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Abstract

Controlling weeds is a critically important task in sugarcane production systems. Weeds
compete for light, nutrients, and water, and if they are not managed properly can negatively
impact sugarcane yields. Accurate detection of weeds versus desired plants was assessed using
hyperspectral and pigment analyses. Leaf samples were collected from four commercial
Louisiana sugarcane varieties, and nine weed species commonly found in sugarcane fields.
Hyperspectral leaf reflectance data (350 to 850 nm) were collected from all samples. Plant
pigment (chlorophylls and carotenoids) levels were also determined using high-performance
liquid chromatography, and concentrations were determined using authentic standards and
leaf area. In all cases, leaf reflectance data successfully differentiated sugarcane fromweeds using
canonical discrimination analysis. Linear discriminant analysis showed that the accuracy of the
classification varied from 67% to 100% for individual sugarcane varieties and weed species. In
all cases, sugarcane was not misclassified as a weed. Plant pigment levels exhibited marked
differences between sugarcane varieties and weed species with differences in chlorophyll and
carotenoid explaining much of the observed variation in reflectance. The ratio of chlorophyll a
to chlorophyll b showed significant differences between sugarcane and all weed species. The
successful implementation of this technology as either an airborne system to scout and map
weeds or a tractor-based system to identify and spray weeds in real-time would offer sugarcane
growers a valuable tool for managing their crops. By accurately targeting weeds in sugarcane
fields that are emerged and growing, the total amount of herbicide applied could be decreased,
resulting in cost savings for the grower and reduced environmental impacts.

Introduction

Sugarcane is an economically important crop in Louisiana and raw sugar sales contributed more
than US$1.1 billion to the state’s economy in 2021 (Gravois 2022). In the United States,
sugarcane is also commercially produced in Florida and Texas. While sugarcane is considered a
minor crop in theUnited States, it is grown onmore than 27million ha worldwide in 92 different
countries (FAO 2020). Sugarcane is a tropical C4 grass and is vegetatively propagated. A single
planting often yields four or more crops, each of which is harvested annually and processed into
sucrose (table sugar). In Louisiana, fields are typically allowed to fallow for at least 6 mo when
production levels become unprofitable. Many factors jointly play a role in decreased production
over the course of a cycle and include increased weed pressure, increased disease pressure,
increased insect pressure, poor harvest conditions, and varietal intolerance to repeated ripener
applications throughout the crop cycle.

Managing weeds in a sugarcane system is a complex task. Unlike other crops such as corn
(Zea mays L.), soybean [Glycine max (L.) Merr.], and cotton (Gossypium hirsutum L.), which
have been bioengineered to tolerate herbicides that otherwise would have caused death to the
desired crop, no such technology is available for domestic sugarcane production. Perennial grass
and sedge weeds are highly problematic and are difficult to control once they become established
within the planting area. Bermudagrass (Cynodon dactylon (L.) Pers.), johnsongrass (Sorghum
halepense (L.) Pers.), vaseygrass (Paspalum urvillei Steud.), and purple nutsedge (Cyperus
rotundus L.) can commonly be found in sugarcane fields throughout Louisiana (Etheredge 2007;
Etheredge et al. 2010; Fontenot et al. 2016; Millhollon 1970; Orgeron 2015; Richard 1997).

The fallow period provides an ideal time to manage perennial weed pests in sugarcane
systems (Griffin et al. 2001). Multiple applications of glyphosate during the fallow period along
with interspersed deep tillage operations provides a high degree of control of rhizomatous grass
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weeds (Griffin et al. 2001; Orgeron 2019). Likewise, the use of
glyphosate-tolerant soybeans during the fallow period in combi-
nation with glyphosate can be an effective strategy for managing
rhizome johnsongrass and other weed pests (Boudreaux and
Griffin 2009; Griffin et al. 2006).

While numerous preemergence (PRE) herbicides are labeled for
use in sugarcane, the persistence of biologically effective doses to
sustain suitable weed control is contingent on many factors
including herbicide rate, soil type, activation, microbial degrada-
tion, temperature, etc. Rainfall is common in the Louisiana
sugarcane production region with Gravois (2022) reporting that
rainfall totaled 203, 219, and 202 cm for the Baton Rouge, New
Orleans, and Lafayette airports, respectively, in 2021. Excessive and
intense rainfall can quickly reduce herbicide persistence and
residual weed control.

