
LMS J. Comput. Math. 19 (1) (2016) 1–15 C© 2016 Authors

doi:10.1112/S1461157015000303
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Abstract

The aim of the discrete logarithm problem with auxiliary inputs is to solve for α, given the

elements g, gα, . . . , gα
d

of a cyclic group G = 〈g〉, of prime order p. The best-known algorithm,
proposed by Cheon in 2006, solves for α in the case where d | (p ± 1), with a running time of

O(
√
p/d + di) group exponentiations (i = 1 or 1/2 depending on the sign). There have been

several attempts to generalize this algorithm to the case of Φk(p) where k > 3. However, it has
been shown by Kim, Cheon and Lee that a better complexity cannot be achieved than that of
the usual square root algorithms.

We propose a new algorithm for solving the DLPwAI. We show that this algorithm has a

running time of Õ(
√
p/τf + d) group exponentiations, where τf is the number of absolutely

irreducible factors of f(x)− f(y). We note that this number is always smaller than Õ(p1/2).
In addition, we present an analysis of a non-uniform birthday problem.

1. Introduction

1.1. The discrete logarithm problem with auxiliary inputs

The discrete logarithm problem with auxiliary inputs (DLPwAI) for a group G, of prime

order p, can be stated as follows. Given the elements g, gα, . . . , gα
d ∈ G, compute α. A

number of variants of the DLP, such as the Weak Diffie–Hellman Problem (WDHP) [16],
the Strong Diffie–Hellman Problem (SDHP) [2], the Bilinear Diffie–Hellman Inversion
Problem (BDHIP) [1] and the Bilinear Diffie–Hellman Exponent Problem (BDHEP) [3] ask
for the determination of some values encoded by the discrete logarithm α, for some given

g, gα, . . . , gα
d ∈ G. Therefore, solving the DLPwAI implies that these problems are also

solved. These problems arise in a number of contexts. For example, traitor tracing [16], short
signatures [2], ID-based encryption [1] or broadcast encryption [3].

The state-of-the-art algorithm for this problem was proposed by Cheon [5, 6], and Brown
and Gallant [4]. It has a running time of O(

√
p/d +

√
d) group exponentiations in the case

where d | (p−1), and O(
√
p/d+d) in the case where d | (p+1). The idea of Cheon’s algorithm

is to embed the discrete logarithm α into the finite fields Fp or Fp2 . He exploits the fact that
αd can be embedded into an element of a small subgroup of Fp or Fp2 , when d is a divisor of
p± 1.

Subsequently, several generalizations of this algorithm have attempted to solve the problem
when d is a divisor of Φk(p) for the kth cyclotomic polynomial Φk(x) [7, 14, 20]. Satoh [20]
generalized the algorithm, using the embedding of α ∈ Fp into the general linear group
GLk(Fp). However, its complexity for k > 3 was not well understood. More recently, Kim,
Cheon and Lee [14] noticed that Satoh’s generalization is essentially the same as the embedding
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of Fp into Fpk , and clarified the complexity of the algorithm. Unfortunately, their result
suggests that the complexity of this generalization is not faster than that of current square
root complexity algorithms, such as Pollard’s rho algorithm [19] for k > 3.

Cheon et al. [8] recently presented an algorithm for solving α when neither p+ 1 nor p− 1

has an appropriate small divisor d. Specifically, they solve for α when gα
k1
, . . . , gα

kd are given,
and the set of elements ki forms a multiplicative subgroup of Z×p−1. However, a way to reduce
the DLPwAI to this problem is not currently known.

1.2. Our contributions

We present a new algorithm for solving the DLPwAI. The proposed algorithm has a running
time of less than Õ(p1/2), in any case where d < p1/2. We briefly describe the algorithm, as
follows. First, one chooses a non-zero polynomial f , of degree d. Then, one randomly chooses
some elements ri and sj from Fp, and computes two lists (the value of m will be determined
later)

L1 := {gf(riα) : ri ∈ Fp, 1 6 i 6 m} and L2 := {gf(sj) : sj ∈ Fp, 1 6 j 6 m}.

If the two lists have an element in common, say, f(ri0α) = f(sj0), then finding the roots of

f̃(α) := f(ri0α)− f(sj0) in Fp gives d candidates for the desired solution.
In order to refine the complexity, we consider several problems. As a first step, the

computation of the list L1 can be thought of as the problem of computing a multipoint
evaluation when the coefficients of a polynomial are exponentiated. That is, the problem
of computing gq(r1), . . . , gq(rm) for given gq0 , . . . , gqd , where q(x) := q0 + q1x + . . . + qdx

d. A
naive approach would be to take O(m · d) operations in G. However, we can obtain a fast

multipoint evaluation method, computing the list within Õ(m+ d) group operations, by using
the usual fast multipoint evaluation method. A similar result was proposed in [17], using fast
Fourier transform (FFT) multiplication. We note that the technique can also be extended to
the Schönhage–Strassen multiplication algorithm.

If the size of the image of f is N , then the birthday paradox (under the assumption that f is
a random function) suggests that the lists L1 and L2 yield a collision with a high probability
for m = O(N1/2). In order to obtain a more precise collision probability, we consider a non-
uniform birthday problem. Suppose that there exist N bins, and a randomly sampled ball
is assigned to the bin k ∈ {1, 2, . . . , N} with a probability of wk. Then, our analysis shows
that the probability of a bin containing at least two different balls after r samplings is non-

negligible for r > 1/
√∑N

k=1 w
2
k. Applying this result to our case, we find that the two lists

have a collision with a high probability after O(1/
√∑N

k=1 w
2
k) samplings.

The birthday problem of non-uniform distributions has been dealt with in several contexts
[9, 18, 21]. Although the expected number of trials until a collision is precisely determined
in these cases, their results only apply when the probability wk is bounded by c/N , for some
constant c that is independent of N . We remark that our analysis applies even when wk is not
well bounded, for example, wk = N−O(1).

