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Colored isomorphism of classifiable
C∗-algebras
George A. Elliott and Jeffrey Im
Abstract. It is shown that the colored isomorphism class of a unital, simple, Z-stable, separable
amenable C∗-algebra satisfying the universal coefficient theorem is determined by its tracial simplex.

1 Introduction

Approximate intertwinings have played a significant role in the classification theory
of C∗-algebras (e.g., [7, 20, 24, 25, 27, 28, 30, 32, 34–37, 40, 42, 43, 50, 51]). A related
notion called n-colored isomorphism, which specializes to an approximate intertwin-
ing in the case of a single color, was considered by Castillejos in [10]. There it is shown
that any two (unital) classifiable C∗-algebras (i.e., those satisfying the hypotheses of
Theorem 4.5) with at most one trace are two-colored isomorphic, and it is posed as
a question whether any two such C∗-algebras with isomorphic tracial simplices are
n-colored isomorphic. We show that this question has an affirmative answer using a
somewhat modified notion, which we shall simply refer to as colored isomorphism.

Theorem 4.5 Any two unital, simple,Z-stable, separable amenable C∗-algebras satisfy-
ing the universal coefficient theorem (UCT) with isomorphic tracial simplices are colored
isomorphic.

Let us begin by giving context for the notion from [10] and comparing the
approaches taken there and here. In fact, much of the original strategy is retained in
this paper, so let us outline the proof of the main result, the finite case considered in
Theorem 4.5, and mention the differences with [10] along the way. Throughout, let ω
be a fixed free ultrafilter on the natural numbers. Two unital C∗-algebras A and B were
said in [10] to be n-colored isomorphic if there exist c.p.c. order zero maps φ ∶A → B
and ψ ∶B → A, and unitaries u1 , . . . , un ∈ Aω and v1 , . . . , vn ∈ Bω , such that

n
∑
k=1

ukψφ(a)u∗k = a and
n
∑
k=1

vk φψ(b)v∗k = b

for all a ∈ A and all b ∈ B. The present notion, colored isomorphism, on the other hand,
has order zero maps at the level of ultrapowers Aω and Bω (and so includes the case
that the ultrapower maps are induced by a sequence of order zero maps at the level of
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the algebras A and B); and the u i (resp. v i ) are contractions (not just unitaries) such
that the absolute values squared add up to the identity of Aω (resp. Bω) (rather than a
multiple of this). (We also assume that traces on the ultrapower determined by a single
trace on the algebra are preserved.)

While the earlier notion, n-colored isomorphism, preserves the tracial cone, up
to isomorphism, the present notion preserves the tracial simplex, up to isomorphism
(Theorem 4.1). We note that isomorphism of tracial cones coincides with (a multiple
of) tracial simplex isomorphism in the cases considered in [10] (at most one trace).
Our definition is formulated in terms of colored equivalence for order zero maps,
which has its origins in the Z-stable implies finite nuclear dimension direction of the
Toms–Winter conjecture, having first appeared in [45] and later more definitively in
[6, 59]. (That of [10] is not explicitly based on colored equivalence of maps.)

Now let A and B be finite classifiable C∗-algebras with isomorphic tracial simplices.
In order to show that A and B are colored isomorphic, we must construct order zero
maps φ ∶Aω → Bω and ψ ∶Bω → Aω such that ψφιA is colored equivalent to ιA, where
ιA is the canonical embedding of A into Aω , and likewise for φψιB and ιB . By the
finite order zero uniqueness theorem of [6], which was later extended to remove
restrictions on the tracial simplices in [11], it is sufficient to show that (in the notation
of Corollary 2.3) τ(ψφ)n = τ for all n ∈ N and all τ ∈ T(Aω), and that τ(φψ)n = τ for
all n ∈ N and all τ ∈ T(Bω). Since (ψφ)n = ψn φn and (φψ)n = φnψn , by Corollary 2.4,
these tracial identities imply that φn and ψn also (for each n) induce mutually inverse
isomorphisms of T(Aω) and T(Bω). In fact, the order zero maps we construct will
induce the same mutually inverse isomorphisms of tracial simplices for each n.

Roughly speaking, φ is constructed with a sequence of maps at the level of the
algebras A and B which factor through a fixed AF algebra D via a fixed embedding αA.
Furthermore, αA is chosen so that it induces an isomorphism of the tracial simplices
T(D) and T(A). This is obtained from the recently established homomorphism the-
orem of [37]. Such embeddings are now also known to exist outside the classification
setting (i.e., without the assumption of Z-stability), building on ideas from [60, 61].
Lastly, the maps φk into B from the AF algebra D are chosen to have prescribed
tracial data. More specifically, given a faithful trace μk on C0(0, 1] and an affine map
Φ ∶T(B) → T(D), φk is an order zero map satisfying the identity

τφn
k = μk(tn)Φ(τ)(*)

for each k, n ∈ N and each τ ∈ T(B), where t denotes the identity map on (0, 1]. (But,
for obvious reasons, with μk(tn) → 1 for each n.) This is the content of Theorem 4.3.

Let us show how the desired order zero maps φ and ψ can be constructed from here.
Let Φ be an isomorphism of the tracial simplices T(B) and T(D), which exists since
T(A) is assumed to be isomorphic to T(B), by hypothesis, and D was chosen so that
T(D) is isomorphic to T(A); and let μk be a sequence of faithful traces on C0(0, 1]
such that limk→ω μk(tn) = 1 for each n ∈ N. (It is enough that limk→∞ μk(t) = 1.) Then
with φk ∶ D → B satisfying (∗), and with φ ∶ Aω → Bω the order zero map induced by
the sequence (φk αA), we have

τφn = τ((φk αA)n) = τ(φn
k αA)
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218 G. A. Elliott and J. Im

for each n ∈ N and for each trace τ ∈ T(Bω)with Corollary 2.4 having been used at the
last equality. In order to make use of the fact that μk levels out moments, we will need a
reduction which was observed in [47]. The limit traces in T(Bω) (i.e., those which are
induced by a sequence of traces in T(B)) are weak∗ dense in T(Bω) (Theorem 2.7).
Therefore, it suffices to check that the desired tracial identities (see the next paragraph)
hold for such traces. Let a trace τ of the form limk→ω τk in T(Bω) be given. Then

τ(φn
k αA) = lim

k→ω
τk φn

k αA = lim
k→ω

α∗Aτk φn
k = α∗A lim

k→ω
τk φn

k

(∗)= α∗A lim
k→ω

μk(tn)Φ(τk) = α∗A lim
k→ω

Φ(τk) = lim
k→ω

α∗AΦ(τk)

for each k, n ∈ N. The second to last equality uses the fact that limk→ω μk(tn) = 1 and
continuity of α∗A is used for the third equality and the last two.

The remaining map ψ is constructed in a similar way. Let αB ∶B → E be an AF
embedding which induces a tracial simplex isomorphism T(E) → T(B), and let
ψk ∶ E → A be order zero maps satisfying the identity

τψn
k = μk(tn)Ψ(τ)

for each k, n ∈ N and each τ ∈ T(A), where Ψ is the tracial simplex isomorphism
(α∗AΦα∗B)−1. Let ψ ∶Bω → Aω denote the order zero map induced by the sequence
(ψk αB). Then for each limit trace τ = limk→ω τk in T(Aω),

τψn = lim
k→ω

α∗BΨ(τk)

for each n ∈ N. Therefore (see the proof of Theorem 4.5 for more details),

τ(ψφ)n = (φn)∗( lim
k→ω

α∗BΨ(τk)) = lim
k→ω

α∗AΦα∗BΨ(τk) = τ

for each n ∈ N and each limit trace τ ∈ T(Aω). By Theorem 2.7, the above identity
holds for all τ ∈ T(Aω). A symmetric argument shows that τ(φψ)n = τ for each n ∈ N
and each τ ∈ T(Bω). Therefore, φ and ψ determine a colored isomorphism of A and B.
(To simplify the discussion, we omit the question of preserving constant limit traces
and defer to the proof of Theorem 4.5.)

Since the n-colored isomorphism of [10] requires unitaries rather than con-
tractions, a different uniqueness theorem is developed for order zero maps in the
unique trace case (see [10, Lemma 5.6.2]). It provides a stronger statement than [6,
Theorem 5.5] (in the unique trace case) since it is applicable to pairs of order zero
maps (rather than one ∗-homomorphism and one order zero map) and because
it provides unitary equivalence of the order zero maps involved rather than after
tensoring the order zero maps with a positive element h ∈ Z with full spectrum. Let
h be such an element with the additional stipulation that τZ(hn) = τZ((1Z − h)n) =
1/(n + 1) for each n ∈ N where τZ denotes the unique trace of Z. Because the scaling
factors introduced by the unitaries differ from those introduced by contractions
under traces, the compositions of the order zero maps φ ∶ A → B and ψ ∶B → A
implementing the n-colored equivalence are compared with the contractive order zero
maps ρA,h ∶= σ1(idA ⊗ h) and ρA,h ∶= σ2(idB ⊗ h) under traces where σ1 ∶A⊗Z →
A and σ2 ∶B ⊗Z → B are isomorphisms whose inverses are approximately unitarily
equivalent to the first factor embeddings. The moment problem in this setting is
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more complicated than the one in ours because the order zero maps involved in the
uniqueness theorem are induced by constant sequences of maps, and therefore the
moments need to match up on the dot rather than only approximately. Moreover,
the target moments of ψφ and φψ actually depend on n ∈ N, as

τAρn
1 = τA(⋅)

n + 1
and τB ρn

2 = τB(⋅)
n + 1

,

where τA and τB denote the unique trace of A and B (see [10, Theorem 5.6.8]).
The main step in constructing φ and ψ (in [10]) is the construction of maps out

of unital, simple, separable AF algebras with unique trace into Z realizing specific
moments. Let us outline the construction of φ using this result. By [60, Theorem A],
A embeds into a simple, separable, unital AF algebra D with unique trace via a map αA
which induces an isomorphism of tracial simplices. Then an order zero map ϕ ∶ D → Z

is constructed, using a measure μ on the unit interval with the very specific moments
μ(tn) = 1/

√
n + 1, where t denotes the identity map on (0, 1], such that

τZϕn = τD√
n + 1

for each n ∈ N (see [10, Lemma 5.6.5]). The order zero map φ is then given by the
composition

A D Z B ⊗Z B.αA ϕ 1B ⊗ idZ σ2

Apart from ϕ, each of the above maps is a trace-preserving ∗-homomorphism, and so
by Corollary 2.4, the moments of φ are

τBφn = τσ2(1B ⊗ 1Z)ϕn αA = τB√
n + 1

for each n ∈ N. The second order zero map ψ is constructed in a similar way so that

τA(ψφ)n = τA

n + 1
and τB(φψ)n = τB

n + 1
for each n ∈ N. The appropriate uniqueness theorem (see [10, Lemma 5.6.2]) is then
applied twice with ψφ: once with ρA,h , and once more with ρA,1−h , and similarly for
φψ, in order to obtain a two-colored isomorphism of A and B.

