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The Fixed Point Locus of the Verschiebung
on MX(2, 0) for Genus-2 Curves X in
Charateristic 2

YanHong Yang

Abstract. We prove that for every ordinary genus-2 curve X over a finite field κ of characteristic 2
with Aut(X/κ) = Z/2Z × S3 there exist SL(2, κ[[s]])-representations of π1(X) such that the image of
π1(X) is infinite. This result produces a family of examples similar to Y. Laszlo’s counterexample to
A. J. de Jong’s question regarding the finiteness of the geometric monodromy of representations of the
fundamental group.

1 Introduction

It was conjectured by A. J. de Jong in [9, Conjecture 2.3] that given a finite field F
of characteristic l and a normal variety Y over a finite field κ of characteristic p 6= l,
every representation ρ : π1(Y ) → GL(r, F((s))) has a finite geometric monodromy.
This conjecture was proved by de Jong in the GL2-case [9], by G. Böckle and K. Khare
in the GLn-case under some mild condition [3], and by D. Gaitsgory modulo the
theory of F((s))-sheaves [6]. Then a natural question comes up. If the hypothesis
l 6= p is dropped, and, moreover, Y is proper over κ, does the conjecture remain
true? Note that when Y/κ is not proper, a counterexample has already been given
in [9]

In [12], Y. Laszlo gave a negative answer to the above question. He showed that
there exists a non-trivial family of rank-2 bundles fixed by the square of Frobenius
over a specific genus-2 curve C0/F2. From this he deduced the existence of the de-
sired representations of π1(C0 ⊗ F2d ). Recently, H. Esnault and A. Langer [4] have
employed Laszlo’s example to improve the statement of a p-curvature conjecture in
characteristic p.

It is suspected by de Jong that the representations with an infinite geometric mon-
odromy are rare. Thus one would like to understand the underlying mechanics of
Laszlo’s example and to obtain such representations in other characteristics.

In this note, we give a geometric interpretation of Laszlo’s example based on the
study of the action of the automorphism group of the curve; this interpretation al-
lows us to produce a family of similar examples. Meanwhile, our method also pro-
vides some indication in characteristics 3 and 5, though it does not directly provide
examples.

Now we give a brief summary of our results. In [12], Laszlo deduced represen-
tations from a non-trivial family of bundles. We show that the converse also holds.
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440 Y. Yang

This equivalence is well known to the experts. Recall that the geometric Frobenius
map of a scheme Y over a finite field κ of characteristic p is defined to be the d-th
power of the absolute Frobenius map of Y , where d = [κ : Fp].

Theorem 1.1 Let Y be a projective smooth geometrically connected curve over a finite
field κ and MY (r, 0) be the coarse moduli space of rank-r semistable bundles over Y with
trivialized determinant. Denote by

V : MY (r, 0) � MY (r, 0)

the rational map defined by [E] 7→ [F∗geoE] with respect to the geometric Frobenius map
Fgeo of Y over κ. Then the following are equivalent:

(i) There exists a finite extension κ̃ of κ and a representation ρ : π1(Y ⊗κ κ̃) →
SL(r, κ̃[[s]]) such that ρ|π1(Y ) mod s is absolutely irreducible and #ρ(π1(Y )) =∞.

(ii) There exists some N ∈ N such that the fixed point locus Fix(V N ) is of positive di-
mension and contains a stable point in a connected component, where Fix(V N ) =
{x ∈MY (r, 0)|V N (x) = x}.

Because of the above equivalence, the question of looking for representations is
converted to studying the fixed point locus Fix(V N ). In [12], the expression of VC0

for C0 was applied to locate a projective line4 in MC0 (2, 0) such that (V 2
C0

)|4 is the
identity map. Here our observation is that4 is the fixed point locus of the G-action
on MC0 (2, 0), where G = Aut(C0 ⊗ F22/F22 ) = Z/2Z × S3. Indeed, this property is
common to all genus-2 ordinary curves in characteristic 2 with a G-action.

