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Abstract

Background. Extensive research has focused on the potential benefits of education on various
mental and physical health outcomes. However, whether the associations reflect a causal effect
is harder to establish.
Methods. To examine associations between educational duration and specific aspects of well-
being, anxiety and mood disorders, and cardiovascular health in a sample of European
Ancestry UK Biobank participants born in England and Wales, we apply four different causal
inference methods (a natural policy experiment leveraging the minimum school-leaving age, a
sibling-control design, Mendelian randomization [MR], and within-family MR), and assess if
the methods converge on the same conclusion.
Results. A comparison of results across the four methods reveals that associations between
educational duration and these outcomes appears predominantly to be the result of confound-
ing or bias rather than a true causal effect of education on well-being and health outcomes.
Although we do consistently find no associations between educational duration and happi-
ness, family satisfaction, work satisfaction, meaning in life, anxiety, and bipolar disorder,
we do not find consistent significant associations across all methods for the other phenotypes
(health satisfaction, depression, financial satisfaction, friendship satisfaction, neuroticism, and
cardiovascular outcomes).
Conclusions. We discuss inconsistencies in results across methods considering their respect-
ive limitations and biases, and additionally discuss the generalizability of our findings in light
of the sample and phenotype limitations. Overall, this study strengthens the idea that triangu-
lation across different methods is necessary to enhance our understanding of the causal con-
sequences of educational duration.

Introduction

There is an extensive body of research examining associations between educational attainment
(EA) and mental and physical health outcomes. Existing studies have pointed to EA (measured
as years of education, age at leaving education, or diploma obtained) as a correlate of well-
being (Bücker, Nuraydin, Simonsmeier, Schneider, & Luhmann, 2018), depression (Lorant
et al., 2003), quality-adjusted life years (Furnée, Groot, & Van Den Brink, 2008), different car-
diovascular outcomes (Khaing, Vallibhakara, Attia, McEvoy, & Thakkinstian, 2017), and a
wide range of other diseases and disorders (Choi et al., 2011; Putrik et al., 2016; Telfair &
Shelton, 2012). Often, EA is interpreted as a modifiable risk factor that might improve out-
comes in these different domains, but confounding and reverse causation are difficult to
rule out.

Correlational evidence provides us with a first indication of associations between education
and (mental) health outcomes. For example, a meta-analysis by Bücker et al. suggests a
small-to-medium positive correlation between academic achievement and subjective well-
being (SWB) that was stable across different measures of academic achievement and SWB
(Bücker et al., 2018). Similarly, a small but significant correlation has been found between aca-
demic achievement and subsequent depression through meta-analysis (Huang, 2015). In add-
ition, lower education has been associated with a higher risk of different cardiovascular
outcomes (Khaing et al., 2017), and lower self-reported health (Furnée et al., 2008).

Such meta-analytic studies offer the opportunity to evaluate and summarize the existing
literature, which allows us to identify correlations worth exploring in more detail. However,
it is difficult to establish whether these associations reflect causal associations or whether
they might be caused by residual confounding (e.g. genetics, socioeconomic status) (Fewell,
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Davey Smith, & Sterne, 2007; Sobel, 2000). While confounders
can be considered in meta-analysis, it is rarely the case that a
large number of studies include the same confounders.
Moreover, even if confounding factors could be ruled out, correl-
ational studies would not offer clarity on the direction of caus-
ation. For example, while higher levels of education might lead
to better access to healthcare, less health problems, and higher
health (van der Heide et al., 2013), the reverse could also be
true: for example, people in good health might have better possi-
bilities to focus on education and reach higher levels of education
than those in poor health (Kawachi, Adler, & Dow, 2010).

A quasi-experimental design that has been applied widely in
educational research is to consider compulsory schooling laws
where the legal minimum school-leaving age is increased
(Brunello, Fort, & Weber, 2009; Clark & Royer, 2013; Glymour
& Manly, 2018; Lleras-Muney, 2002) as an exposure over which
individuals can be reasonably assumed to have no control. The
implementation of these laws serves as a natural experiment
where people are quasi-randomly separated in two groups (before
and after, or subject to or not subject to the policy change).
Assuming that this policy change only directly impacts the number
of years someone stays in education, and assuming that is unrelated
to confounding factors, this policy change can be used to estimate
the direct effect of educational duration on diverse outcomes. Using
this design, researchers have found positive effects of educational
duration on mental health (Chevalier & Feinstein, 2006; Graeber,
2017), cognitive abilities (Banks & Mazzonna, 2012), mortality
(Davies, Dickson, Smith, Van Den Berg, & Windmeijer, 2018),
income (Davies et al., 2018; Grenet, 2013), and cardiovascular
health (Hamad, Nguyen, Bhattacharya, Glymour, & Rehkopf,
2019). Nevertheless, there is still considerable disagreement across
different studies employing this design due to heterogeneity in
study features such as the included instrument, the examined num-
ber of years around the reform, or the populations included (see
Hamad, Elser, Tran, Rehkopf, & Goodman, 2018). Additionally,
the policy shift only affects those that would otherwise have left
school earlier, meaning that we study a Local Average Treatment
Effect (LATE) in this context. This is important to keep in mind
when interpreting results, since this limits the generalizability
of findings to those not affected by the reform (Ichino &
Winter-Ebmer, 1999). For the subgroup of individuals affected by
the reform, we also assume monotonicity, i.e. there are no indivi-
duals for whom the reform decreases their educational duration.

Another quasi-experimental design controlling for several
forms of confounding using observational data is the sibling-
control design. Comparing outcomes of biological siblings
brought up in the same family allows to control for shared envir-
onmental confounding (e.g. socioeconomic conditions during
childhood), and for shared genetic predispositions. However, fac-
tors unique to one of the siblings but not the other and measure-
ment error can still bias the results of sibling-control studies
(Frisell, 2021). Additionally, even if we could control for all
unshared confounders, the method would not help us determine
the direction of causation. If we find that siblings who score
higher on well-being also stay in school longer, this could be
because well-being causally increases school-leaving age, but the
reverse is as likely: school-leaving age might causally increase
well-being.

In Mendelian randomization (MR), one or more genetic vari-
ant(s) robustly associated with a predictor variable are used as
instrumental variables to examine a potentially causal association
between a predictor and outcome. The approach relies on

Mendel’s laws of segregation and independent assortment,
which assume that genetic variants are inherited randomly from
one’s parents and independent from other genetic variants.
Assuming that (1) the genetic variants are robustly associated
with the exposure, (2) there are no unmeasured confounders of
the instrument–outcome association, and (3) the genetic variants
are not associated with the outcome of interest other than via the
exposure (no pleiotropy), the genetic variants for an exposure can
be used as instruments to examine potential causality between the
exposure and an outcome. For example, a genetic variant asso-
ciated with educational duration that is also indirectly associated
with higher well-being (through its association with educational
duration) provides supportive evidence of a causal association
from education on well-being. Multiple studies have used MR to
examine causal links between EA and health-related traits, with
suggestive evidence for causal influences on traits like alcohol con-
sumption, physical activity, and cardiovascular outcomes (Davies,
Dickson, Davey Smith, Windmeijer, & van den Berg, 2019b; Gill,
Efstathiadou, Cawood, Tzoulaki, & Dehghan, 2019). Importantly,
these associations are only valid if the three key assumptions men-
tioned above are met. Unfortunately, it is often difficult to evaluate
if the assumption of no pleiotropy is met, as many, or even most,
genetic variants exert pleiotropic effects. In addition, unmodeled
assortative mating, dynastic effects, and population stratification
can spuriously induce associations between the genetic variant(s)
and outcomes (Brumpton et al., 2020).