All that remains to be outlined in the construction of order zero maps, either in
our setting or in that of [10], is how to ensure the prescribed tracial data. Let us begin
with the approach taken in [10]. Let D be a simple, separable, unital AF algebra with
unique trace τ and let ν be a fully supported Borel measure on [0, 1]. Recall (e.g., from
[33]) that τ induces a functional dτ ∶ Cu(D) → [0,∞]. It is stated in [10, Proposition
1.10.12] that the map σ ∶ Lsc([0, 1], Cu(D)) → Cu(Z) determined by the rule

f ↦ ∫
1

0
dτ( f (t)) dν(t)

for each f ∈ Lsc([0, 1], Cu(D)) is a Cuntz category morphism. Since Z has unique
trace, σ maps into Cu(Z) (which is naturally isomorphic to V(D) ⊔ (0,∞], by
[33, Corollary 6.8]). By [4, Theorem 2.6], the natural map Cu(C([0, 1], D)) →
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Lsc([0, 1], Cu(D)) is a Cuntz category isomorphism. Combining this isomorphism
with σ , one has a Cuntz category morphism from Cu(C([0, 1], D)) → Cu(Z). This
induces a Cuntz category morphism between C0(0, 1] ⊗ D and Z of the augmented
invariant of [54] and by [54, Theorem 1.0.1], there exists a ∗-homomorphism
π ∶C0(0, 1] ⊗ D → Z which then induces an order zero map ρ ∶ D → Z, by [68,
Corollary 4.1]. It is then checked that ρ satisfies the desired tracial identity in [10,
Lemma 5.6.5].

In order to move beyond the unique trace case in Theorem 4.5, the order zero maps
implementing a colored equivalence cannot be made with a sequence of maps that
factor through Z, as that would collapse the trace space to a single point (such maps
necessarily preserve the trace space up to isomorphism, by Theorem 4.1). Hence, a
replacement for [10, Lemma 5.6.5] is needed. Our formulation of the order zero map
realizing prescribed tracial data maps directly into a unital, simple, separable, exact,
Z-stable C∗-algebra B with stable rank one whose tracial simplex is isomorphic to that
of an AF algebra D (no longer assumed to have unique trace) instead of Z. This order
zero map is constructed by showing that the map σ ∶ Cu(C0(0, 1] ⊗ D) → LAff+(TB)
determined by the rule

[d] ↦ (μ ⊗ Φ(⋅))[d]

for each [d] ∈ Cu(C0(0, 1] ⊗ D) is a Cuntz category morphism, where μ is a faithful
densely defined lower semicontinuous trace on C0(0, 1]. Since LAff+(TB) is a subob-
ject of Cu(B) (Lemma 2.12), σ extends to a Cuntz category morphism into Cu(B).

In fact, we could not figure out how to use the characterization of compact
containment given in [4] to work directly at the level of the cone over the AF algebra
and so it is established that σ is a Cuntz category morphism by showing that it is
the inductive limit of Cuntz category morphisms σi at the finite stages of the AF
algebra inductive limit decomposition. That σi is a generalized Cuntz morphism
follows from [33]. To show that compact containment is preserved by σi , we show
(in the proof of Theorem 4.3) that σi is a weighted direct sum of copies of the
functional dμ ∶ Cu(C0(0, 1]) → [0,∞]. This reduces the problem of showing that σi
preserves compact containment to showing that the functional dμ preserves compact
containment. This is done in Section 3, where we give a topological characterization of
when functionals arising from a faithful densely defined lower semicontinuous trace
preserve compact containment. In particular, an essential property of the half open
interval is that it does not contain nonempty compact open sets. (At the end of the
section, we give a sufficient condition for when nonfaithful densely defined lower
semicontinuous traces induce functionals which preserve compact containment.) In
Theorem 4.3, it is shown that the morphisms σi give rise to a one-sided intertwin-
ing at the level of the Cuntz category. By the classification theorem (of [14]) for
∗-homomorphisms out of cones, this then gives rise to an approximate one-sided
intertwining at the level of C∗-algebras. The inductive limit ∗-homomorphism
π ∶ C0(0, 1] ⊗ D → B then induces the desired order zero map.

The outline of the paper is as follows: In Section 2, we introduce basic notions and
terminology along with important results that are essential for the main results. We
also include statements which are likely known to experts, but possibly not spelled
out in literature. In Section 3, we give a characterization for when a trace τ on a
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C∗-algebra A induces a functional dτ on Cu(A) which preserves compact contain-
ment. In Section 4, we prove the main results and discuss some consequences and
questions.

2 Preliminaries

2.1 Order zero maps

Let A and B be C∗-algebras, and let φ ∶A → B be a completely positive (c.p.) map (c.p.c.
if the map is contractive). The map φ is said to have order zero if it preserves orthogo-
nality (see [68, Definition 1.3]). Examples of such maps include ∗-homomorphisms
and more generally, the product of a ∗-homomorphism π ∶A → B with a positive
element h ∈ B which commutes with the image of π. The following structure theorem
shows that all order zero maps admit such a decomposition. The ∗-homomorphism
πφ which appears below is called the support ∗-homomorphism of φ.
Theorem 2.1 [68, Theorem 2.3] Let A and B be C∗-algebras, and let φ ∶A → B be a
c.p. order zero map. Define C ∶= C∗(φ(A)) ⊆ B (and denote the multiplier algebra of C
by M(C)). Then there exist a unique positive element hφ in the center of M(C) and a
∗-homomorphism πφ ∶A →M(C) such that

φ(a) = hφπφ(a)(2.1)

for all a ∈ A. Necessarily, ∥hφ∥ = ∥φ∥, and if A is unital, then hφ = φ(1A) ∈ B.
Corollary 2.2 [6, Proposition 1.4] Let φ ∶A → B be a c.p.c. order zero map between
C∗-algebras where A is unital. Then φ is a ∗-homomorphism if, and only if, φ(1A) is a
projection.
Proof This follows immediately from Theorem 2.1. ∎

The next corollary is known as the order zero functional calculus. To avoid
ambiguity with the notation introduced below, we will never use φn to mean iterated
composition.
Corollary 2.3 [68, Corollary 3.2] Let φ ∶ A → B be a c.p.c. order zero map, and let the
notation be as in Theorem 2.1. Then, for any positive function f in C0((0, 1]), the map

f (φ) ∶A → B

defined by

f (φ)(⋅) ∶= f (hφ)πφ(⋅)(2.2)

is a well-defined c.p. order zero map taking values in C. If f has norm at most one, then
the map f (φ) is contractive.

Let φ ∶A → B and ψ ∶B → C be c.p.c. order zero maps between unital C∗-algebras,
and let the notation be as in Theorem 2.1. The following statement concerning the
composition ψφ is established in [10] by proving that the support ∗-homomorphism
of a composition is essentially the composition of the the individual support
∗-homomorphisms (more precisely, it is shown that hψφπψφ = hψφπψπφ [10, Corol-
lary 1.4.14]. We give a slightly more direct proof.

https://doi.org/10.4153/S0008414X22000669 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000669


222 G. A. Elliott and J. Im

Corollary 2.4 [10, Section 5.6] Suppose φ ∶A → B and ψ ∶B → C are c.p.c. order zero
maps between C∗-algebras. Then

(ψφ)n = ψn φn(2.3)

for each n ∈ N (excluding n = 0). If φ is a ∗-homomorphism, then φn = φ.

Proof By [68, Proposition 2.2], we may suppose, without loss of generality, that A is
unital. Let the notation be as in Theorem 2.1 for φ, ψ and ψφ. Then we have

hψφ = ψφ(1A) = ψ(hφ)
(2.1)= hψπψ(hφ),(2.4)

using that A is unital for the first two equalities. Now, for fixed n ∈ N, we have

(ψφ)n+1 (2.2)= hn+1
ψφ πψφ = hn

ψφ hψφπψφ
(2.4)= hn

ψπψ(hn
φ)hψφπψφ

(2.1)= hn
ψπψ(hn

φ)ψφ (2.1)= (hn+1
ψ πψ(hn

φ)πψ)(hφπφ)

= (hn+1
ψ πψ)(hn+1

φ πφ)
(2.2)= ψn+1φn+1 .

If φ is a ∗-homomorphism, then hφ = φ(1A) is a projection and so φn = φ. ∎
The following correspondence between c.p.c. order zero maps and ∗-

homomorphisms out of cones is from [68], but the formulation presented here
is that of [6, Proposition 1.3]. Both Corollary 2.5 and Lemma 2.6 will be used in the
proof of Theorem 4.5.

Corollary 2.5 [68, Corollary 3.1] Let A and B be C∗-algebras. There is a one-to-
one correspondence between c.p.c. order zero maps φ ∶A → B and ∗-homomorphisms
π ∶ C0(0, 1] ⊗ A → B where φ and π are related by the commuting diagram

A C0(0, 1] ⊗ A

B

a ↦ t ⊗ a

φ π(2.5)

and t ∈ C0(0, 1] denotes the identity function.

Lemma 2.6 The order zero functional calculus can be recovered from the identity

f (φ)(a) = π( f ⊗ a),(2.6)

where f is a positive function in C0(0, 1], a ∈ A, and φ and π are as in the corollary above.

Proof We may again, by [68, Proposition 2.2], suppose without loss of generality that
A is unital. Let the notation be as in Theorem 2.1, and let f ∈ C0(0, 1]+ be given. By
Theorem 2.1 and Corollary 2.5, hφ = φ(1A) = π(t ⊗ 1A). So for fixed n ∈ N and a ∈ A,

φn+1(a) (2.2)= hn+1
φ πφ(a) = hn

φ(hφπφ(a)) (2.1)= hn
φφ(a)

(2.5)= π(tn ⊗ 1A)π(t ⊗ a) = π(tn+1 ⊗ a).

