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The occurrence of system-scale coherent structures, so-called condensates, is a
well-known phenomenon in two-dimensional turbulence and is a consequence of
the inverse energy cascade – the energy transfer from small to large scales that is
a characteristic of two-dimensional turbulence. Here, the onset of the inverse energy
cascade and the ensuing condensate formation are investigated as a function of
the magnitude of the force and for different types of forcing. Random forces with
constant mean energy input lead to a supercritical transition, while forcing through
a small-scale linear instability results in a subcritical transition with bistability and
hysteresis. That is, the transition to two-dimensional turbulence is non-universal. For
the supercritical case we quantify the effect of large-scale friction on the value of the
critical exponent and the location of the critical point.
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1. Introduction
Two-dimensional (2-D) and quasi-2-D flows occur at the macro- and mesoscale in

a variety of physical systems. Examples include plasma flow in the solar tachocline
(Spiegel & Zahn 1992), Earth’s atmosphere near the tropopause (Nastrom, Gage
& Jasperson 1984; Gage & Nastrom 1986; Falkovich 1992), stratified layers in
the oceans (Vallis 2006), laboratory experiments using electrolyte layers (Sommeria
1986) and soap films (Vorobieff, Rivera & Ecke 1999) and, more recently, also
dense bacterial suspensions, where the collective motion of microswimmers induces
patterns of mesoscale vortices (Dombrowski et al. 2004; Dunkel et al. 2013; Gachelin
et al. 2014). A characteristic feature of 2-D turbulence is the occurrence of an
inverse energy cascade (Kraichnan 1967), whereby kinetic energy is transferred
from small to large scales. Kraichnan’s theoretical prediction has been verified in
experimental studies of thin fluid layers (Sommeria 1986; Paret & Tabeling 1997,
1998) and through numerical simulations (Lilly 1969; Frisch & Sulem 1984; Verron &
Sommeria 1987), to name only the first few. A detailed overview on 2-D turbulence
can be found in the review article by Boffetta & Ecke (2014). In confined systems,
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this self-organisation can result in the formation of large-scale coherent structures
(Kraichnan 1967; Hossain, Matthaeus & Montgomery 1983; Sommeria 1986; Smith
& Yakhot 1993), so-called condensates (Smith & Yakhot 1993). These may emerge
in different forms depending on the geometry and boundary conditions, e.g. as vortex
monopoles in the case of experimental conditions, i.e. wall-bounded flows (Sommeria
1986; Paret & Tabeling 1998; Molenaar, Clercx & van Heijst 2004; van Heijst, Clercx
& Molenaar 2006), if the Rayleigh damping, that is the friction between the moving
fluid and the bottom plate of the confining experimental apparatus, is small, or as
vortex dipoles or jets (Smith & Yakhot 1993; Bouchet & Simonnet 2009; Frishman,
Laurie & Falkovich 2017) in the case of periodic boundary conditions.

The inverse energy cascade in 2-D turbulence is connected with an additional
inviscid conservation law, that of enstrophy. Physically, it is a consequence of the
anisotropic stretching of small-scale vortices by large-scale strain followed by an
alignment of the small-scale velocity field around the stretched vortex with the
large-scale strain field, thereby reinforcing the latter (Chen et al. 2006). However,
inverse cascades and thus condensates are not specific to 2-D phenomena. They occur
whenever fluctuations in one spatial coordinate are suppressed, as is the case in thin
fluid layers (Sommeria & Verron 1984; Sommeria 1986; Paret & Tabeling 1997, 1998;
Shats, Xia & Punzmann 2005; Xia, Shats & Falkovich 2009; Celani, Musacchio &
Vincenzi 2010; Xia et al. 2011; Musacchio & Boffetta 2017) or, for instance, in the
presence of rapid rotation (Deusebio et al. 2014; Rubio et al. 2014; Gallet 2015),
stratification (Sozza et al. 2015) or both (Marino et al. 2013), and in the presence
of a strong uniform magnetic field (Gallet & Doering 2015) for weakly conducting
flows. Another, fully three-dimensional (3-D) mechanism that leads to inverse energy
transfer is breaking of mirror symmetry (Waleffe 1993; Biferale, Musacchio & Toschi
2012). In magnetohydrodynamic turbulence, the latter can result in the formation
of magnetic condensates through large-scale dynamo action or the inverse cascade
of magnetic helicity (Frisch et al. 1975; Pouquet, Frisch & Léorat 1976). Finally,
spectral condensation also occurs in toroidal confined plasmas, to the effect that an
analogy between 2-D turbulence and toroidal plasma turbulence exists, at least at
the level of theoretical models (Horton & Hasegawa 1994) and in phenomenological
terms (Shats et al. 2005).