Theorem 1.2 Let X be a projective smooth ordinary curve of genus 2 over a finite field
κ of characteristic 2 with Aut(X/κ) = Z/2Z× S3

.
= G. Let

V : MX(2, 0) � MX(2, 0)

be the rational map defined by taking a pullback of bundles with respect to the geometric
Frobenius map of X over κ. Then the fixed point locus of the G-action on MX(2, 0) is a
projective line, denoted by4X . And V |4X = id4X .

Combining this with Theorem 1.1, for every curve in Theorem 1.2 there exist
representations of the fundamental group with an infinite geometric monodromy.

A large part of the proof of Theorem 1.2 can be applied to other characteristics,
particularly the application of a group action in locating a sublocus in the moduli
space. However, when considering whether the restriction of the Verschiebung to the
sublocus is reduced to a linear map, the condition regarding the existence of a single
base point on the sublocus is sufficient only in charateristic 2. In other characteristics,
more is required to ensure that the restriction of the Verschiebung is the identity.

This note is organized as follows. In Section 2, we establish equivalences among
different categories under consideration. In Section 3, we prove Theorem 1.2. In
Section 4, we discuss the case of characteristic p > 2.
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2 Representations and Frobenius-periodic Vector Bundles

In this section we establish equivalences among the categories of Frobenius-periodic
vector bundles, smooth étale sheaves and representations.

Notation κ is a finite field of order q = pd, S = Specκ[[s]], S = Spfκ[[s]], and
Sn = Specκ[[s]]/(sn) for n ∈ Z+; Y is a noetherian κ-scheme and FY is the absolute
Frobenius of Y . By vector bundle, we mean a locally free sheaf of finite rank.

2.1 Preliminaries

Our definition of smooth étale κ[[s]]-sheaves is similar to that of a lisse l-adic sheaf
in [15, Chap.V, §1]. When Y is connected, there is an equivalence between the
category of locally free smooth κ[[s]]-sheaves over Yet and the category of continu-
ous π1(Y )-modules that are free κ[[s]]-modules of finite rank, denoted by C1,Yet 

C2,π1(Y ).

Definition 2.1 A vector bundle F over Y×κS (resp. Y×κSn) is said to be Frobenius-
periodic if there exists an isomorphism ξ : F → (Fd

Y × idS)∗F (resp. ξ : F → (Fd
Y ×

idSn )∗F), denoted by (F, ξ). A Frobenius-periodic vector bundle over Y ×κ S is a pro-
jective system (F, ξ) = ((Fn, ξn))n∈Z+ of sheaves over |Yzar| such that for each n, Fn is
a Frobenius-periodic vector bundle over Y ×κ Sn, the given map Fn+1 → Fn is com-
patible with ξn’s and is isomorphic to the natural map Fn+1 → Fn+1⊗κ[[s]] κ[[s]]/(sn).

Definition 2.2 Given (Fn, ξn) over Y ×κ Sn, for any morphism

Z
f→ Y,

(
( f × idSn

)∗
Fn, ( f × idSn )∗ξn)

can be viewed as a Frobenius-periodic vector bundle over Z ×κ Sn, denoted by
f ∗(Fn, ξn) or ( f ∗Fn, f ∗ξn).

A section s ∈ Γ(Y ×κ Sn,Fn) is said to be fixed by ξ if ξn(s) = (Fd
Y × idSn )∗s

.
= 1⊗s;

(Fn, ξn) is said to be trivializable if Fn has a global basis fixed by ξn; it is said to be
étale trivializable if there exists : Yn

f→Y a finite étale morphism such that f ∗(Fn, ξn)
is trivializable, in this case we also say that Yn/Y trivializes (Fn, ξn).

Remark 2.3 Given (Fn, ξn) over Y ×κ Sn, an étale sheaf can be defined as follows:

(U
f→ Y ) ∈ Et(Y ) 7−→

{
s ∈ Γ(U , f ∗F)| f ∗(ξ)(s) = 1⊗ s

}
.

We will see in Lemma 2.4 that it is a locally free smooth κ[[s]]/(sn)-sheaf.