It is readily seen from this calculation and approximating f by polynomials in C0(0, 1]
that f (φ)(a) = π( f ⊗ a). ∎
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2.2 Ultrapowers

Let A be a C∗-algebra. The bounded sequence algebra of A, denoted by l∞(A), is
defined to be the collection of all norm-bounded sequences of elements from A. The
ideal of elements in l∞(A)which go to zero along the ultrafilter ω is denoted by cω(A).
The ultrapower of A is the quotient C∗-algebra Aω ∶= l∞(A)/cω(A). We shall write
(an)∞n=1 for an element in Aω rather than the class it belongs to. We will occasionally
write a to refer to the image of a under the canonical embedding of A into Aω . A
sequence φn ∶A → B of c.p.c. order zero maps between C∗-algebras induces a c.p.c
order zero map φ ∶ Aω → Bω between ultrapowers. We denote the induced map by
φ ∶= (φn)∞n=1. If A is unital, then, with notation as in Theorem 2.1, we see that hφ =
(hφn)∞n=1 and so the order zero functional calculus for φ can be realized by applying
positive functions in C0(0, 1] componentwise to φn .

2.3 Traces and finiteness

Let A be a C∗-algebra. By a trace on A, we will mean a lower semicontinuous
function τ ∶ A+ → [0,∞] that is additive, preserves zero, is positively homogeneous,
and satisfies the trace identity τ(a∗a) = τ(aa∗) for all a ∈ A. We will denote by Nτ
the ideal of elements a ∈ A such that τ(a∗a) = 0. A trace τ is said to be faithful if
τ(a∗a) = 0 implies a = 0. We will use the notation T(A) (or simply TA) to denote the
collection of all tracial states on A—a Choquet simplex if A is unital. The limit traces
of Aω are the tracial states on Aω which are equal to limn→ω τn where (τn) is some
sequence of tracial states on A. We will denote the collection of limit traces on Aω by
Tω(Aω). We will occasionally not make a notational distinction between a trace in
T(A) and (what we will refer to as) the constant limit trace in T(Aω) induced by it.

By [68, Corollary 3.4], a c.p.c. order zero map φ ∶A → B induces a mapping of
bounded traces φ∗ ∶R+T(B) → R+T(A). We would be be interested in the case
that φ∗ is an isomorphism of tracial simplices, but this hope turns out not to be
realistic. Rather, considering a sequence of c.p.c. order zero maps φk ∶A → B, we
will be interested in the case that the c.p.c. order zero map φ ∶Aω → Bω induced
by (φk) preserves constant limit traces (i.e., takes constant limit traces on Bω to
constant limit traces on Aω), and furthermore, the map τ ↦ limk→ω τφk , τ ∈ T(B), is
an isomorphism of the simplices T(B) and T(A). (Note that requiring the sequence
(φk) to preserve constant limit traces is equivalent to requiring the sequence (τφk)
to be norm convergent for every τ ∈ T(B).) More generally, we shall be interested in
the condition that a constant limit trace preserving c.p.c. order zero map φ ∶Aω → Bω
(not necessarily arising from a sequence (φk) as above) induces an isomorphism
T(B) → T(A) of tracial simplices via the composed map ι∗Aφ∗cB where cB ∶T(B) →
T(Bω) denotes the embedding of T(B) as constant limit traces on T(Bω). (One might
also consider the tracial cones, instead, and ask when they are isomorphic.)

Calculations involving traces on Aω will often be reduced to the case of limit traces
by using the following fact about weak∗ density of limit traces. Generalizations of the
statement presented here can be found in [46, 47, 57].

Theorem 2.7 [47, Theorem 8] Let A be a separable, exact, and Z-stable C∗-algebra
(where Z denotes the Jiang–Su algebra [39]). Then Tω(A) is weak∗ dense in T(Aω).
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Let A be a C∗-algebra with nonempty tracial state space. We define the seminorm
∥ ⋅ ∥2,T(A) by

∥a∥2,T(A) ∶= sup
τ∈T(A)

(τ(a∗a))1/2 ,

for each a ∈ A. The trace-kernel ideal of Aω is the set

JA ∶= {(an) ∈ Aω ∶ lim
n→ω

∥an∥2,T(A) = 0},

and the quotient of Aω by JA is called the uniform tracial ultrapower of A, and it is
denoted by Aω . More details about these notions can be found in [11, Section 1] and
[41, Section 4].

Warning: In literature, Aω has sometimes been used for the ultrapower of A, while
Aω has sometimes been used for the central sequence algebra of A. We remind the
reader that Aω denotes the ultrapower of A and that Aω denotes the uniform tracial
ultrapower of A.

Lemma 2.8 Let A be a C∗-algebra, and let B be a C∗-algebra with T(B)nonempty such
that the limit traces of Bω are dense in T(Bω) (e.g., C∗-algebras as in Theorem 2.7), and
let φ, ψ ∶ A → Bω be c.p.c. order zero maps. Then τφ = τψ for all τ ∈ T(Bω) if, and only
if, φ agrees with ψ in the uniform tracial ultrapower Bω .

Proof Let π ∶Bω → Bω denote the canonical quotient map. It is enough to show that
an element of Bω is in the kernel of every trace in T(Bω) exactly when it belongs
to the trace-kernel ideal of Bω . Suppose (bn) ∈ ker τ for every τ ∈ T(Bω). For each
n ∈ N, there exists a trace τn ∈ T(B) such that τn(b∗nbn) is within 1/n of ∥bn∥2

2,T(B).
By assumption, (bn) is in the kernel of the limit trace limn→ω τn on T(Bω). Since the
kernel of a trace is a left ideal, it follows that

∥π(bn)∥2 = lim
n→ω

∥bn∥2
2,T(B) = lim

n→ω
sup

τ∈T(B)
τ(b∗nbn) = lim

n→ω
τn(b∗nbn) = 0.

Conversely, suppose b = (bn) is in the trace-kernel ideal of Bω . Since the limit traces
of Bω are weak∗ dense in T(Bω), it is enough to show that τ(b) = 0 for every limit
trace τ = limn→ω τn ∈ T(Bω). This follows from the computation

∣τ(b)∣ = lim
n→ω

∣τn(bn)∣ ≤ lim
n→ω

τn(∣bn ∣) ≤ lim
n→ω

∥bn∥2,T(B) = ∥π(b)∥ = 0.

The first and second inequalities follow from [12, Theorem 2.7] and [12, Corollary 2.8],
respectively. ∎

The following statement holds somewhat more generally (see [57, Corollary 5.1]),
but this is the setting which will be relevant for us in Theorem 4.5.

Theorem 2.9 [57, Corollary 5.1] Let A be a (nonzero) unital, simple, exact, Z-stable
C∗-algebra. Then A is either purely infinite or finite.

Remark 2.10 When A is unital, simple, and Z-stable, the proof of the preceding
theorem shows that the statement of [57, Theorem 6.7] can be slightly strengthened
to say that the following three statements are equivalent:
(1) A is finite.
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(2) A has stable rank one.
(3) A is stably finite.

2.4 The Cuntz category

If a and b are elements of an ordered set M, we will say that a is (countably) compactly
contained in b, and we write a ≪ b, if for any increasing sequence (bk)∞k=1 in M with
supk bk ≥ b (or such that every upper bound of the sequence majorizes b), eventually
bk ≥ a. An increasing sequence with each term compactly contained in the next is
called rapidly increasing. An element which is compactly contained in itself is called
compact (more precisely, countably compact).

Cuntz category semigroups are ordered abelian semigroups with an additive identity
with the following four properties:
(O1) Every increasing sequence in S has a supremum in S.
(O2) Any element of S is the supremum of a rapidly increasing sequence.
(O3) If a i and b i are elements of S such that a i ≪ b i for i = 1, 2, then a1 + a2 ≪

b1 + b2.
(O4) If (an) and (bn) are increasing sequences in S, then supn(an + bn) = supn an +

supn bn .
Cuntz category morphisms f ∶ S → T are ordered semigroup maps (i.e., preserving

order, addition, and the additive identity) which preserve suprema of increasing
sequences and compact containment. A generalized Cuntz category morphism is a
Cuntz category morphism which does not necessarily preserve compact containment.
The Cuntz category has as objects the ordered semigroups and ordered semigroup
maps with the properties stipulated above (see ([18, 33, 54]). It is easily checked, and
it will be used without mention that Cartesian products and direct sums exist in this
category.

It was shown in [18] that there is a functor Cu(⋅) from the category of C∗-
algebras to the Cuntz category. Recall that, for a C∗-algebra A, Cu(A) is the ordered
semigroup of Cuntz equivalence classes of positive elements in the stabilization of A
and is a Cuntz category semigroup. We shall denote by [a] the Cuntz equivalence
class of a positive element a of A⊗K. We shall denote by V(A) the semigroup of
Murray–von Neumann equivalence classes of projections in the stabilization of A.
For a compact convex subset K of a locally convex topological vector space, we shall
denote by LAff+(K) the collection of lower semicontinuous extended positive real-
valued affine functions on K which are strictly positive, except for the zero function
which we include in LAff+(K), and are the pointwise supremum of an increasing
sequence of continuous and finite-valued such functions. If K is metrizable, then the
latter condition is automatic. It was observed in Section 2 of [31] (and in Section 3
of [62]) that LAff+(K), equipped with pointwise order and addition, is a Cuntz
category semigroup. The addition and order structure defined on the disjoint union
decomposition appearing in the following important computation can be found in
Section 6 of [33]. Related work on the unstabilized Cuntz semigroup that was done
prior to the result stated here can be found in [9, 21, 49]. Recent developments
that go well beyond what is needed in this paper include [3, Theorem 7.15] and [62,
Theorem 8.11].
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Theorem 2.11 [33, Corollary 6.8] Let A be a unital, simple, separable, exact, Z-stable,
and finite C∗-algebra. Then, in a natural way,

Cu(A) ≅ V(A) ⊔ LAff+(TA)/{0}.

Lemma 2.12 We note that LAff+(TA) is a subobject of Cu(A) in the setting of
Theorem 2.11, according to the embedding there.

Proof Since the elements of V(A) are compact in Cu(A) (by Corollary 5 of [18];
this statement does not use stable rank one), it is clear that the embedding of
LAff+(TA) into Cu(A) is a generalized Cuntz category morphism. To show that
compact containment is preserved, let f ≪ g in LAff+(TA) and let (gn)∞n=1 be an
increasing sequence in Cu(A) such that supn gn majorizes g. Passing to a subsequence,
we may suppose that the sequence (gn)∞n=1 is composed entirely of projections or
entirely of affine functions. In the latter case, since the embedding of LAff+(TA) in
Cu(A) preserves increasing sequential suprema, we have supn gn ∈ LAff+(TA) and
so there is, by assumption, some gn which majorizes f. Let us now consider the former
case. Denote by ĝk the rank of gk—the element of LAff+(TA) gotten by evaluation of
traces in TA at the projection gk .

