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A Remark on the Moser-Aubin Inequality
for Axially Symmetric Functions
on the Sphere
Alexander R. Pruss

Abstract. Let Sr be the collection of all axially symmetric functions f in the Sobolev space H1(S2) such that∫
S2 xie2 f (x) dω(x) vanishes for i = 1, 2, 3. We prove that

inf
f∈Sr

1

2

∫
S2
|∇ f |2 dω + 2

∫
S2

f dω − log

∫
S2

e2 f dω > −∞,

and that this infimum is attained. This complements recent work of Feldman, Froese, Ghoussoub and Gui on
a conjecture of Chang and Yang concerning the Moser-Aubin inequality.

Consider the Sobolev space H1(S2) of real functions f on the sphere S2 with∫
S2 |∇ f |2 dω < ∞, where ω is Lebesgue measure on S2 normalized so that ω(S2) = 1.

Let

Jα( f ) = α

∫
S2

|∇ f |2 dω + 2

∫
S2

f dω − log

∫
S2

e2 f dω.

Moser [11] has proved that J1 is bounded below, i.e.,

inf
f∈H1(S2)

J1( f ) > −∞.(1)

It is easy to see that this inequality of Moser trivially implies that

Jα( f ) > −∞ for all f ∈ H1(S2) and α ∈ R,(2)

(because one must have
∫

S2 e2 f dω finite for all f ∈ H1(S2), since were it infinite for some
such f , we would have J1( f ) = −∞, contrary to (1)), but of course it says much more.
In fact, Moser’s inequality (1) is sharp in the sense that Jα is not bounded below if α < 1.
Onofri [12] has shown that the infimum in (1) is actually zero so that J1( f ) ≥ 0 for all
f ∈ H1(S2).

Aubin [1], on the other hand, was interested in a different kind of improvement over
Moser’s inequality. Let S be the set of functions f in H1(S2) for which the centre of mass
of e2 f is at the origin, i.e., which satisfy∫

S2

e2 f (x)x dω(x) = 0.(3)
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This condition says that e2 f is orthogonal to the eigenspace corresponding to the first non-
zero eigenvalue of the Laplacian. Assuming such an orthogonality constraint on the set of
functions in Moser’s inequality should let us improve the inequality, and indeed Aubin has
shown that

inf
f∈S

Jα( f ) > −∞, for all α ∈
(1

2
, 1
]
,(4)

i.e., that the critical exponent 1 for Moser’s inequality (1) changes to 1
2 if we restrict our

attention to functions from S. Let

Cα = inf
f∈S

Jα( f ).

Chang and Yang [6, 7] in their study of the question of prescribing Gaussian curvature have
shown that if α ≤ 1 is sufficiently close to 1, then Cα = 0. The interesting question now
is of what happens in the Aubin inequality (4) for α = 1

2 . It is not known whether C1/2 >
−∞, although it has been conjectured by Chang and Yang [6, 7] that in fact C1/2 = 0.

The investigation of Aubin’s inequality was motivated by the Nirenberg problem on the
sphere: If R is the scalar curvature of the sphere and F a function, then find a conformal
metric g ′ with with scalar curvature R ′ = R + F. It was shown by Kazdan and Warner
[9, 10] that no solution exists if F is in the eigenspace corresponding to the first non-zero
eigenvalue of the Laplacian, which condition for F = e2 f just boils down to (3). Aubin’s
examination [1, Theorem 8 and Corollary 3] of the Nirenberg problem transformed the
issue to an optimization problem and used (4) in the investigation of the latter. See [1] for
more information on these topics.

Now, we may write functions on the sphere in terms of the angular θ and φ coordinates
and put x1 = cos θ. We say that a function f on S is axially symmetric if it depends only on
x1. The original Moser inequality [11] was proved by means of spherical symmetrization
which replaces a general function f ∈ H1(S2) by a certain equimeasurable axially sym-
metric function f ∗ whose Dirichlet integral

∫
S2 |∇ f ∗|2 dω does not exceed the Dirichlet

integral of f . Perhaps motivated by this, Feldman, Froese, Ghoussoub and Gui [8] have
considered the Aubin inequality (4) for axially symmetric functions f . Let Sr be the set of
all axially symmetric functions f in S. By some quite original methods they have shown [8]
that

inf
f∈Sr

Jα( f ) = 0

for 16
25 − ε ≤ α ≤ 1, where ε is some unknown but strictly positive constant.