A further development of MR is the application of this method
in the context of within-family analysis (Brumpton et al., 2020).
By performing genetic instrumental variable within sibling
pairs, we directly control for the influences of assortative mating,
population stratification (siblings share the same population back-
ground), and dynastic effects. First, since genetic variants inher-
ited by siblings are random within a family, genotype
differences between siblings will be independent of assortative
mating. Second, since the effects of parental wealth and status
on their offspring is likely similar across siblings, genetic differ-
ences between siblings will be independent of dynastic effects.
Lastly, genetic differences between siblings are independent of
population stratification. Using within-sibling MR, Brumpton
et al. demonstrate that conventional non-family MR estimates
for the association between taller height/lower body mass index
(BMI) and increased EA were almost entirely attenuated in the
context of within-family MR (Brumpton et al., 2020). Similarly,
Davies et al. used a sibling sample to check if identified associa-
tions between EA and different health measures were due to dyn-
astic effects or assortative mating (Davies et al., 2019a, 2019b).
They found little evidence that the within-family results were dif-
ferent from bivariate two-sample MR, but also note a probable
lack of power.

While within-family MR has important advantages over con-
ventional MR, it is nevertheless still fallible to unmet assumptions
(e.g. the presence of pleiotropy) and is also less powerful as it is
applied only in siblings within a larger sample. For both the con-
ventional and the within-family MR, we assume monotonicity (i.e.
the genetic variants do not have opposite effects in subgroups of
people) and interpret identified effects as LATE.

There are various methods for examining causality in observa-
tional data, but all rely on strict assumptions that often are diffi-
cult to meet or evaluate. A way in which we can reduce our
reliance on these individual assumptions is by applying multiple
methods and evaluate the consistency of results and potential dis-
crepancies therein, in light of the biases that accompany each of
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these methods. In a study where the effect of BMI on different
outcomes was assessed, the authors used both MR (subject to
family-level confounding) and non-genetic and genetic within-
family analyses (subject to reverse causation) (Howe et al.,
2020). By verifying that these methods converge upon the same
conclusion, the authors increase the certainty that the results
were not a by-product of their respective biases. In a similar fash-
ion, Davies et al. examined potential causal effects of education on
health, mortality, and income using both a design where they
leverage the raising of school-leaving age (ROSLA) and MR,
with both methods suggesting similar effects for almost all out-
comes (Davies, Dickson, Davey Smith, Windmeijer, & van den
Berg, 2021).

For the current project, we are interested in causal influences
on specific aspects of well-being, anxiety and mood disorders,
and cardiovascular health. As educational effects on well-being
are of primary interest to us, we depart from treating ‘well-being’
as a single unified outcome and separately consider effects on sat-
isfaction with family relations, work, friendships, health, and
finances (Schimmack, 2008). We rely on four widely accepted
techniques for causal inference: we make use of a random natural
policy shift in England and Wales in September 1972 that raised
school-leaving age from 15 to 16 but is unlikely to be related to
confounding factors. We perform analyses within sibships to con-
trol for shared environmental confounders, and partly control for
shared genetics. We make use of an index of genetic variation
related to EA as an instrumental variable in MR. Finally, we com-
bine the genetic instrumental variable with within-family analysis
in sibling pairs. We apply those techniques in a single homoge-
nously measured sample (the UK Biobank [UKB]), minimizing
variation in results due to differences in measurement. By asses-
sing if these different methods converge on the same conclusion
in terms of whether or not there is a causal effect of educational
duration on the different outcomes, we can be more confident in
our conclusions on the potential causal relation between educa-
tion and the different outcomes.

Methods

This project was pre-registered at the Open Science Framework
(https://osf.io/s6gha). Deviations from the pre-registration are
indicated throughout the manuscript.

Sample

We used data from the UKB, a large UK cohort study which col-
lected genetic and phenotypic data on ±500 000 participants
between 40 and 69 years old at recruitment (Bycroft et al.,
2018). For the current project, we selected individuals of
European ancestry (a decision taken to minimize ancestral con-
founding in genetic analyses) that were born in England and
Wales (to ensure participants were likely affected by the school-
leaving age reform). Specific further sample selection procedures
for the four different analyses are described below per analysis,
and a flowchart of sample selection per analysis is found in online
Supplementary Fig. S1.

Education variable

We used UKB data-field 845 ‘age completed full-time education’
as our education exposure variable. Participants were asked to
answer the question ‘at what age did you complete your

continuous full-time education?’. If someone provided an answer
below 5, or an answer higher than their age, the answer was
rejected. If someone answered with an age higher than 40, the
participant was asked to confirm their answer. Since the question
was not collected in participants who indicated having a college or
university degree, we, in line with the literature (Davies et al.,
2018; Plotnikov et al., 2020), imputed their age at completed full-
time education as 21. In case someone provided an answer on
more than one instance, we used the last available answer as the
age at which one completed their full-time education. If the
answer at the later time-point indicated a lower age than a previ-
ous answer (N = 72), we coded the answer as missing.

Outcome variables

General information on item construction and cleaning proce-
dures for these variables can be found in the Supplementary
Methods. The following self-report items were included as well-
being outcome variables: general happiness based on happiness
(UKB ID 4526) and general happiness (UKB ID 20459), family
relationship satisfaction (UKB ID 4559), financial situation satis-
faction (UKB ID 4581), friendship satisfaction (UKB ID 4570),
work/job satisfaction (UKB ID 4537), health satisfaction based
on health satisfaction (UKB ID 4548) and general happiness
with own health (UKB ID 20459), and belief that own life is mean-
ingful (UKB ID 20460). All items were coded so that a higher
score indicated a higher level of well-being. For neuroticism, we
included a summary score (UKB ID 20127) that was based on
12 neurotic domain self-report items. We used a combination
of medical record data (UKB ID 41270) and self-report data
(UKB ID 20002) to create binary variables reflecting if someone
was ever diagnosed with depression, anxiety, or manic or bipolar
disorder. Lastly, a binary variable indicating cardiovascular pro-
blems was constructed based on vascular/heart problems diag-
nosed by a doctor (UKB ID 6150) or self-reported (UKB ID
20002).

Control outcomes

We selected four negative control outcomes: height (UKB ID 50),
birthweight (UKB ID 20022), comparative body size at age 10
(UKB ID 1687), and comparative height size at age 10 (UKB ID
1697). It is unlikely these variables are causally influenced by add-
itional years of schooling, but the presence of confounding paren-
tal variables (e.g. parental SES) might lead to observable but
false-positive associations. As a positive control outcome, we
included average total household income before tax (UKB ID
738), which was split into the four yes/no dichotomous variables:
income over 18k, income over 31k, income over 52k, and income
over 100k. General information on item construction and clean-
ing procedures for these variables can also be found in the
Supplementary Methods.

Covariates

As phenotypic covariates, we included sex (UKB ID 31), assess-
ment center (UKB ID 54), family size (based on number of
[adopted] siblings, UKB IDs 1873, 3972, 1883, and 3982), season
of birth (based on month of birth, UKB ID 52), and year of birth
(UKB ID 34). Genetic covariates included the first 10 genomic
principal components (PCs) and batch (UKB ID 22000).
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Genotype data

Single-nucleotide polymorphisms (SNPs) from HapMap3 (CEU:
Utah residents with Northern and Western European Ancestry)
(1 345 801 SNPs) were filtered out of the imputed dataset. A pre-
principal component analysis (PCA) quality control (QC) was
done on unrelated individuals, filtering out SNPs with minor
allele frequency (MAF) <0.01 and missingness >0.05, leaving 1
252 123 SNPs. After filtering out individuals with
non-European ancestry, the SNP QC was repeated on unrelated
Europeans (N = 312 927). SNPs with MAF <0.01, missingness
>0.05, and Hardy-Weinberg equilibrium (HWE) p < 10−10 were
filtered, leaving 1 246 531 SNPs. The HWE p-value threshold of
10−10 was based on: http://www.nealelab.is/blog/2019/9/17/
genotyped-snps-in-uk-biobank-failing-hardy-weinberg-equilibrium-
test. A final dataset of 1 246 531 QC-ed SNPs was created for
456 028 UKB subjects of European ancestry.