Inverse energy transfer can thus occur in different physical systems, and one could
imagine that the onset thereof may depend on the details of the system, such as the
dimensionality or the presence of a magnetic field, for instance. Smooth, supercritical
and subcritical transitions between non-equilibrium statistically steady states have
indeed been observed in this context. In 3-D rotating domains for example, the
nature of the transition between forward and inverse energy transfer with respect
to the rotation rate depends on the mechanism by which the condensate saturates
(Seshasayanan & Alexakis 2018). In the case of weak or vanishing friction with side
or bottom walls, the two saturation scenarios are: (i) saturation by viscous effects
as in two dimensions, where the condensate becomes sufficiently energetic for the
upscale flux to be balanced by viscous dissipation (Chan, Mitra & Brandenburg 2012),
or (ii) saturation by local cancellation of the rotation rate by the counter-rotating
vortex that forms part of the condensate (Alexakis 2015). In case (i) the transition is
supercritical (Seshasayanan & Alexakis 2018), and in (ii) it is subcritical (Alexakis
2015; Yokoyama & Takaoka 2017; Seshasayanan & Alexakis 2018), showing
bistability and hysteresis (Yokoyama & Takaoka 2017). Similar results have been
obtained if the magnitude of the forcing is used as a control parameter at a fixed value
of the rotation rate (Yokoyama & Takaoka 2017), with random and static forcing both
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resulting in a subcritical transition. The latter was interpreted as evidence in support
of universality. Hysteretic transitions and bistable scenarios also occur in thin layers
as a function of the layer thickness (van Kan & Alexakis 2019). Subcriticality in
the transition to condensate formation in rapidly rotating Rayleigh–Bénard convection
has been connected with non-local energy transfer from the driven scales into the
condensate due to persistent phase correlations (Favier, Guervilly & Knobloch 2019).

In summary, transitions in cascade directions from direct to inverse and vice
versa have received considerable attention in recent years, Alexakis & Biferale
(2018) provide a comprehensive overview thereof. Further to this, certain aspects
of condensate dynamics, such as circulation reversals, that occur for weak Rayleigh
damping (Sommeria 1986; Molenaar et al. 2004), and vortex breakdown due to
viscous boundary layers (Molenaar et al. 2004), have been investigated experimentally
and numerically. Spontaneous transitions between condensates and disordered states
have been observed in toroidal plasma turbulence (Shats et al. 2005). However,
transitions to purely 2-D turbulence have only been studied in the context of
wave turbulence described in terms of the Gross–Pitaevsky equation (Vladimirova,
Derevyanko & Falkovich 2012), and in active matter. In the former, the transition
depends on the details of the small-scale driving, i.e. it is non-universal. In the latter,
spatio-temporal chaos and classical 2-D turbulence with a condensate are connected
by a subcritical transition (Linkmann et al. 2019, 2020). Here, we extend this work
and focus on the transition to two-dimensional turbulence as a function of the intensity
and the type of driving, and in the presence of large-scale friction. Conceptually, the
2-D geometry differs substantially from thin layers or rapidly rotating 3-D domains,
as the energy transfer is now purely inverse while in the latter two cases 2-D and 3-D
dynamics, with the corresponding cascade directions, co-exist. That is, the transition
investigated here does not occur between two non-equilibrium statistically steady
states with different multiscale dynamics. Instead, in two dimensions one state has
multiscale dynamics and the other is a spatio-temporally chaotic state concentrated
at the driven scales. In that state the nonlinear interscale transfer is too weak to
excite motion at scales outside the driven range of scales. Hence the transition in
two dimensions is towards and away from multiscale dynamics, not between different
types of such. By means of direct numerical simulations we show that the nature of
the transition depends on the type of driving: it is supercritical for random forcing
and subcritical if the driving is given by a small-scale linear instability. In the former
case we also explore the effect of large-scale friction on the location of the critical
point and the value of the critical exponent.