Recall from [5, Appendix I] that a covering space of Y is a finite étale morphism
f : Z → Y , and it is Galois if # Aut(Z/Y ) = deg( f ).

Lemma 2.4 Given (F, ξ) = ((Fn, ξn))n∈Z+ over Y ×κ S, then there exists a family of
covering spaces Y ← Y1 ← Y2 ← · · · ← Yn ← · · · such that Yn/Y trivializes (Fn, ξn).

Proof Prove by induction on n. Case n = 1 is proved in [11, Proposition 1.2].
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Induction step Assume that there is a covering space Yn → Y that factors through
Yn−1 and trivializes (Fn, ξn). Let {en

1 , . . . , e
n
r } be a basis of Fn+1|U×κSn+1 for an affine

open subscheme U ⊂ Yn s.t. it extends to a global basis of Fn|Yn×κSn fixed by ξn, i.e.,

ξn+1{en
1 , . . . , e

n
r } = {(Fd

Yn
× idSn+1 )∗en

1 , . . . , (Fd
Yn
× idSn+1 )∗en

r }(I(r) + snDn),

for some Dn ∈ Mat(r× r,OYn (U )). Finding a basis {en+1
1 , . . . , en+1

r } fixed by ξn+1 and
of the form {en

1 , . . . , e
n
r }(I(r) + sn4n+1), it is equivalent to finding4n+1 = (mi j) such

that
Dn +4n+1 = 4(q)

n+1,

where4(q)
n+1 = (mq

i j). Then define

Un+1 = SpecOYn (U )[m11, . . . ,mrr]/(Dn +4n+1 −4(q)
n+1).

Clearly Un+1 → U is a covering space and trivializes (Fn+1, ξn+1). Therefore, the étale
sheaf associated with (Fn+1, ξn+1) is locally free and smooth. By [15, Chap.V, §1],
there exists a covering space Yn+1 → Yn → Y that trivializes (Fn+1, ξn+1).

Remark 2.5 Actually, for an affine open covering {U} of Yn, the local covering
spaces {Un+1 → U} can be built up canonically to a covering space Yn+1 → Yn.

The trivial line bundle with a non-trivializable Frobenius structure may be trivi-
alized by field extension. To avoid such cases, we give the following definition.

Definition 2.6 (F, ξ) over Y ×κ S (resp. Y ×κ Sn) is said to be strictly Frobenius-
periodic if (det(F), det(ξ)) is trivializable, denoted by (F, ξ, det = 1); ((Fn, ξn))n∈Z+

over Y ×κ S is said to be strictly Frobenius-periodic if every (Fn, ξn) is.

Proposition 2.7

(i) Let C1,Yet be the category of locally free smooth κ[[s]]-sheaves over Yet and let C3,Yzar

be the category of Frobenius-periodic vector bundles over Y ×κ S. Then there is an
equivalence C1,Yet 
 C3,Yzar .

(ii) Asssume that Y is connected. Let Csl
2,π1(Y ) be the full subcategory of C2,π1(Y ) whose

objects are SL-representations of π1(Y ) and Cstr
3,Yzar

be the full subcategory of C3,Yzar

whose objects are strictly Frobenius-periodic vector bundles over Y ×κ S. Then
there is an equivalence

Csl
2,π1(Y ) 
 Cstr

3,Yzar
, ρ↔ (Fρ, ξρ, det = 1) or ρ(F,ξ) ↔ (F, ξ, det = 1).

Proof (i) We can assume that Y is connected. The functor C3,Yzar → C1,Yet is clear
from Remark 2.3 and Lemma 2.4. The functor C1,Yet → C3,Yzar is the composition
C1,Yet → C2,π1(Y ) → C3,Yzar . The proof follows from Galois descent theory; see [16,
§12, Thereom 1].