In this note we continue the investigation of the Aubin inequality for the axially sym-
metric functions from S. We show that

inf
f∈Sr

J1/2( f ) > −∞

and that this infimum is attained at some f ∈ Sr . It is however still not known whether the
infimum is equal to 0, nor is it known if our result remains true if Sr is replaced by S. Our
work provides further evidence for the conjecture that C1/2 > −∞. One can also hope that
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the knowledge that J1/2 attains its infimum on Sr might allow one to prove various proper-
ties of the functions at which the infimum is attained (see [8] for a variational equation for
such functions) and perhaps to prove that such functions must be constant.

We also recall here an inequality of Osgood, Phillips and Sarnak [13, Corollary 2.2]
which will be useful to us:

J1/2( f ) ≥ 0 for all antipodally symmetric f ∈ H1(S2),(5)

where we say that f is antipodally symmetric if f (x) = f (−x) for all x ∈ S2.
The reader interested in other work related to the Moser inequality may want to see, e.g.,

[2, 3, 4, 5].
Recall that axially symmetric functions f depend only on x1. Write g(x) = f (x, 0, 0) for

x ∈ (−1, 1) and f ∈ Sr . Then, following [8], note that

Jα( f ) =
α

2

∫ 1

−1
(1− x2)|g ′(x)|2 dx +

∫ 1

−1
g(x) dx − log

1

2

∫ 1

−1
e2g(x) dx.

Let Gr be the set of functions g(x) of the form f (x, 0, 0) where f ∈ Sr. The set Gr is then

equal to the set of functions g in H1(−1, 1) with
∫ 1
−1 xe2g(x) dx = 0, where H1(−1, 1) is the

Sobolev space of real functions g on (−1, 1) with

‖g‖2 def
==

∫ 1

−1
(1− x2)

(
g ′(x)

)2
dx <∞

(see [8]). We shall write H1 = H1(−1, 1) for short.
Let

I(g) =
1

4

∫ 1

−1
(1− x2)

(
g ′(x)

)2
dx +

∫ 1

−1
g(x) dx − log

1

2

∫ 1

−1
e2g(x) dx,

for g ∈ H1. Then, J1/2( f ) = I(g) if g is defined by g(x) = f (x, 0, 0). The purpose of this
note is to prove the following result.

Theorem 1 There exists g0 ∈ Gr such that

inf
g∈Gr

I(g) = I(g0) > −∞.

Remark 1 In fact, we shall show a little more. What we shall show is that every minimiz-
ing sequence hn ∈ Gr for I has a subsequence hnk converging weakly in H1 to a function h0

such that I(hnk )→ I(h0) perhaps unless the minimum of I over Gr is zero.

Remark 2 The correspondence between Gr and Sr shows that our Theorem is equivalent
to the assertion that inf f∈Sr J1/2( f ) = J1/2( f0) > −∞.
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To prove our Theorem, first let Gs be the set of even functions in H1(−1, 1). Let Γ+ be
the functional on H1(−1, 1) given by

Γ+(g) =
1

4

∫ 1

0
(1− x2)

(
g ′(x)

)2
dx +

∫ 1

0
g(x) dx.

Given any function g ∈ H1(−1, 1), write ĝ(x) = g(−x). Let Γ−(g) = Γ+(ĝ). Let

Λ+(g) =

∫ 1

0
e2g(x) dx.

Put Λ−(g) = Λ+(ĝ) and define

Ĩ(g) =
1

4

∫ 1

−1
(1− x2)

(
g ′(x)

)2
dx +

∫ 1

−1
g(x) dx − log min

(
Λ+(g),Λ−(g)

)
.

Note that
Ĩ(g) = Γ+(g) + Γ−(g)− log min

(
Λ+(g),Λ−(g)

)
.