2. Numerical details
We consider the 2-D Navier–Stokes equations for incompressible flow in a square

domain V embedded in the xy-plane with periodic boundary conditions. In this case,
the Navier–Stokes equations can be written in vorticity form

∂tω+ (ω · ∇)u=−αω+ ν1ω+ (∇× f )z, (2.1)

where u= (ux(x, y), uy(x, y), 0) is the velocity field per unit mass, ω the non-vanishing
component of its vorticity ∇ × u = (0, 0, ω), ν the kinematic viscosity, α > 0 the
Rayleigh damping coefficient and f a solenoidal body force. The subscripts x, y and
z denote the respective components of a 3-D vector field.

We carry out direct numerical simulations of (2.1) on V = [0, 2π]2 using the
standard pseudospectral method (Orszag 1969) for spatial discretisation in conjunction
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with full dealiasing by truncation following the 2/3rds rule (Orszag 1971). The initial
data consist of random, Gaussian distributed vorticity fields. Owing to the focus
on condensate formation and its dependence on large-scale friction, the friction
coefficient α was small or set to zero in some of the simulations. In the latter case
the condensate saturates on a viscous time scale (Chan et al. 2012; Linkmann et al.
2020) with the consequence that the simulations need to be evolved for a long time
in order to obtain statistically stationary states. Similarly long transients occur for
low values of α. As such, it was necessary to compromise on resolution, and the
simulations were run using 2562–5122 grid points.

In order to study the transitions, we conduct a parameter study for a stochastic,
Gaussian distributed and δ-in-time correlated force f s that is applied at scales
corresponding to a wavenumber interval [kmin, kmax], and compare the results with
those obtained with a forcing that is linear in the velocity field (Linkmann et al.
2019, 2020), i.e.

f̂ l(k)= νINk2γkû(k), (2.2)

where γk is a spherically symmetric Galerkin projector

γk =

{
1 for k ∈ [kmin, kmax],

0 otherwise.
(2.3)

Here, k=|k|, while ·̂ denotes the Fourier transform and νIN > 0 an amplification factor,
such that the driving occurs through a linear instability in the wavenumber interval
[kmin, kmax]. The linear forcing is inspired by single-equation models describing dense
bacterial suspensions (Wensink et al. 2012; Słomka & Dunkel 2015; Linkmann et al.
2019, 2020), where active turbulence occurs. The latter is a spatio-temporally chaotic
state characterised by the formation of mesoscale vortices owing to the collective
effects of the microswimmers. These vortices occur in a narrow band of length
scales, and can be described through a linear instability in the wavenumber interval
[kmin, kmax] (Wensink et al. 2012; Słomka & Dunkel 2015; Linkmann et al. 2020).
Our previous studies (Linkmann et al. 2019, 2020), where linear forcing through
a piecewise constant function as in (2.3) was introduced, were carried out in that
context. In order to mimic the functional form of previously proposed single-equation
models (Wensink et al. 2012; Słomka & Dunkel 2015), which feature a hyperviscous
term, an additional dissipation term ν21ω had been used at small scales, i.e. at
k> kmin, resulting in the following equation

∂tω+ (ω · ∇)u=−αω+ (ν + ν2)1ω+ (∇× f l)z, (2.4)

where ν2 > ν for k> kmin and zero otherwise.
For both f s and f l, statistically stationary states are eventually reached, where

the spatio-temporally averaged energy dissipation, ε, balances the spatio-temporally
averaged energy input, εIN ,