UKB correction

While the UKB is a valuable dataset where a large number of par-
ticipants have been genotyped and extensively phenotyped, it is
not necessarily representative of the UK population due to con-
founding from volunteer bias (Batty, Gale, Kivimäki, Deary, &
Bell, 2020). To partially correct for volunteer bias, we calculate
and include inverse probability weights using procedures by van
Alten, Domingue, Galama, and Marees (2022). The respondents
are weighted using weights based on sex, year of birth (5-year
cohort), education level, ethnicity, region of residence (Census
Greater London Area), tenure of dwelling, employment status,
number of cars in the household, a dummy indicating whether
the person lives in a single-person household, and self-reported
health. For a more detailed description, see van Alten et al. (2022).

Analyses

We use four different methods to examine potential causal effects
between educational duration and our outcomes. Table 1 provides
an overview of these four methods, including their respective
advantages and limitations. Sample descriptives per method can
be found in Table 2. Below, we describe each of the four methods
in more detail. All analysis code is available at https://github.com/
margotvandeweijer/EA_causality. All continuous outcomes were
standardized so that the resulting effect sizes reflect the S.D.
increase in the outcomes for each additional year of education
(see Table 2 for an overview of the S.D.s of the included variables).

Instrumental variable analysis leveraging the ROSLA
We used the ROSLA policy reform where the minimum school-
leaving age was increased from 15 to 16 in England and Wales to
examine the effects of longer schooling on our different outcomes.
We selected a sample of UKB participants born in a 5-year window
(1 February 1955 to 1 February 1960) around the reform (1
September 1972), and excluded related individuals (KING kinship
coefficient >0.0884) using the ukbtools package in R (Hanscombe,
Coleman, Traylor, & Lewis, 2019). A binary ROSLA indicator was
created for this subset of participants that indicates if a participant
was born before (affected = 0) or after (affected = 1) 1 September
1957 and was thus affected by the reform or not. Additionally, we
transformed the age at which one left full-time education variable
into a binary variable that indicates if an individual stayed in school
after age 15 or not (Davies et al., 2019a). Next, we used two-stage

least squares (2SLS) instrumental variable analyses using the fixest
R package (Bergé, 2018), where in the first stage the binary educa-
tion variable was included as the dependent variable and the binary
ROSLA indicator was included as the instrument. In the second
stage, we regressed all our standardized outcome variables on the fit-
ted education values from the first-stage regression. Both stages
included the phenotypic covariates. For comparative purposes, we
also run regular (non-pre-registered) ordinary least squares (OLS)
regression in the same sample the binary education predictor was
used to predict the different outcomes (including the same covari-
ates as the ROSLA analyses). To examine the robustness of the
ROSLA results, we repeated the analyses using samples born in a
2 and 10 years window around the reform.

Sibling control design
We perform analyses within sibships to control for shared familial
background characteristics, and partly control for genetic effects.
Biological sibships in the UKB dataset are defined as participants
with a kinship coefficient between 1

25/2 and 1
23/2 and a probability

of zero identical-by-state sharing >0.0012 (Bycroft et al., 2018;
Manichaikul et al., 2010). Individuals indicating they were adopted
were removed from this sample. For each sibship j with i siblings,
we start by calculating the average age at which sibships left full-
time education eduoj =

∑m
1 eduij/m. Next, we calculate each sib-

ling’s deviation from the sibship average: eduDij = eduij − edu0j.
We use these estimates in a linear model where each outcome Yij

for sibling i in sibship j is predicted as follows:

Yij = b00 + bBeduoj + bWeduDij + covariates+ e

where βB is the between-sibship effect estimating if the average
school-leaving age within sibships is associated with our outcomes,
and βW is the within-sibship effect estimating if a sibling deviating
from the sibship school-leaving age average is associated with our
outcome measures. Since we examine the effect of these within-
and between-sibship estimates on the outcomes of individual sib-
lings, we excluded sibships where only one sibling reported on edu-
cational duration, but we did not exclude sibships where not all
siblings reported on one or more outcome measures. We report
robust standard errors taking into account familial clustering, calcu-
lated using the coeftest function from the lmtest r-package (Hothorn
et al., 2022). All phenotypic covariates were included in the analyses.

Mendelian randomization
We used polygenic scores (PGS) for EA in 2SLS instrumental
variable analysis as genetic instruments for testing a directed cau-
sal association between educational duration and the outcomes.
PGS are aggregate measures of genetic susceptibility for a trait
of interest weighted by effect size estimates from genome-wide
association studies (Choi, Mak, & O’Reilly, 2020). To calculate
the PGS for EA, we used the summary statistics from the
Genome Wide Association Study (GWAS) of years of education
by Lee et al. (2018), excluding 23andme and British cohorts
(N =∼245k). PGS were constructed from the set of genome-wide
significant HapMap3 SNPs ( p < 5 × 10−8), pruned to be inde-
pendent (using the package TwoSampleMR [Hemani et al.,
2018]) using a clumping window of 1000 kb and a linkage
disequilibrium (LD) cut-off of R2 = 0.1. The PGS prediction
accuracy for EA was assessed based on the incremental R2

when including the PGS in a regression with all covariates.
Next, the PGS was used as a genetic instrument in 2SLS instru-

mental variable analysis in a sample of unrelated UKB
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Table 1. Overview of different methods used in the present study

Method Short summary Core assumptions Core limitations* Visual description

ROSLA reform IV
analysis

On 1 September 1972, the raising of
school-leaving age in England and Wales
was raised from 15 to 16. As a result, the
compulsory school stay for individuals
born in September 1957 and later was a
year longer than for those born before
September 1957. We used this policy
shift as an instrument in instrumental
variable analysis, where the reform
directly affects school-leaving age, but
does not directly affect any of our
outcomes

(1) Relevance: the ROSLA reform
associates with the exposure, (2)
independence: no unmeasured
confounders of the instrument–outcome
association, (3) exclusion: no
uncontrolled effect of the instrument on
the outcome except via the exposure, (4)
monotonicity

The reform only directly impacts those
who would have otherwise left school at
age 15. Thus, the instrument only
affects a small part of the population
and results are not generalizable to the
entire population

Sibling control
design

The chances and support provided by
the (early) childhood (shared)
environment is considered one of the
primary causes of confounding in
educational research, these can be
controlled for by relating outcomes to
differences in the educational measure
within sibling pairs

There are no unmeasured confounders
of the EA–outcome association
conditional on a familial effect

Confounders unshared by family
members and measurement error can
still bias the results

Mendelian
randomization
(MR)

MR is a special form of instrumental
variable analysis, where the instrument
is based on genetic variants associated
with the exposure. By using genetic
variants as instrumental variants, MR is
unlikely to be subject to reverse
causality. We used a PGS for EA based
on Lee et al. (2018) as the instrument in
our analyses

(1) Relevance: the EA PGS is associated
with EA, (2) independence: there are no
unmeasured confounders of the PGS–
outcome association, (3) exclusion: the
PGS only affects the outcome via its
effect on EA, (4) monotonicity

Key assumptions of the method, like no
pleiotropy, do not always hold.
Additionally, residual confounders such
as dynastic effects can influence the
results

Mendelian
randomization in
sibships

This method is a combination of MR and
the sibling control method; it has the
same advantages as MR but additionally
controls for assortative mating, dynastic
effects, and population stratification. We
perform MR in a sample of sibships
where we take the difference between
the sibships on the PGS and
school-leaving age to remove the effect
of family-level confounders