By the characterization of compact containment in LAff+(TA) in Section 2 of [31]
(or [62, Lemma 3.6]), there exists an h ∈ LAff+(TA) which is continuous and finite-
valued and an ε > 0 such that f ≤ h < (1 + ε)h ≤ g. Since 0 ∉ LAff+(TA), h is strictly
positive. It follows that there is, for each τ ∈ TA, a neighbourhood of τ on which f
is strictly majorized by some ĝk . By compactness of TA and the fact that (gn)∞n=1 is
increasing, f is majorized by some ĝn on all of TA. This shows f ≪ g in Cu(A).

To check that LAff+(TA) is a subobject, it remains to note that f ≪ g holds in
LAff+(TA) if it holds in Cu(A). This follows immediately from the fact that increasing
sequential suprema in LAff+(TA) are the same in Cu(A) (see above). ∎

Examples of Cuntz category semigroups not explicitly involving a C∗-algebra
include N ∶= {0, 1, 2, . . . ,∞} and [0,∞] with the usual order and addition taken from
R. In fact, these Cuntz objects both arise from C∗-algebras. Let Lsc(X , M) denote
the collection of lower semicontinuous functions from a space X to a Cuntz category
semigroup M, equipped with pointwise order and addition. Then Lsc(X , M) is a
Cuntz category semigroup whenever X is a second-countable compact Hausdorff
space with finite covering dimension and M is countably based (see [4, Theorem
5.17]). It was also shown in [66, Corollary 4.22] that Lsc(X ,N) is a Cuntz category
object when X is a compact metric space. It was proved in [14, Theorem 10.1] and [38,
Theorem 6.11] that Cu(C0(X)) ≅ Lsc(X ,N), via the rank map, if X is [0, 1] or (0, 1].
More generally, if X is a locally compact Hausdorff space with covering dimension
at most two and Ȟ2(K) = 0 (Cěch cohomology with integer coefficients) for every
compact subset K of X, then again (via the rank map) Cu(C0(X)) ≅ Lscσ(X ,N),
the ordered semigroup of lower semicontinuous extended positive integer-valued
functions f such that f −1(k,∞] is σ-compact for each k ∈ N (see [55, Theorem 1.1]).
If C0(X) is separable, these are the exact conditions needed on X for Cu(C0(X)) to
be isomorphic (via the rank map) to Lsc(X ,N) (see [55, Theorem 1.3]). Note that X is
a hereditarily Lindelöf locally compact Hausdorff space (as is the case when C0(X) is
separable) if, and only if, Lscσ(X ,N) = Lsc(X ,N). In general, Lscσ(X ,N) is a Cuntz
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category object, and in fact (Theorem 3 of [26]) a subobject of Cu(C0(X)) (this is
noted in [63, Corollary 4.8] in the case that X is metrizable and compact).

Proposition 2.13 Let X be a locally compact Hausdorff space. Then Lscσ(X ,N) is a
Cuntz category object.

Proof Let us first recall a characterization of compact containment for σ-compact
elements in the lattice of open subsets of X, ordered by inclusion. If there is a
compact subset K of X sitting in between open sets U and V, then U is compactly
contained in V. For the converse, suppose U is compactly contained in V and that
V is σ-compact. Since X is locally compact Hausdorff, V is locally compact and by
assumption, V is σ-compact so there exist an increasing sequence of open sets (Vk)∞k=1
and an increasing sequence of compact sets (Kk)∞k=1 such that Vk ⊆ Kk ⊆ Vk+1 for each
k and supk Kk = V . Since U is compactly contained in V, there exists a k such that
U ⊆ Vk ⊆ Kk ⊆ V .

In the latter construction, we claim each Vk can be chosen to be σ-compact. Set
V1 ∶= ∅. By Urysohn’s lemma, there exists a continuous function fk+1 from X into [0, 1]
which is equal to 1 on Kk and is equal to 0 on X/Vk+1. The open support of fk+1, with
which we replace Vk+1, is an Fσ -set sitting in between Kk and Kk+1, and is therefore
σ-compact.

(O1) Let ( fn)∞n=1 be an increasing sequence in Lscσ(X ,N) and denote by
f ∶= supn fn . Then for each k ∈ N, { f > k} = ⋃∞n=1{ fn > k}. (Abbreviated notation.)
Since fn is lower semicontinuous, each { fn > k} is open and so f is lower semicontin-
uous. Since each { fn > k} is σ-compact, a diagonalization argument shows { f > k} is
σ-compact. This shows Lscσ(X ,N) is closed under suprema of increasing sequences.

(O4) is easily verified. It is also easy to see that if χU and χV are characteristic
functions in Lscσ(X ,N), then χU ≪ χV if, and only if, U ≪ V . We will now show that
if f , g ∈ Lscσ(X ,N), then f ≪ g if, and only if, f is bounded and { f > k} ≪ {g > k}
for each k. Suppose f is compactly contained in g. Each {g > k} is the supremum of
a rapidly increasing sequence of σ-compact open sets (Uk , i)∞i=0 and so there exist
compact sets Kk , i such that Uk , i ⊆ Kk , i ⊆ Uk+1, i for each i. Moreover, by taking finite
unions we may choose Uk , i and Kk , i so that Uk , i ⊇ Uk+1, i and Kk , i ⊇ Kk+1, i whenever
k ≤ i. This gives the following inclusions:

U0,0 K0,0 U0,1 K0,1 U0,2 K0,2

U1,1 K1,1 U1,2 K1,2 ⋅⋅⋅

U2,2 K2,2

The supremum of the increasing sequence of functions (∑i
k=0 χUk , i )∞i=0 is g. Since f is

compactly contained in g, f is majorized by ∑n
k=0 χUk ,n for some n and so f is bounded.

By construction, { f > k} ⊆ Uk ,n ⊆ Kk ,n ⊆ {g > k} for k ≤ n (and if k > n, then
{ f > k} = ∅ ≪ {g > k}). This shows { f > k} is compactly contained in {g > k} for
each k.
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Conversely, suppose f is bounded and that { f > k} ≪ {g > k} for each k. Let
an increasing sequence (g i)∞i=1 whose supremum majorizes g be given. Since f is
bounded, f = ∑n

k=0 χ{ f>k} for some n. Since { f > k} ≪ {g > k} for each k, there exists
a compact set Kk which sits in between { f > k} and {g > k}. Using that (g i)∞i=1 is
increasing, and that g i is extended positive integer-valued and lower semicontinuous,
by compactness of each Kk , g i eventually majorizes ∑n

k=0 χKk and therefore g i even-
tually majorizes f. This shows f is compactly contained in g.

(O3) Suppose f i ≪ g i for i = 1, 2. Then f1 + f2 is bounded (since f1 and f2 are
bounded). There is, for each k, a compact set K i ,k sitting in between { f i > k} and
{g i > k} for i = 1, 2. Taking the convention that K i ,−1 = X, we have

{ f1 + f2 > k} =
k+1
⋃
i=0

{ f1 > k − i} ∩ { f2 > i − 1}

⊆
k+1
⋃
i=0

(K1,k−i ∩ K2, i−1)

⊆
k+1
⋃
i=0

{g1 > k − i} ∩ {g2 > i − 1} = {g1 + g2 > k}.

This shows that { f1 + f2 > k} ≪ {g1 + g2 > k} for each k, so (see the proof of (O4)
above) f1 + f2 is compactly contained in g1 + g2.

(O2) Let g ∈ Lscσ(X ,N) be given. Each {g > k} is the supremum of a rapidly
increasing sequence of open sets (Uk , i)∞i=0 and so g is the supremum of the increasing
sequence (∑n

k=0 χUk ,n)∞n=0. By (O3), this sequence is rapidly increasing. ∎

Theorem 2.14 [55, Theorem 1.1] Let X be a locally compact Hausdorff space of
covering dimension at most two with Ȟ2(K) = 0 for every compact subset K of X. Then
Cu(C0(X)) ≅ Lscσ(X ,N), the isomorphism being given by the rank map.

In order to lift Cuntz category morphisms to ∗-homomorphisms, we will need
the following classification theorem of [14]. Further developments in this direction
include [15, Theorem 1], [54, Theorem 1.0.1], and [56, Theorem 2].

Theorem 2.15 [14, Theorem 4.1 and remark page 29] Let B be a stable rank one C∗-
algebra, and let sB be a strictly positive element of B. If σ ∶ Cu(C0(0, 1]) → Cu(B) is
a Cuntz category morphism taking [t] (where t denotes the identity map on (0, 1]) into
[sB], or into g ≤ [sB], then there is a ∗-homomorphism π ∶C0(0, 1] → B, which is unique
up to approximate unitary equivalence, such that Cu(π) = σ.

2.5 Embedding theorems

Theorem 2.16 [40, Theorem 2.8] If A is a unital, separable, and exact C∗-algebra, then
there exists a unital embedding of A into O2.

Theorem 2.17 If A is a unital, finite, Z-stable, simple, separable amenable C∗-algebra
satisfying the UCT), then there is a unital embedding of A into a unital, simple, separable
AF algebra D giving rise to an isomorphism of tracial simplices.

https://doi.org/10.4153/S0008414X22000669 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000669


Colored isomorphism of classifiable C∗-algebras 229

Proof LetQ denote the universal UHF algebra. Since there is an embedding of A into
A⊗Q which induces an isomorphism of tracial simplices, we may suppose, without
loss of generality, that A is Q-stable. (This will be used in applying [37] below.)

