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Let m, n and / be positive integers satisfying m ^ n ^ / 2: 3. Denote by
h(m, n, /) the largest integer with the property that from every n-subset of
{1,2, •••,m} one can select h(m,n,l) integers no / of which are in arithmetic
progression. Let / (« , / ) = h(n,n,l) and let g(n, 1) = mmmh{m,n,I). In what
follows, by a P,-free set we shall mean a set of integers not containing an arithmetic
progression of length /.

It has been conjectured that / (n , /) = o(n) for each fixed /, but this has been
proved only in the cases / = 3 and 4, by Roth [8] and Szemeredi [8] res-
pectively. Szekeres had conjectured (see [3; p. 223]) that to each / there corre-
sponds a number a, < 1 such that / (n , /) = O(n"'). This however was proved false
by Salem and Spencer [9] who proved that /(n,3) > n i-('og2 + C)/iogiognfor e v e r y

£ > 0 provided n is large enough. Improvements, refinements and extensions
of this result were obtained by Behrend [2], Moser [5] and Rankin [6]. Rankin
proved that if

(1) 2s < / ^ 2 S + 1 and c(s,e) = (s +l)2s / 2(log2)s / ( s + 1 )(l + e)

then

(2) / ( „ , / ) >nl-(^)/(lognW<S+1>

provided n is sufficiently large.
As far as the function g is concerned, Riddel] [7] proved that

g(n,l)> en1'2/l and that g(n,3) > en1'2. Erdos has informed us that Sze-
meredi has recently proved g(n, 3) > n1~s for every e > 0 provided n is sufficiently
large. Szemeredi's proof has not yet been published. We observe that while
d(n> 0 ==i / (« , 0> 't is o n ' y m t n e c a s e I = 3, with n = 5 or 14, that strict inequality
is known to hold. The sets 1,3,4,5,7 and 1,3,4,5,7,8,9,11,12,13,15,16,17,19
illustrate that gr(5,3) = 3 </ (5 ,3) = 4 and #(14,3) ^ 7 </(14,3) = 8. The
values of / (n , 3) for n ^ 52 have been computed by Wagstaff [11].

With regard to the function h, Riddell [7] proved that if a ^ 1,
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(3) / ] ( r y ] ) n ) 3 ) > n l - 3 \ /

In [7] Riddell proves also that if m ^ n3 then almost all n-subsets of
{1,2, —,m} contain a P3-free subset of cardinality at least n1"'3 Veiog2 +£)/Viogn

The arguments used in [7] do not generalize to the case / > 3. It is to this
question that we turn our attention in this paper. We prove the following two
results which improve and extend the results in [7].

THEOREM 1. Let I ^ 3 be given and let s and c(s,e) be defined by (1).
Then for m ^ mo(s, e)

(4) h(m,n, I) > nm-c(s-sWl°gm)s'ls"'.

THEOREM 2. Almost all sets of n integers from {1,2, •••,m} contain a

Prfree subset of cardinality at least n i - ^ > / ( i ° 8 " ) s " * + 1 ) provided m ^ n1 + e

and n is sufficiently large.

PROOF OF THEOREM 1. Let A be a P,-free subset of {1,2, •••,m). We assume
that A is maximal so that | A | = f(m, 1). If X is an integer then by A + X is meant
{a + A|ae/l}. Let X1 = 0, and after numbers X1,X2,--,X, have been defined,
select Xr+1 so that A+ Xr+1 contains the largest number of elements in {1,2, •••, m)
that do not belong to A + Xj for j = 1,2, •••, r. Let k be the first integer such that
U j ^ i ^ + -̂j — {1J2, • • • , ' "} . It was proved in [1], using a modification of an
argument of Lorentz [4], that

f(ml) ;

Since the argument is not long we present the proof of (5) here. Let
M = {1,2, •••,m) and let Ax = MC\(A + X). Let B1 = AXl, and for r ^ 2 let
Br = Alr - Ui = ! 41, • Let z = f(m, I) and define numbers t(z), t(z - 1), •••, t(l),
t(0) recursively as follows: t(z) is the largest integer such that \B/i\ = z for
fi = l,2,---,t(z). After the numbers t(z), t(z — l),---,t(u + 1) have been defined

(w ^ 1) let t(u) be the largest positive integer for which \Bfl\ = u for

i = u + 1 i = u

provided such a positive integer exists. If there is no such positive integer, put
t(u) = 0. Finally put ((0) = 0. It is clear that

(6) k = £ /(«).
« = i

Now define a sequence of subsets MZ,MZ_1, •••,M1,M0 of M as follows: M2 — M
and for 1 ^ u g z — 1,
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M,, = [a\aeM,a$AXi for i = 1,2,-, £ t(j).\

Let Mo be the empty set. Then clearly, for 1 ^ u <; z,

| Af._,| = | M U | - M / ( U ) .

Equivalently,

(7) r(M) = i-( |Mu|- |Ml )_1|) .

From (6) and (7) we get

(8) k= i l(|Mj-|Mu_1|) = V - I ^ L + J ^ L I .