The same assumptions as MR and the
sibling control design

Can still be confounded by unmet
assumptions, and is less powerful than
conventional MR as the sample is
reduced to only sibships

*All methods are susceptible for bias from selection/collider bias.
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Table 2. Sample descriptives full sample, and per analysis type (for those with education data)

Full sample ROSLA Sibling control MR

Education

M (S.D.) Range N (females/males)* M (S.D.) Range N (females/
males)*

M (S.D.) Range N (females/
males)*

M (S.D.) Range N
(females/
males)*

Age when left
full-time education

17.93 (2.71) 5–35 361 945 (196 936/168 613) 18.34 (2.57) 5–35 47 667 (26 620/
20 966)

17.77 (2.70) 5–35 31 337 (18
068/13 269)

17.95 (2.72) 5–35 335 076
(179 164/
155 912)

Continuous outcomes

M (S.D.) Range N (females/males)* M (S.D.) Range N (females/
males)

M (S.D.) Range N (females/
males)

M (S.D.) Range N
(females/
males)

Happiness 4.5 (0.73) 1–6 208 936 (113 078/95 481) 4.42 (0.75) 1–6 28 418 (16 334/
12 032)

4.50 (0.72) 1–6 17 595 (10
248/7347)

4.50 (0.73) 1–6 192 465
(103 629/
88 836)

Health satisfaction 4.29 (0.89) 1–6 209 132 (113 191/95 563) 4.27 (0.92) 1–6 28 472 (16 368/
12 052)

4.31 (0.88) 1–6 17 620 (10
266/7354)

4.29 (0.89) 1–6 192 643
(103 739/
88 904)

Family satisfaction 4.8 (0.89) 1–6 152 202 (81 118/70 799) 4.72 (0.93) 1–6 20 162 (11 487/
8878)

4.82 (0.86) 1–6 12 562
(7195/5367)

4.80 (0.89) 1–6 140 133 (74
294/65 839)

Financial satisfaction 4.36 (0.94) 1–6 152 882 (81 330/71 265) 4.23 (1.01) 1–6 20 246 (11 381/
8826)

4.38 (0.91) 1–6 12 549
(7187/5362)

4.36 (0.94) 1–6 140 843 (74
533/66 310)

Friendship
satisfaction

4.77 (0.74) 1–6 151 866 (81 028/70 554) 4.70 (0.77) 1–6 20 076 (11 318/
8720)

4.77 (0.73) 1–6 12 458
(7160/5298)

4.77 (0.74) 1–6 139 869 (74
238/65 631)

Work satisfaction 4.41 (0.87) 1–6 100 993 (52 949/47 844) 4.28 (0.90) 1–6 17 499 (9762/
7700)

4.40 (0.87) 1–6 8253 (4641/
3612)

4.41 (0.87) 1–6 92 871 (48
427/44 444)

Meaning in life 3.7 (0.83) 1–5 115 434 (64 848/50 397) 3.66 (0.87) 1–5 16 890 (10 241/
6623)

3.72 (0.82) 1–5 10 119
(6075/4044)

3.69 (0.82) 1–5 106 741 (59
640/47 101)

Neuroticism 4.11 (3.25) 0–12 297 342 (157 409/139 407) 4.42(3.33) 0–12 39 498 (21 891/
17 547)

4.08 (3.24) 0–12 25 478 (14
483/10 995)

4.10 (3.25) 0–12 272 531
(143 344/
129 187)

Binary outcomes

N diagnosed N diagnosed N diagnosed N diagnosed

Depression 31 577 4707 2621 28 643

Anxiety 13 799 1795 1142 12 458

Bipolar or manic
disorder

1516 236 136 1368

Cardiovascular
problems

114 926 10 414 9706 105 166
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participants (KING kinship coefficient >0.0884). In the first stage,
we predicted age at which one left full-time education (standar-
dized) from the PGSs. In the second stage, the outcome and con-
trol outcomes were predicted from the fitted education values. All
phenotypic and genetic covariates were included as covariates in
both stages.TheMRanalyseswere conductedusing the fixestpackage
in R (Bergé, 2018). For comparison, we also perform regular
(non-pre-registered) OLS regression in the same sample, where stan-
dardized age at which one left full-time education is used to predict
the outcomes, whilst correcting for the phenotypic covariates.

Mendelian randomization in sibships
Since one of the limitations of MR is its susceptibility to residual
confounding stemming from dynastic effects, population stratifi-
cation, and assortative mating, we additionally perform MR
within sibships. We identify siblings in UKB and calculate each
sibling’s deviation from the sibship average using the same meth-
odology as used for the sibling control design (see ‘Sibling control
design’). Additionally, we use the PGSs calculated for the MR ana-
lyses (see ‘Mendelian randomization’) to calculate a PGS average
within sibships: PGSoj =

∑m
1 PGSij/m, and each sibling’s devi-

ation from the sibship average: PGIDij = PGIij − PGI0j. We use
these deviation estimates in instrumental variable regression
(using the fixest package), where in the first stage we predict the
sibling education deviation from the sibling PGS deviation.
Next, the outcome and control outcomes were predicted from
the first-stage fitted education values. Similar to the within-sibling
analyses, we excluded sibships where only one sibling reported on
EA, but we did not exclude sibships where not all siblings
reported on one or more outcome measures. We report robust
standard errors taking into account familial clustering, calculated
using the coeftest function from the lmtest r-package (Hothorn
et al., 2022). Both the phenotypic and genetic covariates were
included.

Pre-registered interpretation of results

We define an unambiguous causal association as one where the
policy shift, the sibling control design, and the Mendelian ran-
domization analyses all imply a significant result in the same dir-
ection. The absence of significance across these methods would
imply the absence of such a result. Due to the lower power asso-
ciated with our within-sibship MR analyses, we are satisfied if the
magnitude and direction of the Mendelian randomization within
siblings is consistent with the other methods. With respect to stat-
istical significance and multiple testing, we use two significance
thresholds: (1) a suggestive threshold where we correct for the
number of outcomes (15), so that α = 0.05/15 = 0.003, and (2) a
conservative threshold where we correct for the number of out-
comes (15) and analysis types (4), so that α = 0.05/60 = 0.0008.
Inconsistencies across results will be interpreted along the poten-
tial biases and assumptions that accompany the different
methods.

Results

Instrumental variable analysis leveraging the ROSLA

Table 3 depicts the results of the ROSLA instrumental variable
analyses. Based on the 2SLS models, none of the outcomes are sig-
nificantly predicted by age at which one left full-time education.
This contrasts our comparative OLS analyses, which do not
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Table 3. Results ROSLA instrumental variable analyses

Education (fitted) F-test (1st stage) Wu–Hausmana Regular OLS education

Main outcomes β (S.E.) p N F p wh p β (S.E.) p

Happiness 0.11 (0.15) 0.525 27 434 583.2 <2.2 × 10−16 1.79 0.181 −0.03 (0.01) 0.009

Health satisfaction 0.09 (0.15) 0.525 27 434 583.2 <2.2 × 10−16 1.79 0.181 0.02 (0.01) 0.072

Family satisfaction 0.15 (0.16) 0.346 19 392 457.2 <2.2 × 10−16 0.640 0.424 0.02 (0.02) 0.283

Financial satisfaction −0.24 (0.17) 0.160 19 474 444.0 <2.2 × 10−16 11.5 0.0007 0.33 (0.03) <2.2 × 10−16

Friendship satisfaction 0.04 (0.16) 0.814 19 310 458.2 <2.2 × 10−16 0.305 0.581 −0.05 (0.02) 0.060

Work satisfaction −0.07 (0.18) 0.697 16 895 369.9 <2.2 × 10−16 0.519 0.471 0.06 (0.03) 0.021