ε := 〈ε(t)〉t = ν〈ω2
〉V,t + α〈|u|2〉V,t = 〈 f · u〉V,t = 〈εIN(t)〉t =: εIN, (2.5)

with 〈·〉V,t=〈〈·〉V〉t denoting the combined spatial and temporal average. For Gaussian-
distributed and δ(t)-correlated random forcing, εIN is known a priori (Novikov 1965)

εIN s = 〈 f s · u〉V,t =
F2

2
, (2.6)
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N F α Re Ref U Uf L τ

256 0.08–0.23 0 21–11 817 9.4–11.8 0.09–3.05 0.06–0.07 0.11–1.94 1.21–0.64
256 0.10–0.29 0.0005 19–10 083 9.4–15.0 0.09–2.67 0.06–0.09 0.11–1.89 1.24–0.71
256 0.10–0.32 0.001 19–8719 9.4–16.8 0.09–2.36 0.06–0.10 0.11–1.85 1.24–0.78
256 0.10–0.32 0.005 17–3592 9.5–18.3 0.09–1.08 0.06–0.11 0.10–1.67 1.15–1.55

512 0.11 0 29.1 9.79 0.106 0.057 0.14 1.32
512 0.14 0 2321.5 10.14 0.627 0.059 1.85 2.95
512 0.23 0 12587.2 11.45 3.242 0.067 1.94 0.60

TABLE 1. Simulation details, where N is the number of grid points in each coordinate, F
the magnitude of the force acting in the interval [kmin, kmax] with kmin=33 and kmax=40 for
all simulations, α the large-scale friction parameter, Re=UL/ν the Reynolds number with
respect to the root-mean-square velocity U, the integral length scale L= 2/U2

∫
∞

0 dkE(k)/k
and the kinematic viscosity ν. The latter was set to ν = 0.0005 for all simulations. The
Reynolds number at the driven scales is Ref =Uf Lf /ν, with Uf = (

∫ kmax

kmin
dkE(k))1/2 denoting

the velocity at the driven scales and Lf = 2π/(kmin + kmax). The large-eddy turnover time
is denoted by τ = L/U.

where F = (〈| f s|
2
〉V,t)

1/2. That is, the energy input is a control parameter rather than
an observable in simulations using f s. Details of the simulations are summarised in
table 1.

For the linear forcing, the energy input is

εIN l(t)= 2(νIN − ν)

∫ kmax

kmin

dk k2E(k, t), (2.7)

where
E(k, t)= 1

2

∫
|k|=k

dk |û(k, t)|2, (2.8)

is the energy spectrum. Equation (2.1) with f = f l and the aforementioned enhanced
small-scale damping has been solved numerically by Linkmann et al. (2019, 2020)
in the context of transitions to large-scale pattern formation in dense suspensions of
active matter. Here, we compare our simulations listed in table 1 against the data of
Linkmann et al. (2019, 2020), as summarised in table 2. All simulations are evolved
for several thousand large-eddy turnover times τ = L/U, where U is the root-mean-
square velocity and L = 2/U2

∫
∞

0 dkE(k)/k the integral length scale, with E(k) =
〈E(k, t)〉t.

3. Random forcing
Before reporting on the results from the parameter study varying F, we briefly

discuss dynamical and statistical properties of the simulated flows using three example
cases with F=0.11, F=0.14 and F=0.23. In order to facilitate the direct comparison
with our previously published results using linear driving, the following presentation
and discussion of the example cases is structured similarly to those discussed in
Linkmann et al. (2019, 2020).

Time series of the kinetic energy E(t)=〈|u|2〉V/2 and visualisations of vorticity field
samples taken during statistically steady evolution corresponding to the three example
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N (νIN − ν)/ν kmin kmax Re Ref U L τ

256 0.25–7.0 33 40 19–13 677 14–21 0.29–7.77 0.07–1.92 0.24–2.29
1024 1.0 129 160 45 21 0.027 0.029 1.07
1024 2.0 129 160 226 20 0.041 0.094 2.29
1024 5.0 129 160 132914 15 1.17 1.93 1.65

TABLE 2. Parameters used in DNSs using linear forcing and resulting observables
(Linkmann et al. 2019, 2020). The number of grid points in each coordinate is denoted
by N, the viscosity by ν, and νIN , kmin, kmax and ν2 are the parameters in (2.2)–(2.4). The
Reynolds number Re = UL/ν is based on ν, the root-mean-square velocity U and the
integral length scale L = 2/U2

∫
∞

0 dkE(k)/k, with ν = 1.1 × 10−3 for N = 256 and ν =

1.7× 10−5 for N = 1024. The Reynolds number at the driven scales is Ref =Uf Lf /ν, with
Uf = (

∫ kmax

kmin
dkE(k))1/2 denoting the velocity at the driven scales and Lf = 2π/(kmin + kmax).