Let ρ ∶K0(A) → Aff(T(A)) denote the map associated with the canonical pairing
of K0(A) with T(A). Choose a countable dense subgroup G of Aff(T(A)) containing
the image of ρ. By [2, 44], Aff(T(A)) with the strict pointwise order has the Riesz
interpolation property, and therefore G does also. By [23], there exists a unital, simple,
separable AF algebra D with K0(D) = G. Since K0(D) is dense in Aff(T(A)), the map
T(A) → S(K0(D)) is an isomorphism. Since D is an AF algebra, T(D) = S(K0(D)),
and so we have an isomorphism Φ ∶T(D) → T(A). We now have compatible maps
ρ ∶ K0(A) → K0(D) and Φ ∶T(D) → T(A). Furthermore, A and we may suppose also
D are Q-stable. By [11, Theorem A], [29, Theorem 1.1], and [64, Theorem A], A⊗Q

has generalized tracial rank at most one—and therefore, A does too as it is Q-stable.
The only additional constituent of the invariant (see [37, Definition 2.4]) used in the
homomorphism theorem [37, Corollary 21.11] is a K1-map which we can take to be
zero. The corresponding algebra map is the desired embedding. ∎

2.6 Uniqueness theorems

A couple of the key technical ingredients used in the proof of Theorem 4.5 are the
following uniqueness theorems for maps from unital, separable amenable C∗-algebras
into unital, simple, separable, Z-stable C∗-algebras. These results were developed
in [6] with certain restrictions on the trace space. These tracial assumptions were
removed in [11]. For the statement involving a Kirchberg algebra (i.e., a unital, purely
infinite, simple, separable amenable C∗-algebra) as the codomain, we specialize to the
case that the maps are injective ∗-homomorphisms. Such maps φ induce injective
c.p.c. order zero maps (φ − t)+ for each t ∈ [0, 1) and so [6, Corollary 9.11] is applicable
to them. (To see this, it suffices to show that (hφ − t)+ is a nonzero scalar multiple of
the projection π(1A), where notation is as in Theorem 2.1 (note that, here, πφ = φ).
Since hφ is a projection (namely, πφ(1A)), (hφ − t)+ = (1 − t)hφ .)
Theorem 2.18 [6, Corollary 9.11] Let A be a unital, separable, amenable C∗-algebra,
and let B be a Kirchberg algebra. Let ϕ1 , ϕ2 ∶A → Bω be a pair of injective ∗-
homomorphisms. Then, there exist contractions v i , w i ∈ Bω for i = 1, 2, such that

ϕ1(a) = w1ϕ2(a)w∗1 + w2ϕ2(a)w∗2 ,
ϕ2(a) = v1ϕ1(a)v∗1 + v2ϕ1(a)v∗2 ,

for all a ∈ A, and

v∗1 v1 + v∗2 v2 = w∗1 w1 + w∗2 w2 = 1Bω

with w∗i w i ∈ ϕ2(A)′ and v∗i v i ∈ ϕ1(A)′ for i = 1, 2.
Definition 2.19 Let A and B be unital C∗-algebras. Any two order zero maps
ϕ1 , ϕ2 ∶A → Bω satisfying the conclusion of Theorem 2.18 will be said to be colored
equivalent (see [6, Section 6]).

For the statement involving a finite algebra as the codomain, only one map is
assumed to be a homomorphism.
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Theorem 2.20 [6, Theorem 6.6], [11] Let A be a unital, separable amenable C∗-algebra,
and let B be a unital, finite,Z-stable, simple, separable amenable C∗-algebra. Let ϕ1 ∶A →
Bω be a totally full∗-homomorphism (i.e., ϕ1(a) generates Bω as a closed two-sided ideal
for every nonzero a ∈ A), and let ϕ2 ∶A → Bω be a c.p.c. order zero map with

τ ○ ϕ1 = τ ○ ϕm
2

for all τ ∈ T(Bω) and all m ∈ N. Then, ϕ1 and ϕ2 are colored equivalent.

Proof By [11, Theorem I], B has complemented partitions of unity. Now the proof
is exactly as in [6, Theorem 6.6] using [11, Lemma 4.8] in place of [6, Theorem 5.5].
The same lemma also permits relaxing the tracial extreme boundary hypothesis in [6,
Theorem 6.2]. ∎

In practice, the ∗-homomorphism typically used in Theorem 2.20 is essentially the
canonical embedding ιA ∶ A → Aω (e.g., [6, Corollary 6.5 and Theorem 7.5]), which is
totally full if A is simple. To see this, let a nonzero element a ∈ A be given. If A is unital,
ιA(a) can be cut down to any coordinate with a projection. In the nonunital case, the
coordinate projection can be replaced with an approximate unit in a coordinate. Since
A is simple, a copy of A is generated in each coordinate of Aω . This shows ιA is totally
full.

2.7 Colored isomorphism

We introduce two notions of colored isomorphism. The first one (Definition 2.21) is
symmetrically formulated, but it is a little long. A weaker notion (Definition 2.23) is
all that’s needed to establish Theorem 4.1. Together with Theorem 4.5, it follows that
these two notions coincide in the classifiable setting.

Definition 2.21 Unital C∗-algebras A and B will be said to be colored isomorphic
if there exist c.p.c. order zero maps φ ∶Aω → Bω and ψ ∶Bω → Aω such that ψφιA is
colored equivalent to ιA (see Definition 2.19) and φψιB is colored equivalent to ιB ; and
φ∗ and ψ∗ preserve constant limit traces.

Remark 2.22 Colored isomorphism is reflexive and symmetric. It follows from
Corollary 4.6 that transitivity holds for classifiable C∗-algebras (cf. [6, Section 6]),
but transitivity is not clear in general.

Definition 2.23 Unital C∗-algebras A and B will be said to be minimalist colored
isomorphic if there exist constant limit trace preserving c.p.c. order zero maps φ ∶
Aω → Bω and ψ ∶Bω → Aω , and contractions u1 , . . . , um ∈ Aω and v1 , . . . , vn ∈ Bω ,
such that

m
∑
i=1

u iψφ(a)u∗i = a and
n
∑
j=1

v jφψ(b)v∗j = b(2.7)

for all a ∈ A and for all b ∈ B, and, in addition,
m
∑
i=1

u∗i u i = 1Aω ,
n
∑
j=1

v∗j v j = 1Bω .(2.8)
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We note that (2.7) is weaker than requiring that ψφιA and ιA are colored equivalent
(and requiring that ψφιB and ιB are colored equivalent), as required by Definition 2.21.
It follows from Theorems 4.1 and 4.5 that φ and ψ can be chosen so that the maps ψφιA
and ιA are colored equivalent (and likewise for ψφιB and ιB) in the classifiable setting.

The identity (2.7) implies that φ and ψ are injective; furthermore, the commutation
relations coming from the colored equivalences of maps—the symmetrized form of
colored isomorphism holding automatically in the classifiable case—guarantee that
u iψφ(⋅)u∗i and v jφψ(⋅)v∗j are order zero for i = 1, . . . , m and for j = 1, . . . , n.

3 Functionals preserving compact containment

The main result of this section characterizes when a functional on the Cuntz semi-
group Cu(A) arising from a faithful densely defined lower semicontinuous traces
on a commutative C∗-algebra, A, with the property that the rank map gives rise to
an isomorphism Cu(A) ≅ Lscσ(Â,N), preserves compact containment. Let us first
establish some necessary conditions for a functional to preserve compact containment
in a more general context. Suppose λ is a functional (i.e., a generalized Cuntz category
morphism into [0,∞]) on a positive Cuntz category object M. In order for λ to
preserve compact containment, λ must be finite on any element that is compactly
contained in some element of M. Moreover, λ must be finite on any element that
is majorized by a finite sum of such elements. It is also necessary that λ vanish on
compact elements. Now recall, for instance from [33, Proposition 4.2], that a lower
semicontinuous trace τ on a C∗-algebra induces a functional dτ on Cu(A) (the trace
of the range projection of a positive element). (In later sections, we will not make a
distinction between τ and dτ .) The finiteness condition requires dτ to be finite-valued
on the Pedersen ideal of A⊗K. If τ is faithful, the latter condition requires Cu(A) to
have no nonzero compact elements. If A is stably finite, then, by [8, Corollary 3.6], this
is equivalent to A being stably projectionless. If A is, moreover, commutative, this is
equivalent to the spectrum of A not containing any nonempty compact open subsets.
To see this, suppose K is a nonempty compact open subset of the spectrum of A.
Then [χK ⊗ p] is a nonzero compact element of Cu(A) for any nonzero projection
p ∈ K. Conversely, suppose A⊗K contains a nonzero projection p. Then the map
η ∶ Â ∋ x ↦ ∥p(x)∥ ∈ C is continuous. Since p vanishes at infinity and is a nonzero
projection, the same is true of η. This shows A contains a nonzero projection.

Theorem 3.1 Suppose that μ is a faithful densely defined lower semicontinuous trace
on a commutative C∗-algebra, C0(X), with the property that Cu(C0(X)) ≅ Lscσ(X ,N)
(the isomorphism being given by the rank map) (for example, X is as in Theorem 2.14).
Then the functional dμ ∶ Cu(C0(X)) → [0,∞] preserves compact containment if, and
only if, X does not contain any nonempty compact open sets.

Proof Denote by ι the natural set-theoretical mapping of Lscσ(X ,N) into
Cu(C0(X)):

f =
∞

∑
k=0

χ{ f>k} ↦
∞

∑
k=0

[ fk ⊗ pk],
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where fk is a positive function in C0(X) with open support equal to { f > k}
and (pk)∞k=0 is a family of mutually orthogonal rank-one projections in K. By
hypothesis, rank ∶ Cu(C0(X)) → Lscσ(X ,N) is an isomorphism. It follows, since
as easily checked, rank ○ ι = idLscσ(X ,N), that ι is an isomorphism. Denote by μ ∶
Lscσ(X ,N) → [0,∞] the functional dμ ○ ι and denote also by μ the locally finite (as
the Pedersen ideal of C0(X) is Cc(X) and by [48, Theorem 1.3]) extended Radon
measure induced by the densely defined lower semicontinuous trace μ. Since dμ =
μ ○ rank, to show that dμ preserves compact containment, it suffices to show that μ
preserves compact containment. Suppose f and g are elements of Lscσ(X ,N) and
that f ≪ g. If μ( f ) = 0, then μ( f ) ≪ μ(g) because 0 is compactly contained in
every element of [0,∞]. Let us now consider the case where μ( f ) > 0. Since f is
compactly contained in g, by the proof of (O4) in Proposition 2.13, f = ∑n

k=0 χ{ f>k}
for some n and there exists a compact set K ⊆ X such that (with abbreviated notation)
{ f > 0} ⊆ K ⊆ {g > 0}, and so μ( f ) ≤ (n + 1)μ(K) < ∞. Now suppose μ( f ) = μ(g),
i.e., ∑∞k=0 μ({ f > k}) = ∑∞k=0 μ({g > k}). Since f ≤ g and since μ( f ) is finite, we
have μ({ f > k}) = μ({g > k}) for each k. If K = {g > 0}, then since X contains no
nonempty compact open sets, {g > 0} is empty. This implies g is zero and hence f is
zero, which is a contradiction. In other words, K is properly contained in {g > 0}, and
so there is a nonempty open subset of {g > 0} which is disjoint from K and therefore
disjoint from { f > 0} as well. Since μ is faithful, μ({ f > 0}) < μ({g > 0}) and so
(since f ≤ g and μ( f ) is finite) μ( f ) < μ(g). ∎

Remark 3.2 A different proof of Theorem 3.1, in the case of the half-open interval
(the case pertinent to this paper), using the characterization of compact containment
given in [4] is possible.

