pressure-driven impedance

The analysis using the impedance tensor in the previous sections considered both
wall-shear- and pressure-driven impedances, and identified the combinations of Zxx and
Zyy which could favourably suppress the dynamically important turbulent structures. As
discussed in § 1, control of turbulent flow by application of passive walls driven by
wall shear stress has been explored in the literature (Fukagata et al. 2008; Józsa et al.
2019). However, per the authors’ knowledge, a comparison of the efficiency of these
two approaches for passive control is not available. Hence, the developed model in this
study is used to compare the control approaches based on wall-shear- and pressure-driven
impedances by considering wall impedance tensors with non-zero components for only
Zxx and Zyy, respectively. Note that the shear-driven impedance permits only slip, while
the pressure-driven impedance allows only transpiration at the wall.

Independent parameter sweeps are conducted for wall impedance tensors with non-zero
components for only Zxx and Zyy and the gains of the modes resembling the near-wall cycle
and the VLSMs are evaluated. Based on these parameter sweeps, two sample impedance
tensors are considered and the efficiency of the control in the spectral space and at different
propagation speeds is evaluated. For this analysis, it is assumed that there is unit forcing
over the range of wave speeds 0 < c+ < U+

CL and the effect of the wall impedance in the
spectral space 10−1 < (κx, κz) < 102 is estimated by integrating the mode gains over the
range of wave speeds, i.e.

σ̃ (κx, κz) =
∫
σ(κx, κz, c+) dc+. (4.1)

Figure 12 shows the ratio of the integrated mode gain for the controlled flow to the
uncontrolled flow, σ̃kc/σ̃k0, over a range of (κx, κz) for streamwise-shear-driven (Zxx only)
and pressure-driven (Zyy only) controls. The shear-driven control, figure 12(a), which only
permits slip at the wall, has a gain-reducing effect over a large region in the spectral domain
and slightly reduces the mode gain compared with the uncontrolled flow (σ̃kc/σ̃k0 > 0.9).

Figure 12(b) shows that a pressure-driven control (Zyy only) permitting only
transpiration at the wall leads to gain reduction or no significant effect over a large range
of the wavenumbers including both the near-wall and VLSM modes, while having a
detrimental effect on other wavenumbers and slightly amplifying spanwise modes (κz ≈ 1)
and modes at κx ≈ 100. Hence, the predictions of the present resolvent analysis suggest
that a surface with a shear-driven wall impedance can more effectively suppress a range of
resolvent modes and thus lead to likely turbulent drag reduction compared with a surface
with pressure-driven impedance.
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Figure 12. Contour maps showing the normalised integrated singular value ratios σ̃kc/σ̃k0 as a function of
streamwise wavenumber κx and spanwise wavenumber κz for (a) shear-driven control (Zxx = 0.5 + 0.5i, Zyy =
Zxy = Zyx = 0), and (b) pressure-driven control (Zyy = 0.2 + 3i, Zxx = Zxy = Zyx = 0). The + symbol shows
the VLSM mode (κx, κz) = (1, 10), and the ◦ represents the near-wall cycle (κx, κz) = (10, 120).

5. Effect of Reynolds number on control performance

The results of this study, which thus far were presented for a turbulent channel flow
at Reτ = 2000, show that different impedance characteristics are required to suppress
VLSMs and near-wall modes. To further explore the effect of Reynolds number on
efficiency of wall impedance as a control strategy, the resolvent modes are calculated
for Reτ = 2 × 104. Figure 13 shows the effect of Reynolds number on the normalised
integrated singular value ratios (calculated from (4.1) over the range of wave speeds
0 < c+ < U+