Let ρf be the number of rational points over Fp, on the curve defined by f(x) − f(y) = 0.
Then, as in [10, 15], we can see that

∑
k wk

2 = ρf/p
2. From this, we derive that the overall

complexity of the proposed algorithm is given by Õ(
√
p2/ρf +d) group exponentiations. From

Weil’s theorem, we have that ρf = τfp ± O(d2
√
p), where τf is the number of absolutely

irreducible (that is, defined over Fp and irreducible over its algebraic closure) factors of f(x)−
f(y). In order to obtain a better complexity, we need to find a polynomial f ∈ Fp[x] with the
largest possible number for τf .

We show that τf is at most
∑
D|d (ϕ(D)/ordD(p)), where ordD(p) is the multiplicative

order of p modulo D. In particular, in the case of d | Φk(p) for the prime k, we have
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τf 6 (d− gcd(d, p− 1))/k + gcd(d, p − 1). When d | (p − 1), one has τf = d, because the
polynomials f(x) = xd and f(x) − f(y), factorize into all linear factors. In the case where
d | (p+ 1), one has τD = (d− gcd(d, p− 1))/2 + gcd(d, p− 1), because the Dickson polynomial
D(x), and D(x)−D(y), factorize into all quadratics other than one or two linear exceptions.

Applying the proposed algorithm, it takes Õ(
√
p/d+d) group exponentiations to compute the

discrete logarithm α. In the case where d | Φ3(p) = (p2+p+1), we show that f(x)−f(y) cannot
have an absolutely irreducible cubic factor for any polynomial f . Therefore, it is impossible to
achieve the upper bound of τf in this case.

The rest of the paper is organized as follows. We begin with a description of the algorithm,
and present a complexity analysis, in § 2. In § 3, we present a fast multipoint evaluation
method on exponents. The analysis of the birthday problem with a non-uniform distribution
is presented in § 4. In § 5, we discuss the choice of polynomials that attain the proposed upper
bound of τf . We summarize our results and suggest directions for future work in § 6.

2. The main algorithm

In this section, we present an algorithm for solving the DLPwAI, with a function defined by a
polynomial f ∈ Fp[x]. Throughout the paper, Φk(x) denotes the kth cyclotomic polynomial,
and ϕ(k) is the Euler-totient function.

2.1. Algorithm description

Let G = 〈g〉 be a group of prime order p. The aim is to solve for α, given g, gα, . . . , gα
d ∈ G.

Cheon’s algorithm and its generalizations use an embedding of the discrete logarithm α ∈ Fp
to auxiliary groups, such as extension fields of Fp. However, the recent result of Kim et al. [14]
shows that the complexity of the several generalizations in the case where d | Φk(p) for k >
3 [7, 20] is always greater than p1/2. Therefore, we need to consider a different approach to
solving the DLPwAI.

First, we choose a polynomial f ∈ Fp[x], of degree d. The proposed algorithm employs a
map defined by the polynomial f . While previous algorithms require algebraic structures of the
auxiliary groups, we concentrate solely on the value set of the polynomial f . A brief description
of the algorithm is as follows.

Step 1: For given f ∈ Fp[x] and g, gα, . . . , gα
d ∈ G, compute two lists

L1 := {gf(riα) : ri ∈ Fp, 1 6 i 6 m} and L2 := {gf(sj) : sj ∈ Fp, 1 6 j 6 m},

where ri and sj are randomly chosen from Fp, and m is a positive integer to be
determined later.

Step 2: Find a non-empty intersection between L1 and L2 or a collision of two elements in L1,
if it exists. If not, repeat Step 1.

Step 3: Recover α by finding roots of f̃(α) := f(ri0α) − f(sj0) in Fp, and using (g, gα) to
identify α.

We closely examine the complexity of the proposed algorithm in the next subsection.

2.2. Complexity analysis

Consider a naive analysis of the algorithm. First, suppose that the value set V (f) := {f(x) :
x ∈ Fp} is of size N . Assume that the map x 7→ f(x) behaves as a random function. Then,
by the birthday paradox, we expect the lists L1 and L2 to have an element in common for
m = O(N1/2), with a high probability. Next, a naive approach to computing L1 would take
O(md) exponentiations in G. Overall, the complexity of the algorithm is found to be at least
Ω(N1/2). However, for a random polynomial of degree d, the average size of the value set of f
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is about (1− 1/2! + . . .+ (−1)d−1/d!) · p ≈ (1− 1/e) · p [22], where e denotes the base of the
natural logarithm. Therefore, the complexity is already greater than Ω(p1/2).

In order to obtain a better complexity for the algorithm, we should consider several problems.
The following theorem shows that we can compute L1 within Õ(m) exponentiations in G.

Theorem 2.1. Suppose that an algorithm multiplying two polynomials of degree less than d
has a running time ofM(d) operations in Fp. Let f(x) = a0+a1x+. . .+ad−1x

d−1 ∈ Fp[x]. Given
gf(x) := (ga0 , ga1 , . . . , gad−1), and random r1, . . . , rd ∈ Fp, one can compute gf(r0), . . . , gf(rd−1)

within O(M(d) log d) operations in G.

Proof. A sketch of the proof will be given in § 3.

We also note that the map defined by the polynomial is not, in general, a random function. In
this case, as opposed to the random case, the values of the map are non-uniformly distributed.
Intuitively, one might expect more collisions for value sets in the non-uniform case. This leads
us to consider the birthday problem with a non-uniform distribution. The following result
is simpler than the problem studied in the papers [9, 18, 21], but it is sufficient for our
applications.

Theorem 2.2. For a positive integer N , and some k ∈ {1, 2, . . . , N}, let wk be the
probability that a randomly sampled ball is put into the bin k. Let Sr be the probability
that a collision occurs in r trials. Assume that W = maxk{wk} 6 1

8 , and let D = 1/(
∑
k w

2
k).

If r >
√
D + 1

4 + 1
2 > 5, then Sr > 1

88 .

Proof. The proof will be given in § 4.