(ii) We only need to show that (Fn, ξn, det = 1) induces a SL-representation. Let

Yn
fn→Y be a Galois covering space that trivializes (Fn, ξn) by Lemma 2.4. Then the

induced representation is the composition

π1(Y, y) −→ Gal(Yn/Y ) −→ GL
(

r, κ[[s]]/(sn)
)
,
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with a basis {en
1 , . . . , e

n
r } of f ∗n Fn preserved by f ∗n ξn; the latter is defined by g 7→ Mg−1 ,

where (g−1× idSn )∗{en
1 , . . . , e

n
r } = {en

1 , . . . , e
n
r }Mg−1 . Thus Mg−1 ∈ SL(r, κ[[s]]/(sn)).

2.2 The Equivalence over a Projective Base

Now we turn to the case where Y is a projective smooth geometrically connected
scheme over κ. Let Y = Y×κSpecκ. In this case, the categories of vector bundles over
Y ×κ S and over Y ×κ S are equivalent by Grothendieck’s existence theorem. Given
(F, ξ) over Y ×κ S, we say that (F, ξ) is constant if it is isomorphic to the pullback
of F mod s. We refer to [7, 8] regarding the definition of geometrically slope-stable
vector bundles and that of an absolutely irreducible representation.

Lemma 2.8

(i) [9, Lemma 3.15] Let ρ : H → GL(r,K[[s]]) be a representation of a finite group H,
where K is a field. If ρ0 = ρmod s is absolutely irreducible, then ρ ' ρ0⊗K K[[s]].

(ii) [9, Lemma 2.7] Let 1 → Γ → H → Ẑ → 0 be an exact sequence of profinite
groups. Suppose that ρ : H → SL(V ) is a continuous representation such that ρ|Γ
is absolutely irreducible. Then #ρ(Γ) <∞⇔ #ρ(H) <∞.

Lemma 2.9 Given (F, ξ, det = 1) ↔ ρ, if (F, ξ) is constant, then #ρ(π1(Y )) < ∞.
If ρmod s is absolutely irreducible, then (F, ξ) is constant⇔ #ρ(π1(Y )) <∞ .

Proof The proof follows from Lemmas 2.4, 2.8(i) and descent theory.

Proposition 2.10 Given (F, ξ, det = 1)↔ ρ as in Proposition 2.7. The following are
equivalent:

(i) F mod s is geometrically slope-stable (g.s.s.).
(ii) (ρmod s)|π1(Y ) is absolutely irreducible (a.i.).

If these conditions hold, then F is non-constant if and only if #ρ(π1(Y )) =∞.

Proof Let F0 = F mod s and ρ0 = ρmod s. (g.s.s.) =⇒ (a.i.). The reducibility of
ρ0|π1(Y ) ⊗ κ implies the existence of a proper subbundle of F0 ⊗ κ with slope 0.

(a.i.) =⇒ (g.s.s.): As F0 is étale trivialized, it is geometrically slope-semistable.
Since a subbundle with slope 0 of a trivial bundle is trivial, the existence of a proper
subbundle of F0 ⊗ κ with slope 0 implies the reducibility of ρ0|π1(Y ) ⊗ κ.

Since the absolute irreducibility of (ρmod s)|π1(Y ) implies the same property for
ρ|π1(Y ) and ρmod s then the second equivalence follows from Lemmas 2.9 and 2.8(ii).

Proof of Theorem 1.1
(i)⇒ (ii) By Proposition 2.7, there exists a strictly Frobenius-periodic rank-r vec-

tor bundle (F, ξ, det = 1) over (Y ⊗κ κ̃) ×κ̃ Spec κ̃[[s]]. Locally, (F, ξ, det = 1)
is defined by transition matrices and linear maps. Let A ⊂ κ̃[[s]] be the finitely
generated κ̃-algebra generated by elements appearing in the matrices that define
(F, ξ, det = 1). Clearly, there exists canonically a strictly Frobenius-periodic bundle
(F ′, ξ ′, det = 1) over (Y ⊗κ κ̃) ×κ̃ Spec A such that its pullback to Y ×κ Spec κ̃[[s]]

https://doi.org/10.4153/CMB-2013-019-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-019-1


444 Y. Yang

is exactly (F, ξ, det = 1). F ′ can be viewed as a family of bundles over Y fixed by
the geometric Frobenius map of Y ⊗κ κ̃ over κ̃, i.e., the N-th power of the geometric
Frobenius map of Y over κ, where N = [κ̃ : κ]. Thus the image of the modular mor-
phism Spec A → MY (r, 0) is in Fix(V N ). By Proposition 2.10, F ′ is a non-constant
family and consists mostly of stable bundles, thus Fix(V N ) has the required proper-
ties.