The large-scale friction parameter α= 0 and (ν + ν2)/ν = 10 for all simulations. Averages
in the statistically stationary state are computed from at least 1800 snapshots separated by
one large-eddy turnover time τ = L/U.

cases are shown in figure 1. For F = 0.23 a condensate consisting of two counter-
rotating vortices has formed. The remaining cases do not show large-scale structure
formation. The time evolution of E(t) and the representative vorticity fields of the
three example cases are qualitatively similar to those obtained with linear forcing
discussed in our previous work. Quantitative differences between the mean energy
levels reported here and in Linkmann et al. (2020) are due to the choice of parameter
values. Please note that the example cases only serve to provide a qualitative overview
of the data, which are discussed quantitatively in § 4.

Figure 2 presents energy spectra (a) and normalised fluxes (b) for F=0.11, F=0.14
and F = 0.23. A scaling range characterised by a scaling exponent of the energy
spectrum close to the Kolmogorov value −5/3 and a nearly wavenumber-independent
flux only forms at the largest value of F. For smaller F the flux tends to zero rapidly
for k < kmin, hence dissipation cannot be negligible in this wavenumber range. In all
cases the maximum and minimum values of the normalised flux do not add up to
unity, which indicates that a substantial amount of energy is dissipated directly in
the driving range. Interestingly, for intermediate values of F, the scaling exponent
of the energy spectrum is still close but slightly larger than −5/3. For the smallest
value of F the energy spectrum scales linearly with k for k< 7, indicative of energy
equipartition among Fourier modes in this wavenumber range. A similar transition in
the energy spectra in statistically stationary 2-D turbulence occurs if the condensate is
avoided through a strong drag term (Tsang & Young 2009), in the sense that the extent
of the −5/3 scaling range decreases with increasing large-scale friction and a power
law with positive exponent appears at low wavenumbers. However, as a drag term
alters the scale-by-scale energy balance, it breaks the zero-flux equilibrium condition
that underlies linear scaling in two dimensions, the low-wavenumber scaling in the
presence of drag is expected to differ from the absolute equilibrium scaling observed
here for α = 0. Indeed, in the former case the spectra are much steeper (Tsang &
Young 2009).

Condensates are known to affect inertial-range physics in terms of the properties
of the third-order structure function (Xia et al. 2008) and the scaling of the energy
spectrum in the inertial range of scales (Chertkov et al. 2007). The spectral slopes
observed here for the random forcing case and in the presence of a condensate are
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FIGURE 1. (a) Time series for α = 0 and F = 0.11 (blue), F = 0.14 (purple) and
F = 0.23 (red). The data have been normalised with respect to the time-averaged energy
for F = 0.11, E0, and the data for F = 0.23 have been further divided by a factor
40 for presentational purposes. Time is given in units of large-eddy turnover time
τ . (b) Corresponding visualisations of the respective vorticity fields during statistically
stationary evolution.
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FIGURE 2. Energy spectra (a) and normalised fluxes (b) for α = 0 and F = 0.11 (red),
F= 0.14 (purple) and F= 0.23 (blue) for higher-resolved data in table 1. The grey-shaded
area indicates the driving range. The error bars indicate the standard error calculated from
statistically independent samples.

similar to those reported by Linkmann et al. (2020) for the linearly forced case,
hence the details of the small-scale forcing do not affect the spectral exponent.
Deviations of the spectral exponent from the Kolmogorov value occur in a variety
of turbulent systems. For a modified version of the Kuramoto–Sivashinski equation
that allowed systematic deviations from inertial transfer, Bratanov et al. (2013)
showed by semi-analytical and numerical means that non-universal power laws
arise in spectral intervals where the ratio of linear and nonlinear time scales is
wavenumber independent. As strong condensates result in a significant contribution
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of linear terms to the dynamics, a similar analysis could potentially lead to further
insights on the non-universal scaling exponents in 2-D turbulence.