Effective in-crop postemergence (POST) herbicide options for
controlling grass weeds in sugarcane are limited to asulam or the
combination of asulam and trifloxysulfuron-sodium (Dalley and
Richard 2008;Millhollon 1976; Orgeron and Griffin 2014). Greater
control of rhizome johnsongrass resulted when asulamwas applied
in combination with trifloxysulfuron-sodium compared to asulam
applied alone (Dalley and Richard 2008). Likewise, asulam or a
combination of asulam and trifloxysulfuron-sodium can provide
partial control of vaseygrass less than 20 cm tall. Itchgrass
(Rottboellia chochinchinensis), an annual grass weed, can be
managed with POST applications of asulam, a combination of
asulam and trifloxysulfuron-sodium, or trifloxysulfuron-sodium
(Anonymous 2022; Fontenot and Sanders 1984).

Broadcast application of these herbicides is costly, and
producers often selectively band-apply or spot-treat emerged
grass weeds. While these measures may reduce weed management
costs, some weeds are inevitably missed. Manual identification of
grass weeds is a challenging task because the weeds are often
interspersed with sugarcane and become difficult to distinguish in
the vegetative canopy. Researchers have started to investigate the
use of passive and active sensors as tools to improve weed control
decisions. Thorp and Tian (2004) reviewed the status of remote
detection of weeds in agricultural fields and concluded that, at the
time of their review, the technology available was not adequately
developed to support the remote detection of weeds. Since that
review, substantial progress has been made. Barrero and Perdomo
(2018) used red-green-blue (RGB) sensors andmultispectral image
fusion combined with neural network analysis to detect weeds in
rice fields. They reported that the best weed detection performance
was obtained with the fused imagery. Fletcher et al. (2016) also
used hyperspectral reflectance data to discriminate pigweed from
cotton in Mississippi. The authors were able to refine their
hyperspectral measurements to identify several wavelength ranges
that could be used to effectively identify Palmer amaranth
(Amaranthus palmeri) and redroot pigweed (Amaranthus retro-
flexus) in cotton production systems (Fletcher et al. 2016). Huang
et al. (2016) used ground-based hyperspectral remote sensing to
identify crop injury from dicamba and to identify weeds that were
sensitive or resistant to glyphosate. Che’Ya (2021) used discrimi-
nant analysis of hyperspectral reflectance data to identify weeds
within sorghum (Sorghum bicolor) fields and reported a significant
separation accuracy for the weeds evaluated.

Several researchers have used hyperspectral imagery to
characterize different aspects of the sugarcane production cycle.
Johnson et al. (2008) used hyperspectral reflectance measurements
to discriminate between commercial sugarcane varieties and wild
sugarcane. The authors reported that varieties could be discerned

with an accuracy of 86% using vegetative indices, and the accuracy
could be increased to 95% to 100% correct classification using
multivariate analysis (Johnson et al. 2008). Grisham et al. (2010)
used hyperspectral reflectance measurements to identify sugarcane
infected with Sugarcane yellow leaf virus prior to visual symptoms
being apparent. The authors reported an accuracy of up to 73%
using discriminant analysis. Johnson and Richard (2011) predicted
sugarcane sucrose with an accuracy ranging from 60% to 100% for
individual sugarcane varieties using hyperspectral leaf reflectance
measurements and discriminant analysis. Two recent articles have
reported results related to the detection of weeds in sugarcane
crops. Sujaritha et al. (2017) described a weed-detecting robot that
used RGB imagery combined with a fuzzy real-time classifier to
detect weeds in sugarcane fields in India. The authors reported that
the system detected weeds with an accuracy of 92.9% with a
processing time of 0.02 s (Sujaritha et al. 2017). Souza et al. (2020)
used hyperspectral imagery combined with two modeling
approaches (soft independent modeling by class analogy and
random forest) to detect weeds in sugarcane fields. Using those
methods, the authors found that the visible–near-infrared
spectrum could be divided into four distinct regions that could
be used to discriminate weeds in sugarcane fields (Souza et al.
2020). Although some progress has been made in the discrimi-
nation of weeds in sugarcane, significant challenges remain. The
objectives of this study were 1) to determine whether hyperspectral
leaf reflectance measurements could be used to discriminate
between sugarcane varieties and weed species commonly found in
commercial sugarcane fields in Louisiana, and 2) to determine
whether differences in plant pigment content of the weed species
and sugarcane varieties investigated in this study could explain the
observed differences in reflectance.