For each A, | A | 5£ m, we have | Ax n Mu| g w and hence

m

(9) I | Ax n MH | g (2m + 1)M.
A = — m

Since each reMu belongs to exactly z of the sets Ax we have

(10) 2 \Axr\Mu\ = Z\MU\.

From (9) and (10) we get

(11) p£Ui?L+i
and from (8) and (11) it follows that

, c ^ 2 m + l * 1

z « = i «

which is (5).
Now let S ^ M, \s\ = n. Then for some j , 1 ^ j ' ^ fc we must have

S n (̂ 4 + Ay) | ^ njk. Since arithmetic progressions are invariant under trans-
lation S C\{A + Xj) is P,-free. Hence we have

(12) h(m, n, I) ^ n/k.

It now follows from (2), (5) and (12) that (4) holds and hence Theorem 1 is proved.

REMARK 1. If we take m = [n°] and / = 3 in (4) we get

which is an improvement over (3).
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REMARK 2. One can also ask questions of the following type: What is
the size of a maximal P,-free set that can be chosen from some set of integers that
arises in a "natural way"? We mention only one example. It follows from our
theorem that one can select from the set of the first n primes a P,-free subset of
cardinality at least ni-«c.«)/(ioi»)•'«•+»)_ T h i s c a n b e s e e n b y t a k i n g m t o b e t h e

nth prime and appealing to the prime number theorem.

Before proving Theorem 2 we shall need to prove some lemmas which are
extensions of results given in [7]. By a Pil) set of intervals we shall mean a set of
intervals

Xj = (u + (xj - l)v, u + Xjv], j = 1,2, ••-, r

where {xl,x2, •••,xr} is a Pj-free s e t of integers and where u and fare real numbers,
v > 0. Put Xj = (u + (xj - l)t>, u + (xj - £)u] and put Xj = (u + (x} - i)v,
U + XjV].

LEMMA 1. (JJ=i2G contains no l-term arithmetic progression with terms in
different intervals; similarly for UJ=i-^/-

PROOF. The proof in the case / = 3 is given in [7]. The argument for / ^ 3
is similar. Suppose \Jj = iXj contains an /-term arithmetic progression. If two
terms of this arithmetic progression lie in an interval Xj then all of the terms
must belong to Xj since the common difference of the arithmetic progression
is less than the distance between intervals. The only other possibility is that the /
terms of the arithmetic progression are in / different intervals, say Xj^Xj^ •••,Xjl-
However, this implies that xjoXj2, • ••,*;, form an arithmetic progression and this
is a contradiction. The same argument applies to (J/=i Xj-

LEMMA 2. If a set of numbers has elements in each interval of a P(() set of
r intervals, then it contains a Pt-free subset of cardinality at least [ ( r+ l)/2].

PROOF. This follows easily from Lemma 1.

LEMMA 3. Let t be an integer, t £j m. Let w = mt~l. Let b(k,n) be the

number of n-subsets of {1,2, --^m} that have elements appearing in fewer than
k of the intervals

(13) (0 ,w] , (w,2w], ( 2 w , 3 w ] , . • - , ( ( * - l)w,*w].

Then

(w + l)ntkkn+1

(14) b(k,n)<
n\

PROOF. Denote by f(j) the number of n-subsets of {1,2, •••,m] which have

elements in exactly j of the intervals (13). Then
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where the summation is over all compositions of n into exactly j parts. From the
/ \ b

inequality I I Sj — < a 6 and the multinomial theorem we get
\b I b)

f(j) < t> s (tv + 1)n < < z ± i W
/ W = t1+b2+ .+bj,n b,\b2\-bs\ = n!

Now we can estimate fo(/c, n). We have
k

b(k,n) ^

and this is (14). Hence Lemma 3 is proved.

If we take t = [n1 + e] in Lemma 3, put k = [en/(l + e)] and impose the
condition 0 < s < l/(2e — 1), we get, after some routine calculations,

Thus we have a further lemma.

LEMMA 4. Let 0 < e < l/(2e - 1). Lef fe = [en/(l + e)], t = [n1 + t ] ,

m ^ f and w = mr"1. T/ien almost all n-subsets of {1,2, •••, m} Ziare elements
occurring in at least k of the intervals (13).

PROOF OF THEOREM 2. Let e, m, t, n and fc satisfy the conditions of Lemma 4.
Let S be an n-subset of {1,2, •••, TO}, and suppose S has elements in at least k of
the intervals (13). By Lemma 4, almost all M-subsets S will have the latter property.
At least h(t, k, I) of these t intervals form a P(/ ) set of intervals, and hence, by
Lemma 2, S contains a P,-free set of cardinality at least [{/i(r, fc, /) + l}/2].
It follows from this and Theorem 1 that S contains a P,-free set of cardinality at
least (fe/2)rf(S£)/(logt)*/(*+I). This implies Theorem 2.

REMARK. 3. If we take / = 3 we find that almost all n-subsets of {1,2, •••, m}

contain a P3-free set of cardinality at least n 1 " 2 x / 2 l o g 2 ( 1 + £)/log'1 provided
TO ^ n1 + £ and n is sufficiently large. This result is sharper than the corresponding
result in [7].
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