4. Non-universal transitions
The transition to 2-D turbulence as a function of the energy input has so far only

been investigated for a single-equation model of active matter (Linkmann et al. 2019,
2020). Here, we now study the transition for a different kind of forcing and in the
presence of large-scale friction, as condensates also occur in the presence of drag
(Sommeria 1986; Paret & Tabeling 1998; Danilov & Gurarie 2001; Molenaar et al.
2004; van Heijst et al. 2006; Tsang & Young 2009).

Figure 3(a) presents the shell-averaged amplitude of the lowest Fourier modes,
i.e. the square root of the average energy at the largest scale, A1 =

√
E(k)k=1, as a

function of F from the parameter study for the random, Gaussian-distributed and
δ(t)-correlated forcing. Three main observations can be made from the figure 3(a).
First, there is a clear transition point, below which A1 ' 0 and above which A1
grows with increasing F, indicating the formation of a condensate and thus the onset
of sustained inverse cascade, i.e. 2-D turbulence. Second, the data appear to be
continuous at the critical point Fc with a possibly discontinuous first derivative. The
critical point is approached from above by a power law

A1 ∼ (F− Fc)
γ , (4.1)

where Fc = Fc(α) and γ = γ (α) depend on the value of the large-scale friction
coefficient. For α = 0 the functional form A1(F) corresponds to the upper branch of
the normal form of a supercritical pitchfork bifurcation, that is γ = 1/2. Third, for
F � Fc the amplitude A1 grows linearly with F in all cases. Equivalently, E(k)k=1
grows linearly with εIN , which is expected for a sizeable condensate as most of the
dissipation should then take place at the largest scales

εIN = ε= 2ν
∫
∞

0
dk k2E(k)+ α

∫
∞

0
dk E(k)≈ (2ν + α)E(k)|k=1δk, (4.2)

where δk is the grid spacing in Fourier space.
The dependence of Fc and γ on the large-scale friction coefficient α is further

quantified in figure 4. As can be seen in the figure, the approach to the critical point
described by the exponent γ , is strongly and nonlinearly dependent on the level of
large-scale friction, while the location of the critical point varies little. A least-squares
fit of A1 against F places the critical point at Fc = 0.135 for α = 0. For α = 0.0005
we have Fc = 0.136 and γ = 0.72, α = 0.001 results in Fc = 0.138 and γ = 0.78 and
α = 0.005 corresponds to Fc = 0.146 and γ = 1. According to the discussion in the
previous paragraph, γ = 1 is an asymptotic value in the sense that higher exponents
are not expected.

The type of transition is very different if the driving occurs through a small-scale
linear instability. Figure 3(b) presents the results of the parameter study carried out
by Linkmann et al. (2019, 2020) as a function of νIN for the linear forcing specified
in (2.2). In contrast to the randomly forced case, the transition is now subcritical
(Linkmann et al. 2019, 2020) as evidenced by a discontinuity in the data and the
clearly visible hysteresis loop. The latter is discussed by Linkmann et al. (2020) in
further detail, with figure 3 showing the same result as figure 5 of the aforementioned
publication, using A1 instead of E(k)|k=1. As the hysteresis loop is small, one may
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FIGURE 3. Shell-averaged amplitude of the Fourier modes at the largest scale, A1 =√
E(k)k=1, as a function of F for random forcing (a) and νIN for linear forcing (b).
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FIGURE 4. Dependence of the critical point Fc (a) and the exponent γ (b) on the
large-scale damping coefficient α. The error bars show the error of the fit (one standard
deviation).

expect that the transitions happen at comparable values of a forcing-scale Reynolds
number Ref = Uf Lf /ν, where Lf is a length scale that corresponds to the middle
wavenumber in the driven range, Lf = 2π/(kmin+ kmax), and Uf is the root-mean-square
velocity in that range of scales

Uf =

(∫ kmin

kmin

dk E(k)
)1/2

. (4.3)

This is indeed the case, the transition occurs at Ref ≈ 20 in the subcritical case
(Linkmann et al. 2019) and at Ref ≈ 10 in the supercritical case studied here.