Let V (f) := {f(x) : x ∈ Fp} = {y1, . . . , yN} be the value set of a polynomial f ∈ Fp[x] of
degree d. Let Ri := |{y ∈ V (f) : |f−1(y)| = i}| and ρf := |{(x, y) ∈ Fp × Fp : f(x) = f(y)}|.
Then

p =

d∑
i=1

iRi, |V (f)| =
d∑
i=1

Ri, and ρf =

d∑
i=1

i2Ri,

and we can see that p 6 ρf 6 dp.
Using the above theorems, we can obtain our main theorem. It shows that the proposed

algorithm has a running time of Õ(p/
√
ρf + d) group operations, which is always Õ(p1/2).

Theorem 2.3. Use the notation as described above. Let f(x) = a0+a1x+ . . .+adx
d ∈ Fp[x]

be a polynomial of degree d. Let G = 〈g〉 be a cyclic group of prime order p. Suppose that
an algorithm multiplying two polynomials of degree less than d has a running time of M(d)
operations in Fp. Let m be a positive integer such that 5 6

√
p2/ρf + 1/4 + 1/2 6 2m 6

C ·
√
p2/ρf for some constant C. For a given f(x), and gα, . . . , gα

d

, one has a probabilistic
algorithm that computes α in O(m/d · M(d) log d + d) = O(p/

√
ρf · (M(d) log d)/d + d)

operations in G, and an expected number of O(M(d) log d log(dp)) operations in Fp. The
success probability of the algorithm is at least 1/172, which is non-negligible.

Proof. The algorithm is described as follows.

(i) Given f(x) = a0 + a1x+ . . .+ adx
d and g, gα, . . . , gα

d

, one can compute ga0 , (gα)a1 , . . . ,

(gα
d

)ad in (d+ 1) group exponentiations. Given

fα(x) := f(αx) = a0 + (α · a1)x+ (α2 · a2)x2 + . . .+ (αd · ad)xd,

we denote gfα(x) = (ga0 , (gα)a1 , . . . , (gα
d

)ad).
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(ii) Choose random elements r1, . . . , rm ∈ Fp, and compute the list L1 ={gfα(r1), . . . , gfα(rm)}
in dm/de ·O(M(d) log d) group operations in G, by Theorem 2.1.

(iii) Choose random elements s1, . . . , sm ∈ Fp, and compute f(s1), . . . , f(sm) using the
standard fast multipoint evaluation method, in dm/de ·O(M(d) log d) operations in Fp.

(iv) Raise to the power of f(si) for each i = 1, . . . ,m, to obtain the list L2 =
{gf(s1), . . . , gf(sm)}. This requires m group exponentiations.

(v) Find a collision satisfying gfα(ri) = gf(sj) or gfα(ri) = gfα(ri′ ) for some indices i, i′ and
j. It happens with the probability at least 1/172, as we shall see below.

(vi) Compute at most d candidates for α, by finding roots in Fp of

f̃1(α) := fα(ri)− f(sj) or f̃2(α) := fα(ri)− fα(ri′).

It takes an expected number of O(M(d) log d log(dp)) operations in Fp, using the root
finding algorithm [23, Corollary 14.16].

(vii) Identify the exact solution α from d candidates exhaustively, using the information of
(g, gα), which takes d group operations.

We assume that α 6= 0 otherwise gα = 1 so one can easily deduce the discrete logarithm
from the given instances.

Consider the collision probability in Step (v). The probability that a collision occurs can be
regarded as a non-uniform birthday problem. We throw a randomly chosen ball, say, riα or
sj , and put it into a bin numbered by f(riα) or f(sj). After repeating this experiment several
times, we want to compute the probability that a bin contains at least two balls, that is, that
a collision occurs.

Let wk be the probability that a ball is thrown into the bin k. Then each probability is given
by (after proper reordering)

(wy1 , . . . , wyN ) =

(
1

p
, . . . ,

1

p︸ ︷︷ ︸
R1

,
2

p
, . . . ,

2

p︸ ︷︷ ︸
R2

, . . . ,
d

p
, . . . ,

d

p︸ ︷︷ ︸
Rd

)
.

After computing the lists L1 and L2, one has three possible types of collision: (1) gfα(ri) =
gfα(ri′ ) for some i and i′, (2) gf(sj) = gf(sj′ ) for some j and j′ and (3) gfα(ri) = gf(sj) for
some i and j. Among these three types of collision, the second one is useless in the sense that
it does not reveal any information about α. Now we consider the probability that only useful
collisions occur.

Let U := {(u1, . . . , um, um+1, . . . , u2m) ∈ F2m
p : ∃(i, j) such that i 6= j and f(γiui) =

f(γjuj)}, where γi := 1 for 1 6 i 6 m and γi := α for m + 1 6 i 6 2m. Then U is
the set of possible choices of (r1, . . . , rm, s1, . . . , sm) that lead to any collision in the above
algorithm. Thus, we have S2m = |U |/p2m, where S2m denotes the probability of any collision
after throwing 2m balls.

On the other hand, let

U1 := {(u1, . . . , u2m) ∈ U : ∃(i, j) such that

[i 6= j and f(γiui) = f(γjuj) and max{i, j} > m]},

and

U2 := {(u1, . . . , u2m) ∈ U : f(γiui) = f(γjuj) for i 6= j implies max{i, j} 6 m}.

Then U1 is the set of (r1, . . . , rm, s1, . . . , sm) that leads an useful collision (types (1) and
(3)), and U2 is the set of the elements that lead to a useless collision (type (2)). Obviously,
these two sets are disjoint and U = U1 ∪ U2. Now one has an injection from U2 to U1 given
by (u1, . . . , um, um+1, . . . , u2m) 7→ (um+1, . . . , u2m, α

−1u1, . . . , α
−1um). Thus we deduce that
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|U2| 6 |U1|. Furthermore, the probability of a useful collision, required in Step (v), which is
equal to Pr[U1], satisfies

2 Pr[U1] =
2|U1|
p2m

>
|U1|+ |U2|

p2m
=
|U |
p2m

= S2m.

By Theorem 2.2 and the choice of m, Pr[U1] > S2m/2 > 1
2 ·

1
88 = 1

172 . Thus the success
probability of the algorithm is at least 1

172 , which is non-negligible.