Meaning in life 0.43 (0.29) 0.130 16 341 216.9 <2.2 × 10−16 2.03 0.154 0.03 (0.03) 0.340

Neuroticism 0.05 (0.10) 0.630 38 187 958.2 <2.2 × 10−16 8.44 0.004 −0.25 (0.02) <2.2 × 10−16

Depression −0.04 (0.03) 0.180 45 840 1205.9 <2.2 × 10−16 1.25 0.264 −0.07 (0.004) <2.2 × 10−16

Anxiety 0.01 (0.02) 0.529 45 840 1205.9 <2.2 × 10−16 4.97 0.026 −0.03 (0.003) <2.2 × 10−16

Bipolar or manic disorder −0.003 (0.007) 0.714 45 840 1205.9 <2.2 × 10−16 0.373 0.542 −0.007 (0.001) 9.42 × 10−10

Cardiovascular problems 0.02 (0.04) 0.673 45 840 1205.9 <2.2 × 10−16 5.73 0.017 −0.07 (0.006) <2.2 × 10−16

Control outcomes

Income over 18k 0.02 (0.04) 0.647 42 079 1088.7 <2.2 × 10−16 28.0 1.22 × 10−7 0.20 (0.006) <2.2 × 10−16

Income over 31k 0.14 (0.04) 0.002 42 079 1088.7 <2.2 × 10−16 9.49 0.002 0.27 (0.007) <2.2 × 10−16

Income over 52k 0.10 (0.04) 0.016 42 079 1088.7 <2.2 × 10−16 5.69 0.017 0.21 (0.007) <2.2 × 10−16

Income over 100k 0.02 (0.02) 0.432 42 079 1088.7 <2.2 × 10−16 2.43 0.119 0.05 (0.004) <2.2 × 10−16

Birthweight 0.003 (0.12) 0.977 26 921 736.1 <2.2 × 10−16 0.045 0.831 0.02 (0.02) 0.247

Height −0.04 (0.06) 0.479 45 743 1194.8 <2.2 × 10−16 11.2 0.0008 0.16 (0.010) <2.2 × 10−16

Comparative body size at age 10 −0.01 (0.06) 0.813 44 650 1182.5 <2.2 × 10−16 0.028 0.867 −0.003 (0.01) 0.756

Comparative height size at age 10 −0.16 (0.06) 0.008 44 795 1192.7 <2.2 × 10−16 12.2 0.0005 0.06 (0.01) 3.37 × 10−9

Note. All continuous outcomes were standardized. Assessment center, sex, season of birth, and year of birth were included as covariates.
p-values indicated in bold are lower than the conservative p-value threshold of 0.0008.
aH0 is the absence of endogeneity of the instrumented variables.
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control for unmeasured confounders, where most associations
were significant. The F-statistic of the 2SLS analyses ranged
from 216.9 to 1205.9 depending on the outcome of interest, indi-
cating that our instrument is unlikely to suffer from weak instru-
ment bias. Since the standard errors are relatively large and the
Wu–Hausman statistics, which test for the absence of endogene-
ity, were almost always non-significant at α = 0.05, it is suggested
that the 2SLS and OLS models do not statistically differ. However,
the methods do lead to different estimates, suggesting the OLS
results are nonetheless subject to considerable bias. Examining
these associations in a 2- or 10-year window around the reform
did not change our conclusions (see online Supplementary
Table S1).

These findings contrast earlier findings by Davies et al. (2018).
Using instrumental variable regression in UKB, they did observe
an effect of remaining in school after age 15 on different cardio-
vascular outcomes and income. The main difference between the
current study and the Davies et al. study is the method of correct-
ing for year of birth, where they used a difference-in-difference
approach instead of including this variable as a covariate.
Therefore, we performed supplementary (non-preregistered) ana-
lyses where we, in a step-wise fashion, added season of birth and
year of birth. The results are shown in online Supplementary
Table S2 and Fig. 1. While adding year of birth as covariates
might increase the chance that we are overcorrecting, it is evi-
dent from these results that the use of a policy experiment as
an instrumental variable is very sensitive to the model specifica-
tion: inclusion year of birth renders previously significant asso-
ciations with happiness, familial, financial, and work
satisfaction, cardiovascular problems, income, birthweight, and
height non-significant.

Sibling control design

In total, there were 15 237 families with sibships of at least two
siblings. The number of included individuals per outcome varied
(see Table 4 for the sample size per outcome). The intra-class cor-
relation for education, reflecting the amount of total variation in
education explained by the family-level, was 0.40. Table 4 presents
the within- and between-sibship estimates from the sibling con-
trol analyses. For the main outcomes, the between-sibling esti-
mates for school-leaving age were significantly associated (based
on the conservative α = 0.0008 threshold) with happiness, health
satisfaction, family satisfaction, financial satisfaction, work satis-
faction, neuroticism, anxiety, and cardiovascular problems.
However, the within-sibling estimates (indicating a potential cau-
sal effect) were only significant for financial satisfaction (β =
0.025, S.E. = 0.006, p = 9.70 × 10−6), and neuroticism (β =−0.016,
S.E. = 0.004, p = 3.67 × 10−5), indicating a positive association
between longer education and financial satisfaction and a negative
association with neuroticism. With respect to the positive control
outcomes, all between- and within-sibship estimates were signifi-
cant. Between-sibling estimates for negative control outcomes
also showed significant positive associations with age at leaving
school, except for comparative body size at age 10. As expected,
the within-sibling estimates were however not significant for birth-
weight and comparative height/body size at age 10, but surprisingly
still significant for height, suggesting that the within-family esti-
mates are not adequately correcting for all sources of bias.

Mendelian randomization

The EA PGS predicted 0.28% of the variance in school-leaving
age, which is similar to the predictive power of the EA PGS

Figure 1. Comparison of ROSLA results including and excluding year of birth (yob) as a covariate for (a) continuous outcome measures, (b) binary outcome mea-
sures, and (c) control measures.
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from Lee et al. that was based on the genome-wide significant
SNPs based on a similarly sized (N = 293 723) discovery GWAS
(Okbay et al., 2016). Despite the relatively low predictive power,
the F-values from our MR analyses ranged from 240.1 to 957.1
for the different outcomes, indicating that the PGS did not suffer
from weak instrument bias.

The full results from the MR analyses are shown in Table 5.
Six outcomes were significantly associated with school-leaving
age based on our conservative significance threshold of α =
0.0008: we found positive associations with health satisfaction
(β = 0.37, S.E. = 0.05, p = 1.31 × 10−14) and financial satisfaction
(β = 0.43, S.E. = 0.06, p = 5.96 × 10−13), and negative associations
with friendship satisfaction (β = −0.23, S.E. = 0.06, p = 4.02 ×
10−5), neuroticism (β = −0.23, S.E. = 0.04, p = 1.67 × 10−9),
depression (β = −0.04, S.E. = 0.01, p = 0.0003), and cardiovascu-
lar problems (β = −0.07, S.E. = 0.01, p = 9.32 × 10−6). All positive
control outcomes, and the negative control outcomes height
and height at age 10 were significantly associated with school-
leaving age. For comparison, we also associated the outcomes
with age at which one left full-time education in regular OLS
regression. We did so to examine if analyses that do not take
into account causality through a genetic instrument would indi-
cate an association. When doing so, all outcomes except happi-
ness, meaning in life, and bipolar disorder were significantly
associated.

Mendelian randomization in sibships

The results from the MR analyses within sibships can be found in
Table 6. While our instrument was much less powerful than in regu-
lar MR, all F-statistics except the F-statistic for meaning in life were
higher than 10 (which is commonly used as a rule of thumb to avoid
bias [Lawlor, Harbord, Sterne, Timpson, & Smith, 2008]). None of
the associations (for both control and outcome variables) were sig-
nificant after correcting for multiple testing.