Non-universality in the transition to condensate formation also occurs in the
Gross–Pitaevsky model of wave turbulence: for small-scale driving by a local-in-scale
linear instability, a series of symmetry-breaking sharp transitions occur as function of
increasing wave action (Vladimirova et al. 2012). The first statistical symmetry that
breaks with increasing condensate growth is isotropy, followed by twofold, threefold
and fourfold symmetries. Interestingly, such symmetry breaking does not occur if the
driving is realised through a small-scale random process. That is, final turbulent states
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with different statistical symmetries are obtained for different types of small-scale
energy input. In weak turbulence, differences between turbulent states originating
from the type of driving arise in the context of information theory through different
entropy extraction rates (Falkovich & Shavit 2019). As a non-equilibrium steady
state, turbulence is a driven-dissipative system, that is, its phase-space measure will
be non-uniform, detailed balance is broken and the information-theoretic entropy of
that measure (here, the differential entropy of the phase-space measure with respect
to the Lebesgue measure) becomes time dependent. Only driving and dissipation
contribute to this time dependence, and Falkovich & Shavit (2019) showed that the
rate of change in (differential) entropy depends explicitly on the phase-space measure
for random forcing while it is independent thereof if the driving is given by a
local-in-scale linear instability. In other words, the information context of the system
depends on the type of driving, which may be expected, especially concerning
comparisons with random forcing. Here, we did not observe any difference in
statistical symmetry between randomly forced 2-D turbulence and 2-D turbulence
generated by a small-scale instability, however, this may well be because the
condensates attained here and in our previous work are moderate in amplitude.

5. Conclusions
We here study the formation of the condensate and thereby the transition to 2-D

turbulence as a function of the type and amplitude of the forcing. Direct numerical
simulations show that the condensate does not appear gradually but in a phase
transition. For prescribed energy dissipation the transition is second order, and both the
critical point and the critical exponent depend on the value of the large-scale friction
coefficient. In this context, we point out that ε does not depend on α for the random,
δ(t)-correlated forcing used here, as is the case for time-independent forcing such as
Kolmogorov flow (Tsang & Young 2009). However, a series of test simulations using
time-independent forcing led to similar results (S. Musacchio & G. Boffetta, private
communication). When the forcing is due to a small-scale instability as inspired by
continuum models of active matter, the transition is first order (Linkmann et al. 2019,
2020). The phase transitions separate two markedly different types of 2-D dynamics:
in 2-D turbulence, energy input is predominantly balanced by large-scale dissipation
either in the condensate or through Rayleigh friction, and intermediate scales follow
an inertial cascade; in spatio-temporally chaotic states where no condensation occurs,
dissipation is spread over the intermediate scales and the properties of the energy
transfer are noticeably different and non-universal.

In summary, the transition to 2-D turbulence is non-universal in the sense that
(i) the type of transition depends on the type of forcing, and (ii) the details of
the transition for a given type of forcing depend on other system parameters such
as large-scale friction. The presence of these non-universalities naturally motivates
questions concerning their origin. Results from rapidly rotating Rayleigh–Bénard
convection (Favier et al. 2019) suggest that the hysteretic transition in the linearly
forced case may be related to persistent phase correlations between the driven scales
and the condensate. Random forcing precludes such a scenario. Further questions
concern the theoretical predictions on the dependence of the critical exponent γ
on the level of large-scale friction. The value γ = 1 is plausible for strong linear
damping by the same argument that predicted a linear dependence of the energy in the
condensate on the energy input. Finally, it remains to be seen if symmetry-breaking
transitions between condensates as in the Gross–Pitaevsky equation (Vladimirova
et al. 2012) also occur for the 2-D Navier–Stokes equations.
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