CL and wavenumbers 10−1 < (κx, κz) < 102) for three impedance tensors.
First, a diagonal impedance tensor, which was determined as favourable for VLSM modes
in the previous sections, is considered and the integrated singular value ratios are shown
for Reτ = 2000 and Reτ = 2 × 104 (figure 13a,b). With an increase of Reynolds number,
the same surface impedance suppresses a similar range of large-scale structures that were
suppressed at the lower Reynolds number. On the other hand, large streamwise structures
with 0.1 < κx < 1 and 1 < κz < 102 are amplified at the higher Reynolds number. The
effect of increase of Reynolds number on control performance is next investigated for the
shear-driven only and pressure-driven only wall impedances, (see figure 12 at Reτ = 2000
and figures 13(c) and 13(d) at Reτ = 2 × 104). Similar to the results at the lower Reynolds
number, the shear-driven impedance suppresses a large range of modes and has a negligible
impact on the rest, with an overall drag-reducing effect. For the pressure-driven impedance
(figure 13d), the control performance improves with the increase of Reynolds number.
At the higher Reynolds number, resolvent modes with 1 < κx < 10 and 1 < κz < 30
which were amplified at Reτ = 2000 are suppressed (see figures 12b and 13d), and the
overall Reynolds stress contribution integrated over the spectral domain is decreased
compared with the uncontrolled flow by 2 %. The results therefore show that, for the
considered pressure-driven only impedance, the drag-reducing performance improves with
the increase of Reynolds number.

6. Implications for design of frequency-tuned walls

The developed model using resolvent analysis shows a potential for passive control of
wall-bounded turbulence using impedance surfaces that permit transpiration and/or slip.
The estimations of the gain reductions achieved for the near-wall and VLSMs using the
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Figure 13. Contour maps showing the normalised integrated singular value ratios σ̃kc/σ̃k0 as a function of
streamwise wavenumber κx and spanwise wavenumber κz for: a pressure- and shear-driven diagonal impedance
(Zxx = 0.01 + 0.01i, Zyy = 0.03 + 0.03i, Zxy = Zyx = 0) at (a) Reτ = 2000 and (b) Reτ = 2 × 104 and
(c) shear-driven impedance at Reτ = 2 × 104 (Zxx = 0.5 + 0.5i, Zyy = Zxy = Zyx = 0) and (d) pressure-driven
impedance at Reτ = 2 × 104 (Zyy = 0.2 + 3i, Zxx = Zxy = Zyx = 0). The + symbol shows the VLSM mode
(κx, κz) = (1, 10), and the ◦ represents the near-wall cycle (κx, κz) = (10, 120).

impedance walls are comparable to those for compliant walls by Luhar et al. (2015). The
favourable wall impedance was found to create a maximum gain reduction of 15 % for the
near-wall mode and 23 % for the VLSMs. Quite similarly, the optimum compliant wall
was found to reduce the near-wall and VLSM mode gains by 32 % and 48 %, respectively
(Luhar et al. 2015). A key finding that distinguishes the impedance walls from compliant
walls is that the favourable surface impedance is non-unique. Lack of sensitivity of the
control performance to small variations of wall impedance is an important advantage that
benefits the design of frequency-tuned surfaces. The non-uniqueness of the favourable
surface impedance also implies that ordered material design can be employed to target
certain frequency bandwidths and wavenumber regimes.