Proof Suppose f , g ∈ Lsc((0, 1],N) are such that f ≪ g. Let μ be as in the proof
of Theorem 3.1 and suppose f is nonzero. Extend both f and g to be zero at zero
and call these extensions f̃ and g̃. It is easily checked that these extensions are
lower semicontinuous and that f̃ remains compactly contained in g̃ in Lsc([0, 1],N)
(one could also use [14, Theorem 10.1], [16, Theorem 5], and [38, Theorem 6.11]).
An application of [4, Proposition 5.5] at the point zero shows that f̃ is zero on a
neighbourhood of zero because g̃(0) = 0. This shows f is compactly supported, and
since f is bounded, μ( f ) is finite. Since f is nonzero and extended positive integer-
valued, its extension f̃ is necessarily discontinuous. Its first point of discontinuity, x0,
must occur within (0, 1). By [4, Proposition 5.5] applied to the point x0, there exists
a neighbourhood U of x0 which is contained in (0, 1) and a nonzero constant c ∈ N
such that f̃ ≤ c ≪ g̃ on U. Since f̃ is zero to the left of x0, and since f̃ ≤ g̃, the integral
of f on U is strictly less than the integral of c on U, and hence also of g. This implies
μ( f ) < μ(g). ∎

Remark 3.3 The characterization of compact containment in [18] can be used to
show that if τ is a faithful densely defined lower semicontinuous trace on a C∗-algebra
A, then dτ preserves compact containment if, and only if, Cu(A) does not contain
nonzero compact elements. Since the only case of interest in this paper is covered by
Theorem 3.1, we will not prove this.
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Remark 3.4 A simple reduction to the faithful case shows that if τ is a (not necessarily
faithful) densely defined lower semicontinuous trace on A and Cu(A/Nτ) does
not contain nonzero compact elements, where Nτ denotes the kernel of τ, then dτ
preserves compact containment.

Proof Denote by πNτ ∶A → A/Nτ the canonical quotient map and let η ∶ (A/Nτ)+ →
[0,∞] be the faithful densely defined lower semicontinuous trace induced by τ.
Suppose Cu(A/Nτ) contains no nonzero compact elements. Then, by Remark 3.3,
the functional dη ∶ Cu(A/Nτ) → [0,∞] preserves compact containment and by
[18, Theorem 2], πNτ induces a Cuntz category morphism Cu(πNτ) ∶ Cu(A) →
Cu(A/Nτ). Since the functional dτ factors through Cu(A/Nτ), via the commutative
diagram

Cu(A) [0,∞]

Cu(A/Nτ)

dτ

Cu(πNτ) dη
,

it preserves compact containment. ∎

Remark 3.5 It is possible for the functional dτ induced by a lower semicontinuous
trace τ on a C∗-algebra A to fail to preserve compact containment even if dτ is assumed
to vanish on every compact element of Cu(A). For example, let μ be the trace induced
by the measure on (0, 1]which is the Lebesgue measure on (1/2, 1] and zero on (0, 1/2].
The condition that dμ vanishes on every compact element of Cu(C0(0, 1]) is automatic
since C0(0, 1] is stably projectionless.

To show that dμ fails to preserve compact containment, it suffices, by the proof of
Theorem 3.1, to show that μ fails to preserve compact containment. By a characteri-
zation of compact containment in the proof of Proposition 2.13, χ(1/2,1] is compactly
contained in χ(0,1], but μ((1/2, 1]) = μ((0, 1]).

4 Colored classification of C∗-algebras

Theorem 4.1 Any two unital C∗-algebras which are colored isomorphic have iso-
morphic tracial simplices. Moreover, the order zero maps implementing a colored iso-
morphism induce mutually inverse isomorphisms of tracial simplices (as described in
Section 2.3).

Proof The same conclusion holds with the weaker hypothesis that A and B are unital
C∗-algebras which are minimalist colored isomorphic, so this is what we prove. Let the
notation be as in Definition 2.23. Since φ ∶Aω → Bω and ψ ∶Bω → Aω are c.p.c. order
zero maps, they induce mappings of bounded traces φ∗ ∶ R+T(Bω) → R+T(Aω) and
ψ∗ ∶ R+T(Aω) → R+T(Bω) (see [68, Corollary 3.4]). In fact, φ∗ and ψ∗ are mutually
inverse affine isomorphisms of the cones of bounded traces. To see this, let τ ∈ T(Aω)
and a ∈ Aω be given. Then
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τ(a) (2.7)= τ (
m
∑
i=1

u iψφ(a)u∗i ) =
m
∑
i=1

τ(u iψφ(a)u∗i )

=
m
∑
i=1

τ(ψφ(a)u∗i u i)
(2.8)= τ(ψφ(a)) = φ∗ψ∗(τ)(a).

A symmetric calculation shows ψ∗φ∗(τ) = τ for each τ ∈ T(Bω).
Let us now show that the cones of bounded traces on A and B are affinely

isomorphic. Denote by cB ∶R+T(B) → R+T(Bω) the embedding of bounded traces
on B as bounded limit traces on Bω and by ιA ∶A → Aω the canonical embedding
of A into Aω . Denote by ι∗A the dual map induced on bounded traces and define
Φ ∶ R+T(B) → R+T(A) to be the composition

R+T(B) R+T(Bω) R+T(Aω) R+T(A),cB φ∗ ι∗A

and define cA ∶R+T(A) → R+T(Aω), ιB ∶ B → Bω , and Ψ ∶R+T(A) → R+T(B) sim-
ilarly. Then Φ and Ψ are weak∗ continuous and affine, and for τ ∈ R+T(B),

ΨΦ(τ) = ι∗Bψ∗cAι∗Aφ∗cB(τ)
= ι∗Bψ∗φ∗cB(τ) = ι∗BcB(τ) = τ.

The second equality follows from the assumption that φ∗ takes constant limit traces
to constant limit traces so that cAι∗Aφ∗cB(τ) = φ∗cB(τ). The third equality follows
from the previous paragraph. A symmetric calculation shows that ΦΨ(τ) = τ for
τ ∈ R+T(A). This shows Φ and Ψ are mutually inverse isomorphisms of the topo-
logical convex cones R+T(A) and R+T(B).

To see that Φ and Ψ preserve the tracial simplices, i.e., are isometries, note that they
are contractions since they are the compositions of contractions. By the preceding
paragraph, ΦΨ = idT(A) and so we have 1 = ∥ΦΨ∥ ≤ ∥Φ∥∥Ψ∥ ≤ 1 which implies that
the norms of Φ and Ψ are both one so these maps are isometries and therefore
constitute an isomorphism of the tracial simplices. ∎
Remark 4.2 Colored isomorphism (as defined in Section 2.7), extended in a natural
way to the nonunital case, also preserves, up to isometric isomorphism, the topological
convex cone of lower semicontinuous traces of [33]. To see this, we will need to
know that c.p.c. order zero maps induce mappings of lower semicontinuous traces.
This follows from [68, Corollary 3.4]. The result now follows by extending the maps
considered in the proof of Theorem 4.1 to the cone of lower semicontinuous traces
rather than just the cone of bounded traces.

From this one can deduce that colored isomorphism, in the present sense, preserves
ideal lattices, up to isomorphism (cf. [10, Theorem 5.4.9]). Let the notation be as in
the proof of Theorem 4.1 with Ψ assumed to be an isomorphism of cones of lower
semicontinuous traces. Recall, from [33], that there is an order-reversing bijection αA
between closed two-sided ideals I of A and lower semicontinuous traces on A taking
only the values 0 and ∞ given by

I ↦ τI(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

0, if x ∈ I+,
∞, if x ∉ I+.
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Such traces are characterized by the property τ + τ = τ, and so Ψ restricts to a
mapping between these traces. Therefore, the composition α−1

B ○ Ψ ○ αA gives an
order-preserving bijection of ideal lattices. If the prime ideals of A and B are primitive,
as is the case with separable or postliminary C∗-algebras (see [22, Theorems 4.3.5
and 4.4.5] and [52, Theorem A.50]), then the primitive ideal spaces of A and B
are homeomorphic. By Gelfand duality, it follows that colored isomorphism (in the
present sense) is a rigid notion for commutative C∗-algebras (i.e., if A is a commutative
C∗-algebra which is colored isomorphic, in the present sense, to a C∗-algebra B,
then A is isomorphic to B) (cf. [10, Proposition 5.4.13]). It is easily seen that colored
isomorphism, in the present sense, is also a rigid notion for finite-dimensional C∗-
algebras (cf. [10, Proposition 5.4.12]).

Theorem 4.3 Let B be a unital, simple, separable, exact, Z-stable C∗-algebra with
stable rank one, and let D be a simple, unital AF algebra. Let μ be a faithful trace on
C0(0, 1] with norm at most one, and let Φ ∶T(B) → T(D) be a continuous affine map
of simplices. There exists a c.p.c. order zero map φ ∶ D → B which satisfies the identity

τφn = μ(tn)Φ(τ)(4.1)

for all n ∈ N and for all τ ∈ T(B), where t denotes the identity map on (0, 1].

Proof Let (D i)∞i=1 be an increasing sequence of finite-dimensional C∗-subalgebras
of D such that ⋃∞i=1 D i is dense in D. Denote by ι i the embedding of D i into D. We
claim that the map

σi ∶ Cu(C0(0, 1] ⊗ D i) → LAff+(TB)

determined by the rule

[d] ↦ (μ ⊗ (ι∗i ○ Φ(⋅)))[d]

is a Cuntz category morphism.
We first show that σi in fact maps into LAff+(TB). The image of

[d] ∈ Cu(C0(0, 1] ⊗ D i) is clearly a positive real-valued affine function on TB.
By Section 5 of [33], σi([d]) is lower semicontinuous. By assumption, μ is faithful
and ι∗i ○ Φ(τ), being the restriction of a faithful trace on D (as D is simple), is also
faithful for each τ ∈ TD i . Therefore, (μ ⊗ (ι∗i ○ Φ(⋅)))[d] is (pointwise) strictly
positive whenever [d] is nonzero. Since B is unital and separable, TB is metrizable.
Therefore, by [1, Corollary I.1.4] and [62, Lemma 3.6], σi([d]) is the pointwise
supremum of an increasing sequence of continuous finite-valued functions in
LAff+(TB). This shows that σi([d]) is an element of LAff+(TB).