Remark 1. The multiplication cost M(d) is O(d log d), when using the FFT method,
and O(d log d log log d), when using the Schönhage–Strassen (SS) method. In both cases, the

complexity of the proposed algorithm is bounded by Õ(
√
p2/ρf + d) operations in G, without

the log factors log d log log d for the FFT method (or log2 d log log d, for the SS method).

In the following sections, we will present the omitted proofs, and discuss several polynomials
that are suitable for the proposed algorithm.

3. Fast multipoint evaluation on exponents

In this section, we discuss the polynomial evaluation method when the coefficients of a
polynomial are exponentiated. That is, the computation of gf(r1), . . . , gf(rd), when gf(x) :=
(ga0 , . . . , gad−1) is given for a polynomial f(x) = ad−1x

d−1 + . . .+ a1x+ a0 ∈ Fp[x].
Given gf(x) and h(x), where f(x) and h(x) are polynomials of degree less than d, one

can compute gf(x)h(x) and gf(x)+h(x) in O(d2) and O(d) exponentiations in G, respectively.
Furthermore, one can apply a fast multiplication method, such as the FFT method or the SS
method, in order to compute gf(x)h(x) in Õ(d) exponentiations in G.

From our observations, it is easy to obtain a fast multipoint evaluation on the exponentiated
elements. A similar method is used in [17], with the coefficients of the polynomial
being encrypted by an additive homomorphic encryption scheme. It was shown there
that the evaluation requires O(M(d) log d) homomorphic operations (additions and scalar
multiplications), where M(d) is the computational cost of the FFT multiplication. It follows
from that observation that the FFT multiplication algorithm can be analogously applied to
compute Enc(f · f̃), for given Enc(f) and f̃ , in M(d) homomorphic operations. Here, Enc is the
additive homomorphic encryption and Enc(f) := (Enc(a0), . . . ,Enc(ad−1)). This technique
can also be applied to our case, by simply replacing Enc(ai) with gai .

However, the FFT multiplication only works when Fp contains a dth root of unity, that is,
d | (p − 1). In our application, (p − 1) does not necessarily have a proper divisor d, so we
note that a multipoint evaluation on the exponentiated elements is also possible using the SS
multiplication method. In the SS multiplication, the field Fp can be arbitrary.

We briefly describe the algorithm as follows.

3.1. Schönhage–Strassen multiplications

Suppose that deg(fh) 6 d = 2k, for m = 2bk/2c and t = d/m. Write down the polynomial as
f(x) = A0(x) + A1(x)xm + . . . + At−1(x)xm(t−1), where Ai ∈ Fp[x] with degree less than m,
and let f̄(x, y) := A0(x) +A1(x)y + . . .+At−1(x)yt−1 ∈ Fp[x, y], so that f̄(x, xm) = f(x).

Consider the ring D := Fp[x]/(x2m + 1), and let ζ := xmod (x2m + 1) ∈ D be an element
corresponding to x in Fp[x]/(x2m+1). Then, we can regard f∗(y) := f̄(ζ, y) = A0(ζ)+A1(ζ)y+
. . .+At−1(ζ)yt−1 as a polynomial in y, with coefficients in D. For two polynomials f and h, the
SS multiplication computes f∗(y)h∗(y) mod yt+1, which is equivalent to f(x)h(x) modxd+1.

Since ζ2m = −1, ζ is a 4mth primitive root of unity in D, η = ζ2 (or η = ζ) is a
primitive 2tth root of unity in D, when t = m (or t = 2m, respectively). Now computing
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f∗(y)h∗(y) mod (yt + 1) is equivalent to computing f∗(ηy)h∗(ηy) mod (yt−1). This can be done
using the FFT method, with the tth primitive root of unity ω = η2 in D. The multiplication
in D can be carried out recursively, with polynomials of degree less than 2m. We simply write
gf(x) = (ga0 , ga1 , . . . , gad−1) = (gA0 , . . . , gAt−1), where gAi = (gami , gami+1 , . . . , gami+(m−1)).

Algorithm 1 Schönhage–Strassen Multiplication (in exponential form)

Input: d = 2k ∈ N, an element g of order p, (ga0 , ga1 , . . . , gad−1) and (b0, . . . , bd−1), where
f(x) = a0 + . . .+ ad−1x

d−1 and h(x) = b0 + . . .+ bd−1x
d−1 with deg(fh) < d.

Output: gf(x)h(x) := (gc0 , gc1 , . . . , gcd−1) ∈ Gd

(1) m← 2bk/2c, t← d/m.

Let gf(x) = (gA0 , . . . , gAt−1) and h(x) = (B0, . . . , Bt−1), so that f(x) =
∑t−1
i=0 Ai(x)xmi,

h(x) =
∑t−1
i=0 Bi(x)xmi, where Ai, Bj ∈ Fp[x] of degree less than m.

(2) Let D = Fp[x]/(x2m + 1) and ζ ← xmod (x2m + 1).
If t = 2m, then η ← ζ. Otherwise, η ← ζ2 (η is a primitive 2tth root of unity).

Compute gc
∗(ηy) = gf

∗(ηy)h∗(ηy)mod (yt−1) with a tth root of unity η2 using the FFT
method as described in [17].
Call the algorithm 1 recursively to compute multiplications in D.

(3) Return gc
∗(y) = (gC0 , . . . , gCt−1).

Proof of Theorem 2.1. The analysis of the complexity easily follows by replacing the
addition/multiplication in the field Fp with the multiplication/exponentiation in the group
G. In the case where the FFT multiplication is used, we refer to [17]. The original SS
multiplication takes O(d log d log log d) operations in Fp, so the SS multiplication in the
exponential form requires O(d log d log log d) operations in G. The multipoint evaluation
method in the exponential form using SS multiplication takes O(d log2 d log log d) operations
in G.

4. Generalized birthday problem: non-uniform distribution

Consider a function f(x) on Fp, with image size N . If one evaluates f(x) at random points
repeatedly, one eventually has a collision f(xi) = f(xj) for i 6= j, since its image is finite.
Assuming that f behaves like a random function, the birthday paradox implies a high
probability that the collision occurs in O(

√
N) steps.