Using the bulk impedance boundary condition for the wall, instead of directly modelling
a specific geometry, the findings of this study provide insights into design of geometries
that permit or reject slip and/or transpiration for specific periodicity. Examples of surfaces
that can create the desired impedance are porous and perforated surfaces. These surfaces
are non-deformable (in contrast to compliant surfaces) and their interaction with the flow
can be described using the wall impedance boundary condition as the porosity of the
surface allows some absorption of flow perturbations. Some applications of these surfaces
have been explored in the literature, as discussed in § 1, including porous surfaces with
subsurface chambers (that permit wall transpiration) for control of transition (Porter 1998)
and turbulent boundary layers (Silvestri et al. 2017; Jafari et al. 2022). It is possible
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to create the desired impedance by varying the geometric parameters of the perforated
surfaces. As determined through classic acoustic approaches, the real component of Zyy is
mainly a function of the dimensions of the perforations, while the volume of subsurface
chamber mainly affects the imaginary component. Per authors’ knowledge, experimental
measurement of Zxx for perforated surfaces is not available in the literature. However,
estimations can be made from impedance measurements in the presence of grazing shear
flow. For example, Schulz et al. (2017) conducted impedance measurements of acoustic
liners made of perforated sheets (with circular perforations of 1–2 mm in diameter and
0.5–2 mm in depth) with a backing structure consisting of individual cells (6.9 mm
in diameter and 40 mm in depth) in a flow duct facility (DUCT-R52 of the German
Aerospace Centre) over a range of flow speeds in the range 10–105 m s−1. It was found
that, for these perforated surfaces: 1 < Re(Zyy)/ρc < 5 and 0 < Im(Zyy)/ρc < 5, and
0.02 < Re(ZT)/ρc < 0.1 and −0.6 < Im(ZT)/ρc < 0.4 over the range of frequencies
between 300 and 2000 Hz. Here, ρ and c are the fluid density and speed of sound, and
ZT = −τxy/v represents the wall-shear-driven impedance (although not identical to Zxx
in definition). Based on the estimations of impedance for the perforated surfaces, such
surfaces are a potential candidate for passive control and are subject of ongoing work by
the authors. Furthermore, with advances in the additive manufacturing techniques, it is
possible to design and fabricate other geometries with desired impedances for specific
periodicity for the control of wall turbulence.

7. Conclusions

The potential of frequency-tuned surfaces for passive control of wall-bounded turbulent
flows was investigated in this study. Using a generalised impedance wall-boundary
condition, surfaces that permit slip and/or transpiration in response to wall pressure
and/or shear were explored. The conducted analysis showed that the surface impedance
is non-unique, meaning certain wavenumber regimes can be targeted by periodic
material design. These surfaces can be designed in form of metamaterials using additive
manufacturing techniques to favourably target energetic turbulent structures through wall
impedance. The control performance is not sensitive to variations in the amplitude of wall
impedance as long as it is within a favourable range. This is an advantage that makes the
application of wall impedance for passive control promising.

The predictions made by resolvent analysis show that an impedance wall can suppress
the dynamically important structures of the wall-bounded turbulent flows, namely, the
near-wall cycle and the VLSMs, and thereby reduce the turbulent component of friction
drag. It is shown that the effect of impedance mainly depends on the diagonal components
of the impedance tensor, i.e. Zxx and Zyy. Suppression of the near-wall cycle requires
a more reactive impedance compared with that required for suppression of VLSMs.
Non-diagonal impedance tensors with Zxy and Zyx values smaller than certain thresholds
suppress the near-wall and VLSM modes. For impedances considering both shear- and
pressure- driven impedance components, the favourable impedance for suppression of
both modes is found to permit transpiration and reject slip. For the near-wall cycle,
walls that lead to reduced phase difference between pressure and streamwise velocity
at the wall amplify the near-wall mode, while impedances that lead to reduced phase
difference between pressure and wall-normal velocity at the wall are favourable for mode
suppression. The latter was also reported by Luhar et al. (2015) for a compliant wall that
suppresses the near-wall cycle. Analysis of the effect of wall impedance on modes with
varying speeds and wavelengths showed that a wall impedance that favourably suppresses
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the near-wall modes also weakens a large range of modes in the spectral space. Therefore,
materials with an impedance that targets the near-wall cycle will also more effectively
suppress other scales and will likely have an overall drag reducing effect. This is in
contrast to compliant walls for which a wall optimised for suppression of the near-wall
cycle is found to have a smaller reach in spectral space compared with the wall optimised
for the VLSM modes (Luhar et al. 2015). Using the developed impedance model,
passive control based on only pressure-driven impedance and only shear-driven impedance
were compared. It is shown that a wall with streamwise-shear-driven impedance can
lead to suppression of turbulent structures over a wide range in spectral space, while
pressure-driven impedance has a more inconsistent spectral footprint.