(ii)⇒(i) It follows from the construction of MXt (2, 0) as a GIT quotient as shown
in [12, Corollary 3.2 & Lemma 3.3].

From now on, in order to obtain representations with an infinite geometric mon-
odromy, we turn to the study of the fixed point locus of the Verschiebung.

3 Proof of Theorem 1.2

In this section, let G = Z/2Z × S3. Let X be a projective smooth ordinary curve of
genus 2 over a field κ of characteristic 2 with Aut(X/κ) = G. Except in the proof
of Theorem 1.2, κ can be infinite. Let X(1) be the scheme deduced from X by the
extension of scalars a 7→ a2 and let FX/κ : X → X(1) be the relative Frobenius map.
Note that the G-action on X induces a G-action on X(1) that is compatible with FX/κ.

3.1 G-action

In this subsection, we study the fixed point locus of the G-action on the Kummer
surface KmX of X and on the coarse moduli space MX(2, 0) of rank-2 semistable
bundles with trivialized determinant over X = X ⊗κ κ.

Let πX : X → |KX| = P1 be the canonical morphism of X. As X is ordinary, the
double covering πX has three ramification points according to Fact 3.1.

Facts 3.1 Let Y be a projective smooth curve of genus 2 over an algebraically closed
field of characteristic p > 0. Assume that L ∈ Pic0(Y ). Then L is of the form OX(P −
Q), where P,Q are closed points of Y . Moreover, if L2 = OY , then L is of the form
OY (R1 − R2), where R1,R2 ∈ Y are ramification points of the canonical morphism
πY : Y → |KY | = P1.

We can assume that the image of the ramification points of πX are {0, 1,∞}. The
Z/2Z-action on X is generated by the hyperelliptic involution of πX , denoted by ι;
the S3-action on X induces an action on the canonical linear system |KX| and hence
can be identified as the permutation group of the branch points {0, 1,∞}. Let τ01 =
(01)(∞) and σ = (01∞). Note that σ fixes four points on X.

The G-action on X induces a G-action on the Jacobian JX and thus on the Kummer
surface KmX of X. We can actually figure out the fixed points of G on KmX .

Lemma 3.2 The set of the fixed points (KmX)G of the G-action on KmX consists of
three points: O⊕2

X , E1,X = OX(Q− τ01(Q))⊕OX(τ01(Q)−Q), and E2,X = OX(Q− ι ◦
τ01(Q))⊕ OX(ι ◦ τ01(Q)− Q), where Q ∈ X is a fixed point of σ.

Proof It suffices to find all line bundles L ∈ Pic0(X) such that g∗L ' L or L−1 for
g = τ01, τ0∞ and σ. By Fact 3.1, L ' OX(Q1 − Q2) for Q1,Q2 ∈ X. The lemma is
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proved by a case-by-case analysis according to the three types of points: (I) the three
ramification points, (II) the four fixed points of σ, (III) all the others.

Clearly E1,X and E2,X are independent of the choice of the fixed point of σ. Take
a fixed point Q1 of σ on X(1); we similarly define E1,X(1) and E2,X(1). We have the
following lemma.

Lemma 3.3 For j = 1, 2, F∗X/κE j,X(1) = E j,X .

Proof Let Q = F−1
X/κ(Q1). Then Q is a fixed point of σ because Q1 ∈ X(1) is a fixed

point of σ and FX/κ preserves the G-action. Since

F∗X/κ
[
OX(1)

(
Q1 − τ01(Q1)

)]
= OX

(
2Q− 2τ01(Q)

)
F∗X/κ

[
OX(1)

(
Q1 − ι ◦ τ01(Q1)

)]
= OX

(
2Q− 2ι ◦ τ01(Q)

)
,

it suffices to prove that 3Q ∼ 3τ01(Q) ∼ 3ι ◦ τ01(Q). This follows from that
Q, τ01(Q), ι(Q), ι ◦ τ01(Q) are the ramification points with index 3 of the quotient
X → X/〈σ〉 ' P1.