For the function to behave like a random function it would be necessary that the preimages
are all of a similar size. This is not always the case if the function is given by a random
polynomial of degree d. For the efficiency of our algorithm, we hope to find a collision faster
than O(

√
N). This leads us to consider a birthday problem that applies when the sampling

probability is not uniformly distributed.
Suppose that we have N bins, numbered from one to N . For k = 1, 2, . . . , N , let wk be the

probability that a randomly sampled ball is put into the bin k. We are interested in finding
the probability of a bin containing at least two different balls.

This kind of problem has been discussed in a number of contexts, for example, [9, 18, 21].
The expected number of trials until a collision has been precisely determined, and is given
by
√
π/(2

∑
k w

2
k) + O(N1/4). However, such analyses only apply when the probability wk is

bounded by c/N , where c is a constant that is independent of N . In our case, the probability
wk can take values up to d/N , where d = N1/3. Therefore, we present an analysis of a
non-uniform birthday problem, in which the probabilities are arbitrary. Our analysis shows
that a collision occurs with a non-negligible probability in O(

√
1/
∑
k w

2
k) samplings, for any

probability distribution of wk.
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Let Sr be the probability that a collision occurs in r trials. Define E
(r)
k as the event that a

collision occurs in the bin k after r trials. Then, by the Bonferroni inequality†,

Sr = Pr(E
(r)
1 ∪ . . . ∪ E(r)

N ) =

N∑
i=1

(−1)i+1
∑

16k1<k2<...<ki6N

Pr(E
(r)
k1
∩ . . . ∩ E(r)

ki
)

>
N∑
k=1

Pr(E
(r)
k )−

∑
16k<`6N

Pr(E
(r)
k ∩ E

(r)
` ).

Unless there is no ambiguity, we will omit the superscript (r) in E
(r)
k . We first determine a

lower bound for Pr(Ek).

Definition 1. For k ∈ {1, 2, . . . , N}, B(i)
r,k is the set of vectors ~b = (b1, . . . , br) ∈

{1, 2, . . . , N}r such that the number of indexes of j satisfying bj = k is equal to i.

Lemma 4.1. For a positive integer N , and some k ∈ {1, 2, . . . , N}, let wk be the probability
that a randomly sampled ball is put into the bin k. Let Ek be the event that the bin k contains
at least two different balls after r > 2 samplings. Then, the probability of Ek is bounded below
by

Pr(Ek) >
(r − 1)r

2
· w2

k

{
1− (r − 1)

(
1− 2

r

)
wk

}
.

Proof. With the notation from Definition 1,

Pr(Ek) =
∑
i>2

∑
~b∈B(i)

r,k

wb1 . . . wbr = 1−
( ∑
~b∈B(1)

r,k

wb1 . . . wbr +
∑

~b∈B(0)
r,k

wb1 . . . wbr

)
.

The summation
∑
~b∈B(1)

r,k

wb1 . . . wbr gives the probability that only one ball is put into the bin

k within r trials, so
∑
~b∈B(1)

r,k

wb1 . . . wbr = r ·wk · (1−wk)r−1. Similarly,
∑
~b∈B(0)

r,k

wb1 . . . wbr =

(1−wk)r, because this is the probability that no ball is thrown into the bin k within r trials.
It follows that

Pr(Ek) = 1− (r · wk · (1− wk)r−1 + (1− wk)r) = 1− (1− wk)r−1 · (1 + (r − 1)wk).

On the other hand, for r > 2,

1− (1− wk)r−1 · (1 + (r − 1)wk) > 1−
(

1− (r − 1)wk +

(
r − 1

2

)
w2
k

)
· (1 + (r − 1)wk)

>
(r − 1)r

2
· w2

k −
(r − 1)2(r − 2)

2
· w3

k

=
(r − 1)r

2
· w2

k

{
1− (r − 1)

(
1− 2

r

)
wk

}
.

†It is easy to check the lower bound inequality. Assume that Pr[E1 ∪ E2] > Pr[E1] + Pr[E2]− Pr[E1 ∩ E2]
(indeed the equality holds in this case). Then to see that

Pr[(E1 ∪ E2) ∪ E3] = Pr[E1 ∪ E2] + Pr[E3]− Pr[(E1 ∪ E2) ∩ E3]

> Pr[E1] + Pr[E2] + Pr[E3]− Pr[E1 ∩ E2]− Pr[E1 ∩ E3]− Pr[E2 ∩ E3],

it is enough to check that

Pr[(E1 ∪ E2) ∩ E3] = Pr[(E1 ∩ E3) ∪ (E2 ∩ E3)] 6 Pr[E1 ∩ E3] + Pr[E2 ∩ E3].

Now apply the induction on N .
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In the first inequality, we used the fact that (1 − x)n 6 1 − nx +
(
n
2

)
x2 for 0 6 x 6 1

and n > 1.

Now let us consider an upper bound for Pr(Ek ∩ E`).

Lemma 4.2. We employ the same notation as in Lemma 4.1. Assume that k 6= `. Then,

Pr(Ek ∩ E`) =
∑
i,j>2

∑
~b∈B(i)

r,k∩B
(j)
r,`

wb1 . . . wbr 6

(
r

2

)
·
(
r − 2

2

)
· w2

k · w2
` .

Proof. For ~b = (b1, . . . , br) ∈ B(i)
r,k ∩ B

(j)
r,` , with i > 2, j > 2, there exist i1 6= i2 and j1 6= j2

such that bi1 = bi2 = k and bj1 = bj2 = `. In this case, we have wb1 . . . wbr 6 w2
k · w2

` . The
value

(
r
2

)
indicates the possible number of two positions for k, and

(
r−2
2

)
denotes the possible

number of the other two positions for `.

Using the above results, we can prove Theorem 2.2.