Put Γ(g) = Γ+(g) + Γ−(g) and Λ(g) = Λ+(g) + Λ−(g).

Lemma 1 We have infg∈H1 Ĩ(g) ≥ infg∈Gs I(g).

Recall that infg∈Gs I(g) ≥ 0 by (5) (since if we define f (x1, x2, x3) = g(x1) and if g ∈ Gs,
then f is an antipodally symmetric function in H1(S), with J1/2( f ) = I(g)). Since Ĩ(0) = 0,
the following result immediately follows from this observation and Lemma 1.

Corollary 1 We have infg∈H2 Ĩ(g) = 0.

We shall also need another lemma.

Lemma 2 Suppose gn is a sequence of functions in Gr such that ‖gn‖ → ∞. Then
lim infn Ĩ(gn) ≥ 0.

Proof of Lemma 1 Fix g ∈ H1. Replacing g by ĝ if necessary, assume Λ+(g) ≥ Λ−(g).
Then,

Ĩ(g) = Γ+(g) + Γ−(g)− logΛ−(g).

Suppose first that Γ+(g) ≥ Γ−(g). Then define h(x) = g(x) for x ∈ (−1, 0] and put
h(x) = g(−x) for x ∈ [0, 1). Clearly h ∈ Gs. Moreover,

Γ+(h) = Γ−(h) = Γ−(g)

and
Λ+(h) = Λ−(h) = Λ−(g).

Thus
I(h) = 2Γ−(g)− logΛ−(g) ≤ Ĩ(g),
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since Γ+(g) ≥ Γ−(g).
Suppose now that Γ+(g) ≤ Γ−(g). Define h(x) = g(x) for x ∈ [0, 1) and put h(x) =

g(−x) for x ∈ (−1, 0]. Again, clearly h ∈ Gs, and

I(h) = 2Γ+(g)− logΛ+(g).

But− logΛ+(g) ≤ − logΛ−(g) and Γ+(g) ≤ Γ−(g), so that once again

I(h) ≤ Ĩ(g).

Hence for any g ∈ H1 we may construct an h ∈ Gs with I(h) ≤ Ĩ(g), and the desired
result follows.

Proof of Lemma 2 Let gn ∈ Gr be a sequence with the specified properties. Without loss
of generality assume that gn(0) = 0 for all n. Passing to a subsequence we may assume that
I(gn) converges to some limit in [−∞,∞). (The case of it tending to +∞ is trivial.) Fix
0 < ε < 1

2 . Moreover, fix δ > 0, the choice of which will later be more clearly explained and

will depend on ε. Put M(g) =
∫ 1−ε
−(1−ε) e2g(x) dx. Fix n. Suppose first that M(gn) ≥ δΛ(gn).

Then,

I(gn) = Γ(gn)− log
1

2
Λ(gn) ≥ Γ(gn)− log[(2δ)−1M(gn)].

By [8, inequality (2.3)], we have

|g(x)| ≤ ‖g‖ arctanh
1
2 (|x|),

for any g ∈ H1. It follows that

log[(2δ−1)M(gn)] ≤ log[(2δ)−1 · 2e2c1‖gn‖] ≤ − log δ + 2c1‖gn‖,

where c1 = arctanh
1
2 (1− ε). Moreover, it also follows that

∫ 1

−1
gn(x) dx ≥ −

∫ 1

−1
|gn(x)| dx ≥ −c2‖g‖,

where c2 =
∫ 1
−1 arctanh

1
2 (|x|). Hence,

I(gn) ≥
1

4
‖gn‖

2 − c2‖g‖ − 2c1‖g‖ + log δ.

But the right hand side of this expression tends to infinity as n→∞ providing ‖gn‖ → ∞,
and we have assumed the left hand side does not. Hence, the expression M(gn) ≥ δΛ(gn)
can only hold for finitely many n.