By [13], MX(2, 0) is isomorphic to |2Θ| ' P3
κ and the Kummer surface KmX

is a quartic hypersurface. To find the fixed point locus (MX(2, 0))G, we need the
following lemma.

Lemma 3.4 Let H be a subgroup of Aut(Pn
k/k), where k is a field of characteristic p.

Assume that H is generated by elements with order of the form pr. Let P1, P2 ∈ Pn
k be

fixed by H, then the projective line P1P2 is fixed by H.

Proof Identify points P1, P2 with vectors v1, v2 ∈ kn+1. Let h ∈ H have order pr and

h̃ ∈ GL(n + 1, k) be a preimage of h. Then h̃pr

= µIn+1. By assumption, h̃(v1) =

µ1v1 and h̃(v2) = µ2v2. Thus µpr

1 = µ
pr

2 implies µ1 = µ2; therefore, h fixes the line
P1P2.

Proposition 3.5 The fixed point locus of the G-action on MX(2, 0) is a projective line,
denoted by4X .

Proof As (MX(2, 0))G ∩ KmX is a set of three points and KmX is a hypersurface, by
Lemma 3.4, (MX(2, 0))G is a projective line.

3.2 Verschiebung

Let X(n) be the scheme deduced from X by the extension of scalars a 7→ a2n

. Denote
by Fn the relative Frobenius Fn : X(n)→ X(n + 1) and by Vn the Verschiebung

Vn : MX(n+1)(2, 0) � MX(n)(2, 0), [E] 7→ [F∗n E].

As X(n) has the same properties as X, the results for X also hold for X(n). Let
4X(n) be the projective line ofMX(n)(2, 0) in Proposition 3.5. As Fn is compatible with
the G-action, the pullback of a G-bundle is a G-bundle, hence Vn(4X(n+1)) ⊂ 4X(n).
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To reduce Vn|4X(n+1) : 4X(n+1) → 4X(n) to a linear map, we point out a base point
of Vn on4X(n+1). Recall from [17] that there is a theta characteristic Bn of X(n) de-
fined as 0→ OX(n) → Fn−1∗OX(n−1) → Bn → 0. Consider the rank-2 bundle Fn∗B−1

n

over X(n + 1). Clearly det(Fn∗B−1
n ) = OX(n+1). Because 0 → Bn → F∗n (Fn∗B−1

n ) →
B−1

n → 0 and deg(Bn) = 1, Fn∗B−1
n is stable and F∗n (Fn∗B−1

n ) is unstable. Moreover,
Fn∗B−1

n has a G-action by construction, thus [Fn∗B−1
n ] ∈ 4X(n+1). Therefore,

Lemma 3.6 The restriction

Vn|4X(n+1) : 4X(n+1)
� 4X(n)

is a linear map.

Proof By [13, Proposition 6.1], Vn is defined by qradratic polynomials. Thus
Vn|4X(n+1) is given by two quadratic polynomials {h1, h2} in two variables. As
Vn|4X(n+1) has a base point [Fn∗B−1

n ], h1 and h2 have a common linear factor, thus
Vn|4X(n+1) is reduced to a linear map.

Proof of Theorem 1.2 Assume that #κ = 2d. Note that X(d) = X. As the rational
map V is the composition V0 ◦V1 ◦ · · · ◦Vd−1 and

Vn|4X(n+1) : 4X(n+1) � 4X(n)

is linear for 0 ≤ n ≤ d − 1 by Lemma 3.6, thus V |4X is linear. Moreover,
Lemma 3.3 holds for every X(n), i.e., there are semistable bundles E1,X(n), E2,X(n) such
that Vn([E j,X(n+1)]) = [E j,X(n)] for j = 1, 2. Thus V |4X has three distinct fixed
points, i.e., [O⊕2

X ], [E1,X], and [E2,X]. In conclusion, V |4X is the identity map.