Interpretation of results

An overview of all results from the four different methods can be
found in Fig. 2. As mentioned in the methods section, we define
an unambiguous result as one which is consistent across all meth-
ods. Additionally, due to the lower power associated with our
within-sibship MR analyses, we are satisfied if the magnitude
and direction of the Mendelian randomization within siblings is
consistent with the other methods.

The ROSLA estimates displayed in Fig. 2 reflect the associa-
tions where year of birth was included as a covariate (as pre-
registered). With respect to our main outcomes, we found non-
significant associations across all four methods for: happiness,
family satisfaction, work satisfaction, meaning in life, anxiety,
and bipolar disorder. Educational duration was positively asso-
ciated with financial satisfaction, and negatively associated with

Table 4. Results sibling control analyses

Within-sibling estimate Between-sibling estimate

Main outcomes N β (S.E.) t p β (S.E.) t p

Happiness 17 071 −0.005 (0.005) −0.941 0.347 −0.014 (0.004) −3.989 6.68 × 10−5

Health satisfaction 17 096 0.002 (0.005) 0.393 0.694 0.015 (0.004) 4.068 4.76 × 10−5

Family satisfaction 12 137 −0.002 (0.006) −0.363 0.717 −0.022 (0.004) −5.203 1.99 × 10−7

Financial satisfaction 12 132 0.025 (0.006) 4.426 9.70 × 10−6 0.032 (0.004) 7.448 1.01 × 10−13

Friendship satisfaction 12 042 −0.006 (0.006) −1.07 0.284 −0.033 (0.004) −7.680 1.72 × 10−14

Work satisfaction 7979 −0.001 (0.007) −0.176 0.860 0.001 (0.005) 0.266 0.790

Meaning in life 9885 0.010 (0.007) 1.451 0.147 −0.015 (0.005) −3.117 0.002

Neuroticism 24 680 −0.016 (0.004) −4.128 3.67 × 10−5 −0.031 (0.003) −9.997 1.74 × 10−23

Depression 30 192 0.0003 (0.001) 0.332 0.740 −0.001 (0.0008) −1.809 0.070

Anxiety 30 192 0.001 (0.0007) 1.659 0.097 −0.002 (0.0005) −3.817 0.0001

Bipolar or manic disorder 30 192 0.00005 (0.0003) 0.178 0.859 0.0006 (0.0002) 3.298 0.001

Cardiovascular problems 30 192 −0.003 (0.002) −1.796 0.073 −0.012 (0.001) −9.132 7.12 × 10−20

Control outcomes

Income over 18k 26 678 0.020 (0.002) 12.079 1.67 × 10−33 0.040 (0.001) 33.164 2.32 × 10−236

Income over 31k 26 678 0.025 (0.002) 12.737 4.74 × 10−37 0.052 (0.001) 36.853 4.93 × 10−290

Income over 52k 26 678 0.021 (0.002) 12.851 1.09 × 10−37 0.040 (0.001) 32.427 2.82 × 10−226

Income over 100k 26 678 0.005 (0.001) 8.086 6.42 × 10−16 0.011 (0.001) 17.884 4.04 × 10−71

Height 30 410 0.012 (0.002) 5.936 2.94 × 10−9 0.040 (0.002) 17.870 4.73 × 10−71

Birthweight 15 052 0.006 (0.005) 1.268 0.205 0.020 (0.004) 4.959 7.15 × 10−7

Comparative body size at age 10 29 341 0.003 (0.002) 1.291 0.197 0.005 (0.002) 2.359 0.018

Comparative height size at age 10 29 379 0.007 (0.002) 2.878 0.004 0.016 (0.002) 7.462 8.76 × 10−14

p-values indicated in bold are lower than the conservative p-value threshold of 0.0008.
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Table 5. Results Mendelian randomization analyses

Education (fitted) F-test (1st stage) Wu–Hausman Regular OLS education

Main outcomes β (S.E.) p N F p wh p β (S.E.) p

Happiness −0.04 (0.05) 0.437 185 541 554.6 <2.2 × 10−16 0.472 0.492 −0.004 (0.002) 0.135

Health satisfaction 0.37 (0.05) 1.31 × 10−14 185 706 561.2 <2.2 × 10−16 38.5 5.58 × 10−10 0.09 (0.003) <2.2 × 10−16

Family satisfaction −0.05 (0.06) 0.41 134 762 371.3 <2.2 × 10−16 0.185 0.667 −0.02 (0.003) 5.35 × 10−14

Financial satisfaction 0.43 (0.06) 5.96 × 10−13 135 486 373.7 <2.2 × 10−16 28.1 1.15 × 10−7 0.13 (0.003) <2.2 × 10−16

Friendship satisfaction −0.23 (0.06) 4.02 × 10−5 134 509 380.2 <2.2 × 10−16 11.2 8 × 20−4 −0.05 (0.003) <2.2 × 10−16

Work satisfaction 0.07 (0.07) 0.291 89 430 240.1 <2.2 × 10−16 0.58 0.447 0.02 (0.004) 7.60 × 10−9

Meaning in life −0.12 (0.07) 0.079 103 494 281.5 <2.2 × 10−16 3.49 0.062 0.007 (0.004) 0.036

Neuroticism −0.23 (0.04) 1.67 × 10−9 262 884 801.3 <2.2 × 10−16 12.1 5.06 × 10−4 −0.10 (0.002) <2.2 × 10−16

Depression −0.04 (0.01) 0.0003 321 506 957.1 <2.2 × 10−16 5.55 0.018 −0.01 (0.0006) <2.2 × 10−16

Anxiety 0.007 (0.007) 0.333 321 506 957.1 <2.2 × 10−16 3.57 0.059 −0.006 (0.0004) <2.2 × 10−16

Bipolar or manic disorder 0.008 (0.002) 0.734 321 506 957.1 <2.2 × 10−16 0.067 0.795 −0.0002 (0.0001) 0.148

Cardiovascular problems −0.07 (0.01) 9.32 × 10−6 321 506 957.1 <2.2 × 10−16 5.35 0.021 −0.003 (0.0008) <2.2 × 10−16

Control outcomes

Income over 18k 0.25 (0.02) <2.2 × 10−16 282 600 797.3 <2.2 × 10−16 91.7 <2.2 × 10−16 0.10 (0.0008) <2.2 × 10−16

Income over 31k 0.29 (0.02) <2.2 × 10−16 282 600 797.3 <2.2 × 10−16 89.4 <2.2 × 10−16 0.13 (0.0009) <2.2 × 10−16

Income over 52k 0.24 (0.02) <2.2 × 10−16 282 600 797.3 <2.2 × 10−16 85.0 <2.2 × 10−16 0.11 (0.0008) <2.2 × 10−16

Income over 100k 0.09 (0.01) <2.2 × 10−16 282 600 797.3 <2.2 × 10−16 58.3 2.21 × 10−14 0.003 (0.0004) <2.2 × 10−16

Birthweight 0.15 (0.05) 0.001 159 371 541.7 <2.2 × 10−16 6.70 0.010 0.03 (0.003) <2.2 × 10−16

Height 0.17 (0.02) 1.48 × 10−12 320 795 954.1 <2.2 × 10−16 12.5 4.00 × 10−4 0.08 (0.001) <2.2 × 10−16

Comparative body size at age 10 0.01 (0.02) 0.541 312 177 966.2 <2.2 × 10−16 0.397 0.528 −0.001 (0.001) 0.483

Comparative height size at age 10 0.10 (0.02) 2.03 × 10−5 313 496 930.9 <2.2 × 10−16 8.69 0.003 0.03 (0.001) <2.2 × 10−16

Note. Sex, family size, season of birth, year of birth, assessment center, batch, and the first 10 genomic PCs were included as covariates for the MR analyses. The OLS regression is the prediction of the outcomes with education including the same
covariates, with the exception of batch and the genomic PCs. All continuous outcomes and age at which one left full-time education were standardized.
p-values indicated in bold are lower than the conservative p-value threshold of 0.0008.
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neuroticism in the sibling-control and MR analyses, but these
associations were non-significant in both the ROSLA and within-
sibling MR. The within-sibling MR estimate for financial satisfac-
tion was in the same direction, and of comparable magnitude as
the conventional MR results, whereas the result for neuroticism
was in the opposite direction. Lastly, educational duration was
significantly positively associated with health satisfaction and sig-
nificantly negatively associated with friendship satisfaction,
depression, and cardiovascular outcomes in the conventional
MR analyses only. Thus, overall, the different analyses do not
seem to converge on a consistent conclusion in terms of whether
there is a causal effect.