Proof of Theorem 2.2. Assume that r 6 1/2W . Then (r − 1)(1 − 2/r)wk 6 (r − 1)wk 6
(r − 1)/2r 6 1

2 , for all k. This yields that Pr(Ek) > (r − 1)r/4 · w2
k, using Lemma 4.1. Let

B(r) := ((r − 1)r/2)
∑N
k=1 w

2
k. Then

Sr >
∑

16k6N

Pr(Ek)−
∑

16k<`6N

Pr(Ek ∩ E`) >
B(r)

2
− r2(r − 1)2

4
·

∑
16k<`6N

w2
kw

2
`

=
B(r)

2
− r2(r − 1)2

8
·
{( ∑

16k6N

w2
k

)2

−
( ∑

16k6N

w4
k

)}
>
B(r)

2
− B(r)2

2
.

(4.1)

The last term, (B(r)/2)(1 − B(r)), is maximized by 1
8 when r = r0, such that B(r0) = 1

2 .

That is, r0(r0 − 1) = D or, equivalently, r0 =
√
D + 1

4 + 1
2 .

If dr0e 6 1/2W , then the above inequality holds, so Sdr0e > [ 12B(1 − B)]r=dr0e >
[ 12B(1 − B)]r=r0+1. The last inequality comes from the fact that 1

2B(1 − B) is decreasing
for 1/2 6 B or, equivalently, for r > r0. If D > 20 (equivalently, r0 > 5), then

[B(r) ·D]r=r0+1 =
(r0 + 1)r0

2
=

1

2

(
D + 1 + 2

√
D +

1

4

)
6

3

4
·D.

Thus, Sdr0e > [ 12B(1 − B)]r=dr0e > [ 12B(1 − B)]r=r0+1 > [ 12B(1 − B)]B=3/4 = 3
32 . Since Sr

increases as r grows, Sr > 3
32 for r > r0.

On the other hand, assume that 1/2W 6 dr0e and r0 is not an integer. Then 1/2W − 1 6
br0c 6 r0. Furthermore,

1

2
> [B(r)]r=(1/2W )−1 =

(
1

8W 2
− 3

4W
+ 1

)
·
∑
k

w2
k >

(
1

8W 2
− 3

4W
+ 1

)
·W 2

=
1

8
− 3W

4
+W 2 >

1

8
− 3

4
· 1

8
+

(
1

8

)2

>
1

22
,

where the first inequality comes from the fact that B(r) 6 1
2 if and only if r(r−1) 6 1/(

∑
k w

2
k)

if and only if 1
2 −

√
D + 1

4 6 r 6 1
2 +

√
D + 1

4 . Because 1
2B(1 − B) is increasing for B 6 1

2 ,
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Sbr0c > Sd(1/2W )−1e > [ 12B(1−B)]r=d(1/2W )−1e > [ 12B(1−B)]r=(1/2W )−1 > 1
2 ·

1
22 (1− 1

2 ) > 1
88 .

Therefore, Sdr0e > Sbr0c >
1
88 .

If 1/2W 6 dr0e and r0 is an integer, then 1/2W 6 dr0e = r0. Then, similarly to the above,
we have Sdr0e = Sr0 > Sb1/2Wc > [ 12B(1−B)]r=b1/2Wc > [ 12B(1−B)]r=(1/2W )−1 > 1

88 .

The above theorem shows that a collision occurs with a non-negligible probability after
approximately 1/

√∑
k w

2
k trials, although the probabilities are arbitrarily distributed. In the

following, we consider several examples.

Example 1. In the case where wk = O(1/N) for all k, there is a non-negligible probability
that a collision occurs after Ω(

√
N) trials, as in the case of the usual birthday paradox.

Theorem 2.2 asserts that a collision occurs with a high probability after O(
√

1/(
∑
k w

2
k))

trials. Specifically, it was shown in [9] that when wk = O(1/N), the expected number of trials
until a collision occurs is given by

√
π/(2

∑
k w

2
k) +O(N1/4), as N →∞.

Example 2. The proposed theorem applies, even when wk = Ω(1/N), for some k. In the
proof of Theorem 2.2, we have shown that S1/2W > 1

64 for W = maxk{wk}. This is meaningful

when W = Ω(1/
√
N), because a collision is guaranteed in O(1/W ) trials, which is faster than

the usual expectation of the birthday paradox.

Example 3. Consider the birthday problem given by a polynomial f ∈ Fp[x], as in
Theorem 2.3. Suppose that the probabilities are given by

(w1, . . . , wv) =

(
1

p
, . . . ,

1

p︸ ︷︷ ︸
R1

,
2

p
, . . . ,

2

p︸ ︷︷ ︸
R2

, . . . ,
d

p
, . . . ,

d

p︸ ︷︷ ︸
Rd

)
.

The size of the value set of f is
∑
iRi, and a rough estimate of the birthday paradox suggests

that a collision occurs in O(
√∑

iRi). However, a collision can be found in O(N/
√∑

i i
2Ri) 6

O(
√∑

iRi), by Theorem 2.2. The inequality comes from the Cauchy–Schwartz inequality.

5. Polynomials for the proposed algorithm

In the rest of this paper, we assume that d is relatively prime to p.

5.1. Substitution polynomials

Let f(x, y) ∈ F[x, y] be an irreducible bivariate polynomial, defined over a field F. The
polynomial f is said to be absolutely irreducible if it is also irreducible over the algebraic
closure. For a polynomial f(x), one defines the substitution polynomial of f as the bivariate
polynomial f(x)− f(y).

For the algorithm to be efficient, one requires a polynomial f with as large a value of ρf
as possible. In the following lemma, we observe that ρf is closely related to the number of
absolutely irreducible factors of the substitution polynomial f(x)− f(y).

Lemma 5.1 (Weil’s bound [24]). Let f ∈ Fp[x] be a polynomial of degree d, and let τf
be the number of absolutely irreducible factors of the substitution polynomial of f . Then,
τfp− d2

√
p 6 ρf 6 τfp+ d2

√
p.