Remark 3.7 Actually, it can be shown that there exists a vector bundleE over X×κΛ
with Λ = Specκ[λ] such that (1) the modular morphism i : Λ → 4X is an open
immersion with the only missing point to be [O⊕2

X ]; (2) there exists a morphism
(Fd

X× idΛ)∗E→ E that is isomorphic if replacing Λ by an open subset; (3) all bundles
Eλ are subbundles of K2

X ⊕ KX .

Remark 3.8 By [1], a curve in Theorem 1.2 is defined by the equation

y2 + (x2 + x)y + (t2 + t)(x5 + x) + t2x3 = 0, t 6= 0, 1.(3.1)

Note that the automorphism group Aut(C0/F2) of the curve C0/F2 in [12] is not
Z/2Z× S3. Instead, we consider C0 ⊗F2 F22 with Aut(C0 ⊗F2 F22/F22 ) = Z/2Z× S3.
That is the case when t ∈ F4\F2 in equation (3.1).

4 Discussion of Characteristics 3 and 5

Let Y be a projective smooth genus-2 curve over a finite field κ of characteristic p > 2.
Note that the canonical morphism πY : Y → |KY | = P1 is ramified at 6 points, which
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implies that Aut(Y/κ) ⊂ Z/2Z× S6. It is known that MY (2, 0) is isomorphic to the
linear system |2Θ| ' P3

κ over Pic1(Y ). Let

V : MY (2, 0) � MY (2, 0)

be the rational map induced by the geometric Frobenius map of Y over κ. Let Y (n),
Fn : Y (n)→ Y (n + 1) and

Vn : MY (n+1)(2, 0) � MY (n)(2, 0)

be the same as in Subsection 3.2. By [14, Proposition A.2], Vn’s are given by polyno-
mials of degree p. Assume that #κ = pd, then Y (d) = Y .

Recall from the proof of Theorem 1.2 that a large part can be applied to other
characteristics. In particular, the following two facts are true.

Lemma 4.1 If V m|Z = idZ for a reduced subscheme Z ⊂MY (2, 0) of positive dimen-
sion and for some m > 0, then the closure Z of Z contains a base point of Vd−1.

Lemma 4.2 Assume that p = 3 or 5. Let H ⊂ Aut(Y/κ) be a subgroup generated by
elements with order of the form pn. Let

V : MY (2, 0) � MY (2, 0)

be the rational map given in the notations. Assume that the set (KmY )H of fixed points
of H on the Kummer surface KmY is finite. Given a semistable bundle [E] ∈MY (2, 0)H

satisfying that F∗Y E is semistable and [F∗Y E] 6= [O⊕2
Y ], where FY is the absolute Frobenius

map of Y . Then the fixed point locus of the H-action on MY (2, 0) is a projective line,
denoted by4Y , and the restriction of V to4Y is a rational map V |4Y : P1

κ → P1
κ.

The special property of characteristic 2 that is used in proving Theorem 1.2 is
that the existence of a single base point on 4Y (n+1) is sufficient to lower the degree
of the polynomials that define (Vn)|4Y (n+1) from 2 to 1. Similar cases may happen in
other small characteristics. However, in large characteristic, as was proved in [10,
Proposition 3.1] that every Vn has exactly 16 base points for characteristic p > 2,
then the intersection number of 4Y (n) with the scheme-theoretic base locus Bn of
Vn−1 is required to check if (Vn−1)|4Y (n) can be reduced to a linear map. To calculate
4Y (n) ∩Bn, more about Vn should be discovered.

If suitable conditions could be found to ensure that every (Vn)|4Y (n+1) is linear,
then the map V |4Y in Lemma 4.2 is linear and non-constant; moreover, as V |4Y is
defined over a finite field, there exists some N such that (V |4Y )N = id. Therefore,
by Theorem 1.1, we would obtain representations of π1(Y ⊗κ κ̃) with an infinite
geometric monodromy.
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