We included different income classes as positive control out-
comes, as we expected educational duration to causally influence
income. Only in the sibling control and MR analyses were the
different income variables significantly associated with educa-
tional duration. The non-significant within-family MR estimates
for income were in the same direction but of slightly smaller
magnitude as the conventional MR.
When not including year of birth as a covariate in the ROSLA
analyses, the first three income classes were significantly asso-
ciated with educational duration, suggesting a potential overcor-
rection in our ROSLA analyses (online Supplementary
Table S2). With respect to our negative controls, height was sig-
nificantly associated with education in both the sibling-control

and MR analyses. Additionally, comparative body height at age
10 was significantly associated with education in the MR analyses.
Associations with these negative control phenotypes suggest the
possible presence of residual bias.

Discussion

Our study was designed to disentangle causal effects from con-
founding in the association between educational duration and dif-
ferent well-being, and mental and physical health indicators. To
this end, we applied four established techniques for causal inference
to a homogeneous sample, the UKB. We find consistent non-
significant associations for happiness, family satisfaction, work sat-
isfaction, meaning in life, depression, anxiety, and bipolar disorder.
However, we do not find robust significant associations across all
four methods for health satisfaction, friendship satisfaction, finan-
cial satisfaction, neuroticism, and cardiovascular outcomes. The
absence of significant consistent results suggests that associations
between educational duration and well-being, mental and physical
health are largely confounded or biased by reverse causation.
Alternatively, a small causal effect may exist but power in one or
some of our techniques may have been insufficient to detect it.

Overall, in our first set of analyses (based on the ROSLA), we
do not find an effect of educational duration on any of the out-
comes, including our positive controls. This contradicts an earlier

Table 6. Results Mendelian randomization analyses within sibships

Education deviation (fitted) F-test (1st stage) Wu–Hausman

Main outcomes β (S.E.) p N F p wh p

Happiness −0.06 (0.21) 0.778 17 067 22.5 2.15 × 10−6 0.149 0.699

Health satisfaction 0.001 (0.21) 0.998 17 092 22.7 1.88 × 10−6 0.002 0.960

Family satisfaction −0.29 (0.22) 0.179 12 133 21.4 3.70 × 10−6 4.25 0.039

Financial satisfaction 0.20 (0.22) 0.373 12 128 21.6 3.31 × 10−6 1.54 0.214

Friendship satisfaction −0.16 (0.22) 0.463 12 038 21.1 4.38 × 10−6 1.13 0.287

Work satisfaction −0.02 (0.25) 0.936 7975 10.1 9.15 × 10−4 0.005 0.944

Meaning in life −0.13 (0.49) 0.790 9881 5.08 0.024 0.218 0.640

Neuroticism 0.29 (0.21) 0.162 24 676 27.1 1.24 × 10−7 0.575 0.016

Depression −0.002 (0.06) 0.978 30 188 28.2 1.08 × 10−7 0.0004 0.983

Anxiety −0.02 (0.04) 0.684 30 188 28.2 1.08 × 10−7 0.509 0.475

Bipolar or manic disorder 0.04 (0.03) 0.166 30 188 28.2 1.08 × 10−7 17.2 0.00003

Cardiovascular problems −0.17 (0.09) 0.074 30 188 28.2 1.08 × 10−7 9.01 0.003

Control outcomes

Income over 18k 0.03 (0.09) 0.717 26 674 22.8 1.79 × 10−6 0.029 0.864

Income over 31k 0.13 (0.10) 0.168 26 674 22.8 1.79 × 10−6 2.62 0.105

Income over 52k 0.15 (0.06) 0.089 26 674 22.8 1.79 × 10−6 5.40 0.020

Income over 100k –0.01 (0.04) 0.799 26 674 22.8 1.79 × 10−6 0.31 0.584

Birthweight −0.15 (0.23) 0.504 15 048 16.4 5.05 × 10−5 0.984 0.321

Height −0.05 (0.10) 0.624 30 136 29.2 6.53 × 10−8 0.471 0.492

Comparative body size at age 10 0.17 (0.14) 0.226 29 337 26.8 2.27 × 10−7 3.30 0.069

Comparative height size at age 10 0.11 (0.12) 0.390 29 375 24.8 6.39 × 10−7 1.27 0.260

p-values indicated in bold are lower than the conservative p-value threshold of 0.0008.
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study similarly examining the causal effect of education in the UK
in light of the ROSLA reform, where a causal effect was found for
different cardiovascular outcomes, income, and height. The main
difference between the current study and the Davies et al. study is
the method of correcting for year of birth. Whereas Davies et al.
employ a difference-in-difference approach where the data are
stratified by year of birth, we directly include year of birth as a
covariate. To examine the effect of year of birth on the associa-
tions, we ran supplementary analyses where we compare the asso-
ciations with and without year of birth as a covariate. When
including year of birth, educational duration no longer signifi-
cantly influenced our positive control outcomes (the four income
classes), suggesting that by including year of birth in this set of
analyses we might be overcorrecting. This degree of sensitivity
of the model to inclusion of covariates, and to what way covariates
are taken into account, does complicate the interpretation of our
findings.

Although the ROSLA analyses did not result in significant
associations, we found an effect of educational duration on health
satisfaction, friendship satisfaction, depression, and cardiovascu-
lar outcomes, but only in the conventional (non-family) MR ana-
lyses. The finding that these associations were only significant in
the MR analyses might indicate that one of the assumptions was
violated, such as the no pleiotropy assumption. Moreover, we
found significant associations with financial satisfaction and neur-
oticism in both the conventional MR and within-sibship analyses.
For the latter, we found that people who stayed in school longer
had higher financial satisfaction and lower neuroticism. While
these associations were not significant in the within-sibling MR
analyses, the direction of effect was consistent. We can therefore
interpret these associations as at least suggestive evidence in
three out of four analyses. Besides our potential overcorrection
issue, it could be argued that discrepancies with the ROSLA

analyses are caused by the caveat that the ROSLA results only
apply to those who would have left school at age 15 in the absence
of the reform. In this sense, the ROSLA results are less generaliz-
able to the population than the other methods as the reform did
not affect those who would have stayed in school until age 16 or
later irrespective of the reform. Additionally, one of the possibil-
ities that comes to mind when interpreting the results for financial
satisfaction is the potential mediation of income. We therefore
re-ran the sibling control analyses including the mean income
and the sibling deviation in income from the sibship income aver-
age as covariates (Saunders, McGue, & Malone, 2019) (see online
Supplementary Table S3). We found that the standardized esti-
mates for both financial satisfaction and neuroticism decreased
substantially (with similar standard errors), resulting in non-
significant associations controlling for income, suggesting that
the association between educational duration and these two out-
comes may be mediated through income. Since financial satisfac-
tion is partly the result of one’s income, this finding is not
surprising. With respect to neuroticism, a previous MR study
found evidence for bidirectional causality between education
and neuroticism, but did not consider potential mediation of
income (Nagel et al., 2018).