From Weil’s bound, for d < p1/4, we see that the complexity of the proposed algorithm
becomes

Õ
(√

p2/ρf + d
)
∼ Õ

(√
p/τf + d

)
.
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Therefore, Lemma 5.1 reduces the proposed algorithm to finding a polynomial whose
substitution polynomial has as many absolutely irreducible factors as possible. In the following
subsections, we will discuss an upper bound for the number τf , and then try to find polynomials
that attain this bound.

5.2. An upper bound of the number of absolutely irreducible factors

We note that there exist polynomials for which the substitution polynomial factorizes into all
linear absolutely irreducible factors (that is, τf = d) when d | Φ1(p) = (p−1), or all quadratics
with one or two linear exceptions (that is, τf ≈ d/2) when d | Φ2(p) = (p + 1) [10, 15].
From this observation, we attempt to find a polynomial in the case where d | Φk(p), whose
substitution polynomial factorizes into all k-degree factors except for a few small degree factors.
We show that the substitution polynomial of any polynomial cannot yield absolutely irreducible
cubic factors in the case where k = 3, by using the same idea as in some previous papers
(see, for example, [10–13]). This shows that we cannot achieve τf ≈ d/3 in the case where
d | Φ3(p) = (p2 + p+ 1).

Assume that the factorization of f(x)− f(y) into irreducible factors over Fp is given by

f(x)− f(y) = g1(x, y) . . . gs(x, y).

Let gi(x, y) = hi,di +hi,di−1 + . . .+hi,1 +hi,0, where hi,j ∈ Fp[x, y] is the homogeneous part
of degree j in gi(x, y), and di denotes the highest degree of gi(x, y). Furthermore, we assume
that gs(x, y) = x− y.

As an aside, we also give alternative proofs for Lemma 5.2 and Theorem 5.3 in the appendix.

Lemma 5.2. Let d be a positive integer, dividing Φk(p) for prime k, and let ζ be a primitive
dth root of unity in Fpk . Then, the following holds. Either ζi ∈ Fpk\Fp for all i 6≡ 0 (mod d),

if d ≡ 1 (mod k), or only ζ(i/k)·d for i = 0, 1, . . . , k − 1 are in Fp, if d ≡ 0 (mod k). Note that
there exists no positive integer d dividing Φk(p) if d 6≡ 0, 1 (mod k).

Proof. Note that ζi ∈ Fp if and only if ζi(p−1) = 1 if and only if i(p − 1) ≡ 0 (mod d). The
number of such i is equal to gcd(d, p− 1). The value of gcd(d, p− 1) divides

gcd(Φk(p), p− 1) = gcd(pk−1 + . . .+ p+ 1, p− 1) = gcd(p− 1, k),

which can only be 1 or k for prime k.
If gcd(d, p − 1) = k, then d ≡ 0 (mod k) and all the kth roots of unity, ζ(i/k)·d, lie in Fp.

If gcd(d, p − 1) = 1, then only ζ0 = 1 lies in Fp, and all ζi ∈ Fpk\Fp for i 6= 0 must form
conjugate k-tuples

(ζi, (ζi)p, (ζi)p
2

, . . . , (ζi)p
k−1

),

which is only possible when d− 1 ≡ 0 (mod k). Otherwise, if d 6≡ 0, 1 (mod k), d cannot divide
Φk(p).

In the following theorem, we give an upper bound for τf .

Theorem 5.3. Let f ∈ Fp[x] be a polynomial of degree d. Let k be a prime number. Assume
that d | Φk(p). Let τf be the number of absolutely irreducible factors in the factorization of
f(x)− f(y). Then, τf 6

∑
D|d (ϕ(D)/ordD(p)). In particular, when k is the prime, either

τf 6
d− 1

k
+ 1 for d ≡ 1 (mod k) or τf 6

d− k
k

+ k for d ≡ 0 (mod k).

https://doi.org/10.1112/S1461157015000303 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000303


12 j. h. cheon and t. kim

Proof. Consider

f(x)− f(y) = (xd − yd) + ad−2(xd−2 − yd−2) + . . .+ a2(x2 − y2) + a1(x− y) = g1 . . . gs.

Comparing the highest homogeneous term gives

xd − yd = h1,d1 . . . hs,ds , where hi,di ∈ Fp[x, y].

Since xd−yd =
∏
D|d ΦD(x, y) and ΦD(x, y) factorizes into ϕ(D)/ordD(p) distinct irreducible

factors of degree ordD(p), we have at most
∑
D|d (ϕ(D)/ordD(p)) absolutely irreducible factors.

Here, ordD(p) denotes the multiplicative order of p modulo D.
Let ζ be a primitive dth root of unity in Fpk . For the prime k, xd − yd has irreducible

factors (over Fp) of either a linear factor, (x− ζiy), for ζi ∈ Fp, or a degree-k factor,

(x− ζiy)(x− ζi·py) . . . (x− ζi·p
k−1

y),

for ζi ∈ Fpk\Fp. Therefore, by Lemma 5.2, the number of irreducible factors of xd − yd is
either (d− 1)/k + 1 for d ≡ 1 (mod k) or (d− k)/k + k for d ≡ 0 (mod k). Because the factor
gi is determined by its highest degree term hi,di , the number of absolutely irreducible factors
is less than the number of irreducible factors of xd − yd.

5.3. Several examples

In this section, we present several polynomials of degree d < p that achieve the upper bound
of τf , in the case where d | Φ1(p) and d | Φ2(p). In the case where d | Φ3(p), no polynomial
can attain the upper bound.

5.3.1. Case 1: d | Φ1(p) = p − 1. In this case, the possible number of irreducible factors

is at most d. Consider f(x) = xd, where d | (p − 1). Then, a primitive dth root of unity ζ
exists in Fp, and f(x) − f(y) has d absolutely irreducible linear factors over Fp, because the
factorization is given by

f(x)− f(y) =

d∏
i=1

(x− ζiy).

For a fixed non-zero y, f(x) = f(y) if and only if x = ζiy for each i = 1, . . . , d, so the map
x 7→ f(x) is a d-to-one function, except on x = 0. Finally, ρf = R1+d2 ·Rd = 1+d2 ·(p− 1)/d =
1 + d(p− 1).