That σi is a generalized Cuntz category morphism follows from Section 4 of [33],
so all that remains is to show σi preserves compact containment. Since D i is a finite-
dimensional C∗-algebra, we may identify it with a finite direct sum of matrix algebras,
⊕k

j=1 Mn j . Using that C0(0, 1] ⊗ (⊕k
j=1 Mn j) is isomorphic to ⊕k

j=1(C0(0, 1] ⊗ Mn j),
we make the identification Cu(C0(0, 1] ⊗ D i) = ⊕k

j=1 Cu(C0(0, 1] ⊗ Mn j). By [18,
Appendix 6], the embedding of C0(0, 1] into the upper-left corner of C0(0, 1] ⊗ Mn j

induces an isomorphism at the level of the Cuntz category. For each j, we denote by
e j the nonzero minimal projection in the upper-left corner of Mn j , and we denote by
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ρ j the trace on Mn j . These maps induce an isomorphism ⊕k
j=1 Cu(C0(0, 1] ⊗ Mn j) ≅

⊕k
j=1 Cu(C0(0, 1]). By Theorem 2.14, Cu(C0(0, 1]) ≅ Lsc((0, 1],N) and so under

these isomorphisms, an arbitrary element [d] ∈ Cu(C0(0, 1] ⊗ D i) is a direct sum of
elements d1 , . . . , dk of Lsc((0, 1],N). Pick d i

j ∈ C0(0, 1] to have open support exactly
{d j > i} ( j = 1, . . . , k and i ∈ N). Let (p i)∞i=0 be a sequence of mutually orthogonal
rank-one projections and let ι ∶ Lsc((0, 1],N) → Cu(C0(0, 1]) and μ ∶Lsc((0, 1],N) →
[0,∞] be as in the proof of Theorem 3.1. The direct sum of copies of ι gives an
isomorphism ⊕k

j=1 Lsc((0, 1],N) → ⊕k
j=1 Cu(C0(0, 1]). Under the aforementioned

isomorphisms, we have

[d] =
k
∑
j=1

∞

∑
i=0

[d i
j ⊗ e j ⊗ p i].

Therefore,

σi([d]) =
k
∑
j=1

∞

∑
i=0

μ(d i
j)(ι∗i ○ Φ(⋅))(e j)Tr(p i)

=
k
∑
j=1

∞

∑
i=0

μ(d i
j)(ι∗i ○ Φ(⋅))(e j)

=
k
∑
j=1

μ(d j)(ι∗i ○ Φ(⋅))(e j).

Let us use the above calculation to show that σi([d]) is continuous. If σi([d]) is
bounded, then σi([d]) is an affine extension of the continuous function taking on
the real values μ(d j) at the extreme points ρ j of TD i . Since D i is finite-dimensional,
TD i is a Bauer simplex and so σi([d]) is continuous. If σi([d]) is not bounded, then
μ(d j) must be equal to ∞ for some j. Since ι∗i ○ Φ(⋅) maps into the faithful part of
TD i , σi([d]) is the continuous function which is constant and equal to ∞.

Suppose [ f ] ≪ [g] in Cu(C0(0, 1] ⊗ D i). Let the notation be as in the preceding
two paragraphs for both [ f ] and [g]. If [ f ] is equal to zero, then σi([ f ]) is also equal to
zero and it is compactly contained in every element of LAff+(TB) (and in particular,
σi([g])). If [ f ] is nonzero, then f j ≪ g j for each j and f j must be nonzero for some j.
For this particular j, μ( f j) < μ(g j), by faithfulness of μ, and for each j, μ( f j) is finite
and μ( f j) ≤ μ(g j) (these facts are established in the proof of Theorem 3.1). It follows
from the above computation and the fact that ι∗i ○ Φ(τ) > 0 (τ ∈ TB) that σi([ f ]) <
σi([g]). By the previous paragraph, this also shows that σi([ f ]) is continuous and
finite-valued. Since lower semicontinuous functions attain their infima on compact
sets, it follows from the characterization of compact containment in Section 2 of [33]
(or [62, Lemma 3.6]) that σi([ f ]) is compactly contained in σi([g]). This shows σi is
a Cuntz category morphism.

Since LAff+(TB) is (in a natural way) a subobject of Cu(B) (Lemma 2.12), σi
extends to a Cuntz category morphism into Cu(B) which we denote again by σi . In
order to lift σi to a ∗-homomorphism, let us check that σi takes a strictly positive
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element into an element majorized by a strictly positive element:

σi([t ⊗ 1D i ]) =
k
∑
j=1

μ(χ(0,1])(ι∗i ○ Φ(⋅))[1Mn j
] ≤

k
∑
j=1
(ι∗i ○ Φ(⋅))[1Mn j

]

=
k
∑
j=1

Φ(⋅)[ι i(1Mn j
)] = Φ(⋅)[ι i(1D i )] ≤ [̂1B].

In the first inequality, we have used that μ is of norm at most one. By Theorem 2.15,
i.e., by [14, Theorem 4.1], as modified in the remark on page 29 of [14] (to replace
[0, 1] with (0, 1]), for each i there exists a ∗-homomorphism π i ∶C0(0, 1] ⊗ D i → B,
which is unique up to approximate unitary equivalence, such that Cu(π i) = σi . Let us
now denote by ι i the embedding of C0(0, 1] ⊗ D i into C0(0, 1] ⊗ D i+1. Then with the
embeddings Cu(ι i) on the top row and the identity map Cu(idB) on the bottom row,
we have the following one-sided intertwining at the level of the Cuntz category:

Cu(C0(0, 1] ⊗ D1)) Cu(C0(0, 1] ⊗ D2)) ⋅⋅⋅

Cu(B) Cu(B) ⋅⋅⋅

σ1 σ2 .

The ∗-homomorphisms π i ∶C0(0, 1] ⊗ D i → B may be corrected by inner auto-
morphisms to obtain the following one-sided approximate intertwining (in the sense
of [25, Section 2]):

C0(0, 1] ⊗ D1) C0(0, 1] ⊗ D2) ⋅⋅⋅ C0(0, 1] ⊗ D

B B ⋅⋅⋅ B

π1 π2 π

By [25, Remark 2.3], there exists a ∗-homomorphism π ∶ C0(0, 1] ⊗ D → B as in
the above diagram and the map φ ∶ D → B determined by the rule φ(d) ∶= π(t ⊗ d) is
c.p.c. order zero, by Corollary 2.5. Let us now verify that φ satisfies the required tracial
identity. By continuity, it suffices to check that the the tracial identity holds at the finite
stages. Let d ∈ D i , and let τ ∈ TB be given. Then

τφn(d) (2.6)= τπ(tn ⊗ d) = τ lim
i→∞

π i(tn ⊗ d)

= lim
i→∞

(μ ⊗ (ι∗i ○ Φ)(τ))(tn ⊗ d)

= μ(tn)Φ(τ)(d).

The second equality follows from the one-sided approximate intertwining, and the
third equality follows from continuity of τ and by definition of σi . (Note that Cu(π) =
limi→∞ σi , but we do not actually use this.) ∎
Lemma 4.4 There exists a sequence of fully supported Radon measures μk on (0, 1]
with total mass one such that

lim
k→∞

μk(t) = 1,(4.2)
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where t denotes the identity map on (0, 1]. Necessarily, this holds also for tn , rather than
just t, for each n ∈ N.

Proof Pick measures which are increasingly weighted to the right. ∎

Theorem 4.5 Any two unital, simple, Z-stable, separable amenable C∗-algebras satis-
fying the UCT with isomorphic tracial simplices are colored isomorphic.

Proof We first consider the purely infinite case. This part of the theorem holds
without assuming the UCT. Let A and B be Kirchberg algebras. By [13, Theorem
3.1], [17, Corollary 2], and [67, Proposition 7], separable amenable C∗-algebras are
exact. Hence by Theorem 2.16, there is a unital embedding of A into O2. Since B
is purely infinite, K0(B) consists of the Murray–von Neumann equivalence classes
of nonzero properly infinite projections in B (see [19, Theorem 1.4]). In particular,
there is a nonzero properly infinite projection p ∈ B whose K0-class is equal to zero.
It follows from [58, Proposition 4.2.3] that there exists a unital embedding of O2 into
pBp and therefore a (possibly) nonunital embedding into B. Denote by φ ∶A → B the
composition of these embeddings and construct ψ ∶B → A symmetrically. Then since
φ and ψ are injective and therefore isometric∗-homomorphisms, the ultrapower maps
ψφ ∶Aω → Bω and φψ ∶ Bω → Aω induced by their compositions are also isometric
and in particular injective. By two applications of Theorem 2.18, the pairs ψφιA and ιA;
and φψιB and ιB are each colored equivalent, where ιA (resp. ιB) denote the canonical
embedding of A (resp. B) into its ultrapower.

Now (as we may, in view of Theorem 2.9), suppose that A and B are two finite C∗-
algebras satisfying the hypotheses. By Theorem 2.17, there exists a unital embedding
αA of A into a separable, unital, simple AF algebra D such that the induced map
α∗A ∶ T(D) → T(A) is an isomorphism of tracial simplices. This, combined with an
isomorphism T(B) → T(A) (assumed to exist), yields an isomorphism Φ ∶T(B) →
T(D). Pairing this with the faithful tracial states μk on C0(0, 1] of Lemma 4.4, one
obtains by Theorem 4.3 a sequence of c.p.c. order zero maps φk ∶ D → B satisfying the
identity

τφn
k = μk(tn)Φ(τ)(4.3)

for every k, n ∈ N and each τ ∈ T(B). Denote by φ ∶Aω → Bω the c.p.c. order zero
map induced between the ultrapowers by the maps φk αA ∶A → B. As above, by [68,
Corollary 3.4], φ induces a mapping φ∗ of bounded traces on Bω into bounded traces
on Aω . Then we have

τφn (2.3)= lim
k→ω

τk(φn
k αA)

(4.3)= α∗A( lim
k→ω

(μk(tn)Φ(τk)))
(4.2)= lim

k→ω
(α∗AΦ)(τk)

(4.4)

for each n ∈ N and limit trace τ = limk→ω τk ∈ Tω(Bω).
Symmetrically, there is, again by Theorem 2.17, a unital embedding αB of B into

a unital, simple, separable AF algebra E such that the induced map α∗B ∶T(E) →
T(B) is an isomorphism of tracial simplices. Using as above the isomorphism Ψ ∶=
(α∗AΦα∗B)−1 ∶T(A) → T(E) and the faithful tracial states μk , we obtain a c.p.c. order
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zero map ψ ∶Bω → Aω such that

τψn = lim
k→ω

(α∗BΨ)(τk)(4.5)

for each n ∈ N and limit trace τ = limk→ω τk ∈ Tω(Aω). So for all limit traces τ =
limk→ω τk ∈ Tω(Aω), we have

τ(ψφ)n (2.3)= τψn φn (4.5)= (φn)∗( lim
k→ω

(α∗BΨ)(τk))
(4.4)= α∗AΦ( lim

k→ω
(α∗BΨ)(τk)) = lim

k→ω
α∗AΦα∗BΨ(τk) = τ,

(4.6)

where the last equality follows from the definition of Ψ.
Weak∗ density of Tω(A) in T(Aω) (Theorem 2.7) extends the identity (4.6) to all

tracial states on Aω . Since A is simple, the canonical embedding of A into Aω is totally
full. Hence by Theorem 2.20, ψφιA and ιA are colored equivalent. By a symmetric
argument, φψιB and ιB are colored equivalent. It follows immediately from (4.4) and
(4.5) that φ and ψ preserve constant limit traces. This shows A is colored isomorphic
to B (with m and n of (2.7) equal to two). ∎

Corollary 4.6 Let A and B be classifiable C∗-algebras (i.e., ones satisfying the hypothe-
ses of Theorem 4.5). Then the following statements are equivalent:
(1) There exist constant limit trace preserving c.p.c. order zero maps φ ∶ Aω → Bω and

ψ ∶Bω → Aω such that φn and ψn induce mutually inverse isomorphisms of T(Aω)
and T(Bω) for each n ∈ N.