The most consistent finding to emerge from the data is the lack
of evidence for a causal effect of educational duration on happi-
ness, family satisfaction, work satisfaction, meaning in life, anx-
iety, and bipolar disorder. The association between educational
duration and these outcomes was non-significant, irrespective of
which method was applied, while OLS suggested there was an
association. In these OLS analyses, we observe that almost all out-
comes were significantly predicted by school-leaving age. It is
therefore likely that the OLS associations are subject to confound-
ing and/or reverse causation, and are unlikely to reflect direct,
causal effects. One note in the context of our findings is that

Figure 2. Overview of the results from the different analyses for (a) continuous outcome measures, (b) binary outcome measures, and (c) control measures.
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we examine variation in educational duration from a minimal
school-leaving age onward, and do not examine the effect of
attending education in general. It is therefore important to note
that schooling in general has important pecuniary and non-
pecuniary consequences (Grossman, 2006), but that our study
suggests a lack of evidence for causal effects of variation in educa-
tional duration on variation in (mental) health outcomes beyond
a minimum school-leaving age. Additionally, important to note is
that the current project focused on potential causal effects of edu-
cational duration on (mental) health, and not reverse effect or
bi-directional causality. It might be the case that, for some pheno-
types, there is a causal effect from health on educational duration.
In addition, we focused on linear associations, disregarding
potential non-linear effects. While these two directions were
beyond the scope of the current project, they would be interesting
directions for future research.

When applying the methods used here in isolation, it is often
difficult or impossible to evaluate all the respective limitations and
assumptions. A strength of this study is that we try to minimize
our reliance on any one set of assumptions by applying various
existing approaches for causal inference that rely on different
assumptions to account for possible confounding and bias, and
triangulate results. In doing so, we found that the different causal
inference approaches led to heterogeneous results. Since we inves-
tigate the same measures in (largely) the same population, differ-
ences in results across methods are most likely attributable to the
methods themselves. Importantly, if we decided to focus on only
one of these methods for the current paper, we would have drawn
very different conclusions than we do now. With respect to health
satisfaction, friendship satisfaction, and cardiovascular outcomes,
these were only significantly predicted by educational duration in
the conventional MR analyses, but not in any of the other ana-
lyses. Evaluating this discrepancy considering the characteristics
of the different methods, it is possible that these associations
are caused by a familial or population effect that is uncontrolled
for in conventional MR but is controlled for in the other analyses.
Additionally, the MR sample was the largest sample we examined,
and it might be the case that an increase in sample size for the
ROSLA and within-sibship analyses would allow us to detect
smaller effects that remain undetected using the current sample
size. This is also reflected in the confidence intervals for the
results from the different methods (Fig. 2), where we see relatively
precise estimates for the sibling control and MR analyses, and
relatively imprecise estimates for the within-sibling MR and
especially the ROSLA analyses. Therefore, it might be the case
that the lack of significant results in the ROSLA and within-
sibling MR is due to a lack of power. Regardless of power, the
negative control traits suggest a reliance on MR alone risks false-
positive results for obvious reasons: the significant causal effects
of educational duration on birthweight and height at age 10 can-
not be true effects.

While we tried to account for the limitations of the separate
methods by means of triangulation, our results are still sensitive
to our sample and measurement characteristics. We used a rela-
tively homogeneous sample that allowed for a straightforward
comparison between methods, but this also limits the generaliz-
ability of our findings. More specifically, the UKB sample is
known to suffer from a ‘healthy volunteer’ bias, where partici-
pants are more healthy than the general population (Fry et al.,
2017; Munafò, Tilling, Taylor, Evans, & Davey Smith, 2018).
Additionally, participants are more likely to be older, female,
and live in more socioeconomically advantaged areas than non-

participants (Fry et al., 2017). To (partly) correct for the con-
founding stemming from volunteer bias, we used weights as cal-
culated in van Alten et al. (2022). While these weights help us
correct for volunteer bias, it is important to stress that the exam-
ined sample is still a WEIRD (Western, Educated, Industrialized,
Rich, Democratic) sample. It is therefore unknown if these results
generalize to non-WEIRD societies. We also tested if the conclu-
sions of the sibling control analyses would change if we did not
restrict to European Ancestry individuals born in England and
Wales. We did not find different results in this larger set of sib-
lings (see online Supplementary Table 4). Second, we used rela-
tively broad, imprecise phenotype and disease definitions. For
example, we included all depression diagnoses present in UKB
under the umbrella ‘depression’, and all cardiovascular-related
diagnoses under the umbrella ‘cardiovascular outcomes’. For
our continuous phenotypes (except neuroticism), we used single
items to measure the phenotypes. It is possible that more precise
phenotype and disease definitions could reduce measurement
error and influence power. Additionally, it has been argued that
quantitative education measures such as years of education is
not an optimal measure of education, especially in the context
of non-pecuniary returns of education (Oreopoulos & Salvanes,
2009). More qualitative measures of education, such as teaching
methods or curricula differences, might be better suited in this
context, but these data are difficult to acquire and analyze on a
large scale. Our quantitative measure of education was moreover
collected through self-report questionnaires, and those responses
might have suffered from recall bias (i.e. participants might not
remember school-leaving age accurately). We did use single
items for our well-being phenotypes, but we did not treat well-
being as a unidimensional construct. Alternative to looking at a
general well-being item or sum-score, we assessed if educational
duration influenced specific well-being aspects, such as work sat-
isfaction and meaning in life. However, these well-being measures
also relied on self-report, which might have introduced measure-
ment error. When examining the test–retest reliability for educa-
tion and happiness, which were measured on multiple occasions,
we find moderate test–retest reliabilities between 0.57 and 0.68,
which is in line with previous findings on the stability of well-
being (Anusic & Schimmack, 2016). Lastly, the included analyses
do not necessarily estimate the same type of causal effect. While
the ROSLA and conventional MR identify LATE effects, the sib-
ling analyses identify Conditional Average Treatment Effects
(CATE). For ROSLA and MR, this means that we estimate an
effect in those whose treatment (educational duration) would dif-
fer if the value of the instrumental variable differed. However,
note that under different assumptions, an MR effect can be iden-
tified as an Average Treatment Effect (ATE). An MR effect can be
identified as ATE when we assume the exposure (i.e. education)
has the same causal effect on the outcomes for the whole popula-
tion, or when the instrument (i.e. genetic variants associated with
education) has a consistent effect on the exposure, and that this
effect is the same for the whole population. In addition, ATE
can be identified under the no simultaneous heterogeneity
assumption (NoSH), which assumes that the heterogeneity in
the instrument–exposure effect and the exposure–outcome effect
should be uncorrelated (Hartwig, Wang, Davey Smith, & Davies,
2023). For CATE, the causal interpretation we obtain only applies
to our sub-population of sibling pairs, excluding singletons. In
addition, if the exposure of one sibling affects the exposure of
the other, the estimator describes what happens if the treatment
affects both siblings (Petersen & Lange, 2020).
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We used a natural experiment, sibling-control analysis,
Mendelian randomization, and within-sibship Mendelian ran-
domization to a large UK sample to disentangle potential causal
effects of education duration on several mental and physical
health outcomes. A comparison of results across these four meth-
ods illustrates that (1) associations between education and these
several outcomes are largely confounded, and (2) triangulation
of evidence across different methods is necessary to examine
the results in light of their respective limitations.
Notwithstanding the relatively limited generalizability of our find-
ings across different cultures, time frames, and educational sys-
tems, this work provides valuable insight into the complexities
of establishing the causal effects of EA on important life
outcomes.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003329172300329X.
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