Remark 2. By applying Theorem 2.3, with the polynomial f(x) = xd such that d | (p− 1),

we can solve for the discrete log α in Õ(
√
p/d+ d) group operations, which can be lowered by

Õ(p1/3) when d = p1/3. Note that a polynomial of form f(x) = a(x+ b)d+ c suggests the same
asymptotic complexity, because cardinality of the value set is not altered by translations.

5.3.2. Case 2: d | Φ2(p) = p+1. In this case, the number of possible absolutely irreducible
factors is at most b(d+ 2)/2c. Consider the Dickson polynomial of degree d. For a non-zero
a ∈ Fp, the Dickson polynomial is defined as

Dd(x, a) =

bd/2c∑
k=0

d

d− k

(
d− k
k

)
(−a)kxd−2k.

The following lemma shows that the substitution polynomial of the Dickson polynomial has
exactly b(d+ 2)/2c absolutely irreducible factors, and presents the exact value of ρf .
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Lemma 5.4 [10, 15]. Assume that d | (p+ 1), and that ζ is a primitive dth root of unity in
Fp2 . It then holds that

Dd(x, a)−Dd(y, a) = (xt − yt)
b(d−1)/2c∏

i=1

(x2 − (ζi + ζ−i)xy + y2 + a(ζ2i + ζ−2i − 2)),

where t = 1 for odd d and t = 2 for even d. The value of ρf= is given by

ρf =
(d+ 1)p

2
+O(d2).

Remark 3. Applying Theorem 2.3 with the Dickson polynomial Dd(x, a), where d | (p+1),

the discrete log α can be recovered within Õ(
√
p/2d+d) group operations for d < p1/2. It can

be lowered to Õ(p1/3) when d = p1/3.

5.3.3. Case 3: d | Φ3(p) = p2 + p+ 1. In this case, τf is bounded above by (d− 1)/3 + 1
for d ≡ 1 (mod 3), and (d− 3)/3 + 3 for d ≡ 0 (mod 3). This type of polynomial only appears
when the factorization of f(x)− f(y) is given by

f(x)− f(y) = (xt − yt)
s−1∏
i=1

gi(x, y),

where each gi is an absolutely irreducible cubic factor (t = 1 or t = 3, depending on the residue
class of d modulo three). However, the following theorem asserts that such a polynomial does
not exist, which is a direct consequence of [12, Lemma 6].

Theorem 5.5. Let ζ be a primitive dth root of unity in Fp3 , and assume that f(x) ∈ Fp[x]
is a polynomial of degree d. Then, f(x) − f(y) cannot have an absolutely irreducible cubic
factor.

Proof. Write f(x) = xd + ad−1x
d−1 + . . .+ a1x+ a0 ∈ Fp[x]. Without loss of generality, we

assume that ad−1 = 0. Similarly, as before, denote

f(x)− f(y)

x− y
=
xd − yd

x− y
+ ad−2

xd−2 − yd−2

x− y
+ . . .+ a2

x2 − y2

x− y
+ a1 = g1(x, y) . . . gs−1(x, y).

If gi(x, y) is an irreducible cubic factor, then the highest homogenous term should be of form

(x− ξy)(x− ξpy)(x− ξp2y), where ξ := ζj for some j. On the other hand, by [12, Lemma 6],
the coefficient of y3 in the cubic factors must be equal to 1, which contradicts the fact that
the coefficient is −1 in (x− ξy)(x− ξpy)(x− ξp2y).

6. Conclusion

We have proposed a new algorithm for solving the DLPwAI. The algorithm has a running time
of Õ(p/

√
ρf +d) = Õ(

√
p/τf +d) group exponentiations, for a chosen polynomial f ∈ Fp[x] of

degree d. Therefore, it reduces the DLPwAI to a problem of finding polynomials with a large
value of ρf or τf .

It remains an open problem to find a polynomial with sufficiently large τf so that the

proposed algorithm has a complexity of O(
√
p/d) as the lower bound in the generic group

model. For example, we can find such polynomials in the case where d | (p± 1).
Regarding the birthday problem, it would be interesting to determine the expected number

of trials until a collision for arbitrary probability distributions.
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Appendix. Another proof of Lemma 5.2 and Theorem 5.3

We begin by stating some notation. Assume that a primitive dth root of unity ζ lies in Fpk ,

where k is the smallest integer satisfying the condition. For k̃ | k, we define the following.
– D(k̃) is the number of i ∈ {1, 2, . . . , d} satisfying the condition that ζi lies in Fpk̃ .

– N(k̃) is the number of i ∈ {1, 2, . . . , d} satisfying the condition that ζi exactly lies in
Fpk̃ , and not in any proper subfield.

Proof of Lemma 5.2 and Theorem 5.3. It suffices to find the number of irreducible factors
of xd − 1 over Fp. If ζi is in Fpk̃ and not in any proper subfield, then the minimal polynomial

of ζi is of degree k̃. Therefore, xd − 1 factorizes into
∑
k̃|k (N(k̃)/k̃) irreducible factors.

Now, we can easily check that D(k̃) = gcd(d, pk̃−1), since ζi ∈ Fpk̃ if and only if ζi(p
k̃−1) = 1

if and only if i(pk̃ − 1) ≡ 0 (mod d). From the definitions, D(k̃) =
∑
`|k̃N(`), so the Möbius

inversion formula suggests that

N(k̃) =
∑
`|k̃

µ

(
k̃

`

)
·D(k̃) =

∑
`|k̃

µ

(
k̃

`

)
· gcd(d, pk̃ − 1),

where µ(n) is the Möbius function.
For prime k,

∑
k̃|k

N(k̃)

k̃
= N(1) +

N(k)

k
= gcd(d, p− 1) +

gcd(d, pk − 1)− gcd(d, p− 1)

k

= gcd(d, p− 1) +
d− gcd(d, p− 1)

k
.

Since N(k) = d − gcd(d, p − 1) must be a multiple of k, and gcd(d, p − 1) can only be either
one or k, d modulo k can only be either one or zero.
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