Thus, for n sufficiently large (with size depending on δ) we have M(gn) < δΛ(gn). We

shall now always assume we are given such an n. Let N+(g) =
∫ 1

1−ε e2g(x) dx and N−(g) =
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N+(ĝ). I claim that N+(gn) ≥ (1− 2ε)N−(gn) providing we have taken δ sufficiently small.
For suppose that N+(gn) < (1− 2ε)N−(gn) for some 0 < δ < 1. Then,

0 =

∫ 1

−1
xe2gn(x) dx

≤ (ε− 1)N−(gn) + M(gn) + N+(gn)

< (ε− 1)N−(gn) + M(gn) + (1− 2ε)N−(gn)

= −εN−(gn) + M(gn).

(6)

But we have an n such that

δ−1M(gn) < Λ(gn)
= N−(gn) + N+(gn) + M(gn)
< (2− 2ε)N−(gn) + M(gn),

so that M(gn) < δ(2−2ε)
1−δ N−(gn). Hence, (6) implies that

0 <

[
−ε +

δ(2− 2ε)

1− δ

]
N−(gn).

This leads to a contradiction if δ > 0 is sufficiently small, and hence we see that indeed
if δ > 0 is chosen sufficiently small, then N+(gn) ≥ (1 − 2ε)N−(gn) (for n sufficiently
large that M(gn) < δΛ(gn)). Applying the same argument to ĝn we see that N−(gn) ≥
(1− 2ε)N+(gn), for the same small δ. Thus,

N+(gn) + N−(gn) ≤ 2(1− 2ε)−1 min
(
N+(gn),N−(gn)

)
.

But N+(gn) + N−(gn) = Λ(gn) − M(gn) > (1 − δ)Λ(gn) ≥ (1 − 2ε)Λ(gn) providing we
choose δ smaller than 2ε, and Λ±(gn) ≥ N±(gn), so that

Λ(gn) ≤ 2(1− 2ε)−1(1− 2ε)−1 min
(
Λ−(gn),Λ+(gn)

)
.

Let A = (1− 2ε)−2. Then,

I(gn) = Γ(gn)− log
1

2
Λ(gn)

≥ Γ(gn)− log
[
A min

(
Λ−(gn),Λ+(gn)

)]
= Ĩ(gn)− log A.

But Ĩ(gn) ≥ 0 by Corollary 1. Hence, I(gn) ≥ − log A = 2 log(1 − 2ε). This holds for
all sufficiently large n, the size of n depending on δ which in turn depends on ε. Since
ε ∈ (0, 1

2 ) was arbitrary, it follows that lim inf I(gn) ≥ 0 as desired.

Proof of Theorem Let gn ∈ Gr be a minimizing sequence for I, i.e., suppose that
lim I(gn) = infg∈Gr I(g). Passing to a subsequence, assume ‖gn‖ converges to some number
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in [0,∞]. If ‖gn‖ → ∞ then lim inf I(gn) ≥ 0 by Lemma 2, and so infg∈Gr I(g) ≥ 0. But
I(0) = 0, so that by letting g0 = 0 we are done. Suppose now that ‖gn‖ is a bounded
sequence. Then, passing to a subsequence if necessary, we may assume gn converges weakly
to some g0.

Weak convergence in H1(−1, 1) clearly entails almost everywhere convergence on
(−1, 1). Moser’s inequality (1) applied to 2gn and the fact that ‖gn‖ is a bounded sequence
then imply that

sup
n

∫ 1

−1
e4gn(x) dx <∞

(cf. [8, Proof of Theorem 1.1]). Hence the e2gn are uniformly bounded in L2(−1, 1), and
thus are uniformly integrable, so that

Λ(gn)→ Λ(g0),

and, a fortiori, ∫ 1

−1
gn(x) dx→

∫ 1

−1
g0(x) dx.

The functions x 7→ xe2gn(x) are also of course uniformly bounded in L2(−1, 1) and thus
uniformly integrable, so that

∫ 1

−1
xe2gn(x) dx→

∫ 1

−1
xe2g0(x) dx,

which implies that g0 ∈ Gr since each gn lies in Gr . Weak convergence, on the other hand,
implies that lim inf ‖gn‖ ≥ ‖g0‖. We thus see that I(g0) ≤ lim inf I(gn) = infg∈Gr I(g), and
since g0 ∈ Gr it follows that the inequality must be an equality. And of course by (2) we
must have I(g0) > −∞.
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