There are assumptions in the presents analysis which must be kept in mind. It has been
assumed that the wall can support a given impedance with a geometry that can support
transpiration and/or slip. Furthermore, the bulk impedance approach does not consider the
likely effect of surface length scales (such as the spacing of perforations in the case of a
porous surface). In this study, the gain and structure of resolvent modes are analysed. While
the reduction of mode gain indicates suppression of modes and reduction of Reynolds
stress contribution of modes, it does not directly predict the effects of wall impedance on
skin friction or the mean velocity profile. A more complete model would need to consider
the nonlinear interactions between the modes. Furthermore, the present results were
obtained using a canonical mean velocity profile (which may vary in the modified flow).
The application of the canonical velocity profile may affect the predicted drag reduction
trends if there is a substantial modification in the controlled mean velocity profile, due
to for example large-scale changes of flow structure. However, it is shown to provide
a sufficient estimation for analysis of the response of the nonlinear system to control
(Toedtli et al. 2019). Despite the discussed limitations, it has been previously shown
that resolvent analysis can act as a computationally inexpensive method for design and
first-order test of control strategies. The present study using the bulk impedance approach
shows a potential for passive control using material impedance. The next step would be
design of (meta)materials that could create the desired impedances and realisation of the
predictions of this analysis using experimental and numerical modellings.
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Appendix. Rank-1 approximation

In the present study, the effect of wall impedance on the turbulent flow was investigated
by considering the rank-1 approximation of the resolvent. Although it has been shown
that rank-1 approximation can represent the characteristics of the most energetic modes
of wall-bounded turbulence (Moarref et al. 2013), the reconstruction of the full field and
energy spectra requires higher rank modes, with approximately 10 ranks providing a good
representation of the experimentally observed structures and velocity spectra (McKeon
2017). In this appendix, we show that the rank-1 approximation provides a sufficient
estimation for suppression of modes and turbulent drag reduction.
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Figure 14. Singular values for high ranks up to m = 20 for the resolvent mode representing: (a) the near-wall
cycle, (b) VLSMs. The black solid line shows the uncontrolled flow and the blue dashed line shows an
impedance wall favourable for suppression of the near-wall mode in (a), (Zxx = 3 + 3i, Zyy = 0.2 + 3i, Zxy =
Zyx = 0) and favourable for suppression of the VLSMs in (b) (Zyy = 0.03 + 0.03i, Zxx = Zxy = Zyx = 0).

Two sample impedance tensors, which have been identified as favourable for suppression
of the near-wall and VLSM modes from the rank-1 approximation, are selected. Figure 14
shows the gain, σk,m, of near-wall and VLSM modes for the uncontrolled flow and the
impedance walls for up to m = 20. Note that almost all resolvent modes are paired
(i.e. σk,1 = σk,2, σk,3 = σk,4, and so on) such that each two modes in a pair are
symmetric/anti-symmetric counterparts of each other with the same magnitude. As shown
in figure 14, the favourable impedances reduce the mode gain for rank-1 and rank-2
substantially, while the gains of higher ranks (m = 3–8) increase slightly. As the first
mode pair have the largest gain, they make the largest contribution to the total response
assuming broadband forcing. In addition, the increase in mode gain for higher ranks due
to the wall impedance can be considered negligible compared with the achieved gain
reduction for σk,1 and σk,2. Hence, the gain reduction of rank-1 leads to an overall turbulent
drag reduction. This is supported by the calculated Reynolds stress contribution of the
modes. The channel-integrated Reynolds stress contribution is calculated by considering
20 modes, i.e.

∑20
m=1

∫ 2
0 σ

2
k,m Re(u∗

k,mvk,m)( y − 1) dy. It is found that the wall impedance
reduces the Reynolds stress contribution, accounting for 20 ranks, by 48 % for the
near-wall mode, and by 40 % for the VLSM mode. If only the rank-1 approximation is
considered, the reduction in Reynolds stress contribution changes to 33 % and 29 % for
the near-wall and VLSM modes, respectively. Hence, a sufficient approximation of the
control performance is provided by considering only rank 1. Note that, although rank-1
and rank-2 almost equally contribute to the total flow response (as σk,1 = σk,2), because
they are the symmetric/anti-symmetric counterparts of a pair, the control impact can be
sufficiently described by accounting for only rank 1, and considering both of them will
yield the same result.
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