(2) There exist constant limit trace preserving c.p.c. order zero maps φ ∶ Aω → Bω and
ψ ∶Bω → Aω such that φn and ψn induce mutually inverse isomorphisms of T(Aω)
and T(Bω) for some n ∈ N.

(3) A and B are colored isomorphic (Definition 2.21).
(4) A and B are minimalist colored isomorphic (Definition 2.23).
(5) T(A) is isomorphic to T(B).
Every isomorphism of T(A) with T(B) arises from a colored isomorphism of A and B.

Proof (1) .⇒ (2) is clear. (2) .⇒ (1) Let π ∶Aω → Aω denote the canonical quotient
map. By assumption, there exists an n ∈ N such that τψn φn = τ for all τ ∈ T(Aω). By
Lemma 2.8, this implies πψn φn = πidAω . In particular, we will use that πψn φn(1Aω) =
π(1Aω) below. Since

πψφ(1Aω) = πψφ(1n
Aω

) = (πψφ)n(1Aω) = πψn φn(1Aω) = π(1Aω)

is a projection, it then follows from Corollary 2.2 that πψφ is a ∗-homomorphism.
We have used Corollaries 2.3 and 2.4 for the second and third equalities. Therefore,
πψk φk = π(ψφ)k = (πψφ)k = πψφ for each k ∈ N. By Lemma 2.8 again, this implies
τψk φk = τ for each τ ∈ T(Aω) and each k ∈ N. A symmetric argument shows that φk

and ψk induce mutually inverse isomorphisms of T(Aω) and T(Bω).
(1) .⇒ (3) follows (without the UCT assumption) from two applications of

Theorem 2.20: once with ψφιA and ιA where ιA is the constant sequence embedding
of A into Aω and once more with φψιB and ιB . (3) .⇒ (4) is immediate. (4) .⇒ (5)
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as mentioned in the proof of Theorem 4.1, the same conclusion holds with the weaker
hypothesis that the two C∗-algebras are minimalist colored isomorphic. (5) .⇒ (1)
is given by (4.6) in the proof of Theorem 4.5 (along with the analogous statement for
(φψ)n) and Corollary 2.4.

The last statement follows from the proof of Theorem 4.5, which constructs a
colored isomorphism using a given isomorphism of T(A) with T(B), and the proof
of Theorem 4.1, which recovers the given isomorphism of T(A) with T(B) from the
constructed colored isomorphism. ∎

We are not sure to what extent the c.p.c. order zero maps involved in a colored
isomorphism are unique.

Corollary 4.7 Let A be a classifiable C∗-algebra. If T(A) = ∅, then A is colored
isomorphic to O2. If T(A) ≠ ∅, then A is colored isomorphic to a unital simple AF
algebra.

Proof If T(A) = ∅, then by Theorem 4.5, A is colored isomorphic to O2. If T(A) ≠
∅, by [5, Theorem 3.10], there exists a unital AF algebra B whose tracial simplex
isomorphic to T(A). The conclusion now follows from Theorem 4.5. ∎

The existence step in establishing finite nuclear dimension from Z-stability (see
[6, Lemma 7.4] and [11, Lemma 5.2]) is the construction of a sequence of c.p.c. maps
ϕ i ∶A → A, where A is a finite, unital, simple,Z-stable, separable amenable C∗-algebra,
which factorize through finite-dimensional C∗-algebras Fi as

A A

Fi

ϕ i

θ i η i

with θ i c.p.c. and η i c.p.c. order zero, such that the induced maps (θ i)∞i=1 ∶A → ∏ω Fi
and Φ = (ϕ i)∞i=1 ∶A → Aω are order zero and

τΦ(a) = τ(a)

for each a ∈ A and each τ ∈ T(Aω).
More precisely, the conclusion in [11, Lemma 5.2] is that Φ agrees with the canonical

embedding ιA of A into Aω in the uniform tracial ultrapower Aω , whereas the
conclusion in [6, Lemma 7.4] is that τΦ = τιA for each τ ∈ T(Aω). These conclusions
are equivalent by Lemma 2.8 and Theorem 2.7.

In the presence of the UCT, a one-sided formulation of Theorem 4.5 (Corollary
4.8) can be viewed as a generalization of the existence step mentioned earlier since
the conclusion follows from the special case that B is an AF algebra. Since the nuclear
dimension of B is zero (see [69, Remark 2.2(iii)]), there exist finite-dimensional C∗-
algebras Fi and c.p.c. maps ρ i ∶B → Fi and c.p.c. order zero maps σi ∶ Fi → B such that
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the triangle below commutes approximately.

A A

B B

Fi

ϕ i

φ i
idB

ρ i

ψ i

σi

The maps θ i ∶ A → Fi on the left side of the diagram and the maps η i ∶ Fi → A on the
right side of the diagram satisfy the conclusion of the aforementioned existence step.

Corollary 4.8 Let A and B be finite classifiable C∗-algebras with isomorphic tracial
simplices. Then there exist sequences of c.p.c. order zero maps φ i ∶A → B and ψ i ∶B → A
for i ∈ N, such that the induced c.p.c. order zero maps φ ∶Aω → Bω and ψ ∶Bω → Aω
induce mutually inverse isomorphisms of T(Aω) and T(Bω). In particular,

τψφ(a) = τ(a)
for each a ∈ A and each τ ∈ T(Aω).

Proof This is a special case of Corollary 4.6. ∎
Corollary 4.8 gives rise to the completely positive approximation property below.

The nuclear dimension calculation in Corollary 4.9 is not new—in fact, it holds
without the UCT assumption and without unitality (see [11, 14]), and our proof of
it using the UCT still relies on the main technical results of [6] and [11] that were used
in establishing finite nuclear dimension from Z-stability in the context of the Toms–
Winter conjecture (see [11, 14]).

Corollary 4.9 Let A and B be finite classifiable C∗-algebras with isomorphic tracial
simplices. Then there exist a sequence φ i ∶A → B of c.p.c. order zero maps and a sequence
ξ i ∶B → A such that ξ i is a sum of two c.p.c. order zero maps from B to A for i ∈ N, and
such that the following diagram approximately commutes.

A A

B

idA

φ i ξ i

Since a possible choice for B is an AF algebra, it follows that the nuclear dimension of A
is at most one. If A is not an AF algebra, then the nuclear dimension of A is exactly one.

Proof Let the notation for φ i , ψ i , φ, and ψ be as in Corollary 4.8, and let h be a
positive element with full spectrum in Z. Then since ιA is totally full and since ιA and
ψφιA agree on traces, ιA ⊗ h and ψφιA ⊗ h are approximately unitarily equivalent, by
[11, Lemma 4.8]. Since 1Z − h is also a positive element of Z with full spectrum, ιA ⊗
(1Z − h) and ψφι ⊗ (1Z − h) are also approximately unitarily equivalent. Therefore,
there exist unitaries u1 and u2 ∈ (A⊗Z)ω such that a ⊗ h = u1(ψφ(a) ⊗ h)u∗1 and
a ⊗ (1Z − h) = u2(ψφ(a) ⊗ (1Z − h))u∗2 . Since Z is strongly self-absorbing (see [39,
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Theorem 8.7]) and therefore K1-injective ((see [53, Theorem 10.12] and [57, Theorem
6.7]), [57, Theorem 6.7]), there is a ∗-homomorphism θ ∶A⊗Z → Aω such that
θ(a ⊗ 1Z) = a for each a ∈ A, by [65, Theorem 2.3]. Let h1 ∶= h and h2 ∶= 1Z − h.
Taking representative sequences of ∗-homomorphisms θ i ∶A⊗Z → A (which exist
by the proof of [65, Theorem 2.3]) and of unitaries (u(i)1 )∞i=1 and (u(i)2 )∞i=1 in A⊗
Z corresponding to u1 and u2, we have the following approximately commutative
diagram.

A A A⊗Z

B A

idA

φ i

θ i

ψ i

∑2
k=1 u(i)k (⋅ ⊗ hk)u(i)∗k

The maps φ i ∶A → B and the maps ξ i ∶B → A which factor though A and A⊗Z give
the desired completely positive approximation property.

Let us now specialize to the case that B is an AF algebra with T(B) ≅ T(A), which
exists by [5, Theorem 3.10]. Since the nuclear dimension of B is zero (see [69, Remark
2.2(iii)]), there exist c.p.c. maps ρ i ∶B → Fi into finite-dimensional C∗-algebras Fi and
c.p.c. order zero maps σi ∶ Fi → B which make the following diagram approximately
commute

A A

B B

Fi

φ i

idA

ρ i

idB
ξ i

σi

.

Since the maps ρ i φ i ∶A → Fi are and the maps ξ i σi ∶ Fi → A are c.p. and since ξ i σi is
a sum of two c.p.c. order zero maps, A has nuclear dimension at most one (see [11,
Section 1.1]). If A is not an AF algebra, then the nuclear dimension of A is exactly 1
(see [69, Remark 2.2(iii)]). ∎

Question All that is used about the (multiplicative) AF embeddings in Theorem
4.5 is that they are c.p.c. order zero maps which induce isomorphisms of simplices.
In fact, it would be enough for each AF embedding to be replaced by a sequence
of order zero maps which induce an isomorphism of tracial simplices in the sense
described in Section 2.3. If this could be done without the UCT, then one would have
Theorem 4.5 for classifiable C∗-algebras not necessarily satisfying the UCT, as the UCT
assumption is only used to produce AF embeddings. If A and B are unital, simple,
exact, Z-stable, separable C∗-algebras with stable rank one, is there an order zero map
φ ∶A → B realizing prescribed tracial data as in Theorem 4.3?
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