Materials and Methods

Sample Collection

Leaf samples for hyperspectral reflectance measurements were
collected from plants at the Ardoyne Research Farm, located at the
U.S. Department–Agricultural Research Service Sugarcane
Research Unit, in Schriever, LA (29.6371°N, 90.84028°W) from
field plots of four sugarcane commercial cultivars: ‘L 01-299’,
‘HoCP 96-540’, ‘L 01-283’, and ‘HoCP 04-838’. Leaf samples of
nine weed species that are problematic in commercial sugarcane
fields in Louisiana were collected from the same location:
Bermudagrass, johnsongrass, vaseygrass, purple nutsedge, itch-
grass, browntop millet (Urochloa ramosa), divine nightshade
(Solanum nigrescens), Italian ryegrass (Lolium multiflorum), and
timothy canarygrass (Phalaris angusta). Four leaves were collected
from six sugarcane plants or weeds, for a total of 24 leaves per
variety or species. Leaf samples were collected between April 12
and April 23, 2018, and analyzed immediately after sampling.

Reflectance Analysis

Leaves were transported to an on-site laboratory for processing
using a method similar to that described by Johnson et al. (2008).
High-resolution, hyperspectral reflectance data for all studies were
collected using a single-input USB-2000þ VIS-NIR fiber optic
spectrometer (Ocean Optics, Dunedin, FL) with a CCD-array
detector (2048-element, 350 to 1,000 nm at 0.4-nm intervals). The
system used a 25° field-of-view optical fiber that collected
upwelling radiation from the leaf. The spectrometer was controlled
using CDAP software (Center for Advanced Land Management
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Information Technologies, University of Nebraska, Lincoln, NE).
Reflectance measurements were taken at three locations on each
leaf (non-midrib) under a 500-W halogen light source. Midrib
tissue was not used because it would have an unrealistically high
influence on leaf reflectance values in the laboratory (due to the
smaller field of view), compared with remotely sensed field samples
(Johnson et al. 2008). The upwelling fiber optic cable was mounted
3 cm above the leaf sample. A white Spectralon reference target
(Labsphere, Inc., North Sutton, NH) was used to calibrate the
spectrometer. The reflectance measurements were made in a
laboratory setting to standardize experimental conditions and to
validate that the method could be used to accomplish the goal of
discriminating weeds from sugarcane. Additional experiments will
be required to verify the approach under field conditions. The
instruments used in these experiments are portable, and
reflectance measurements can be made in the field without
equipment modifications (Johnson et al. 2008).

Pigment Analysis

After reflectance measurements were completed, the same leaf was
sampled for plant pigment analysis by boring three 0.5-cm discs
about 10 cm from the leaf tip that did not include mid-rib tissue.
Leaf discs were immediately frozen (−80 C) until analysis. Samples
were ground using a mortar and pestle in 2ml of 100% acetone and
extracted in the dark at 4 C for 4 h. Extracts were then filtered and
analyzed for chlorophylls and carotenoids using high-performance
liquid chromatography (HPLC) (Zimba et al. 2001). Filtered
extracts from each leaf were directly injected in an HP1100 HPLC

system (Agilent Technologies, Santa Clara, CA) equipped with one
ODS-Hypersil C18 column (200 × 4.6 mm, 4 μm; Hewlett-
Packard, Spring, TX) and two 201TP C18 columns (250 × 4.6 mm,
5 μm; Vydac, Columbia, MD) in series. Samples were analyzed by
diode array detection at 436 nm. Pigments were identified and
quantified using authentic commercial standards (VKI, Hørsholm,
Denmark).

Data Analysis

Reflectance data were condensed to 10-nm wavelength bands to
simplify analysis. Canonical discrimination analysis was per-
formed using the CANDISC procedure with SAS software (version
9.4; SAS Institute, Inc., Cary, NC) on the reflectance data set to
determine whether this technique could be used to discriminate
between sugarcane varieties and weed species alone, and in
combination. Discriminant analysis with resubstitution and cross-
validation using the DISCRIM procedure with SAS software was
also performed to further quantify the degree of separation using
both resubstitution and cross-validation techniques. The resub-
stitution method uses the same data to define and evaluate the
classification criterion, which yields an error count estimate that
has an optimistic bias. In the cross-validation technique, an
observation in the data set is removed and the remaining
observations are used to develop the discriminant function. The
function is then used to evaluate the observation that was removed
from the data. This procedure is repeated for all observations in the
data set. The resulting discriminant function removes most bias
from the analysis. As a final step, the data set was divided into a
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Figure 1. Leaf reflectance for Louisiana sugarcane and common weed species. 838 = HoCP 04-838, 540 = HoCP 96-540, 299 = L 01-200, 283 = L01-283, JG = johnsongrass,
VG = vaseygrass, IG = itchgrass, BTM = browntop millet, NS = divine nightshade, NE = purple nutsedge, BGR = bermudagrass, IR = Italian ryegrass, TIM = timothy canarygrass.
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training set (two-thirds of total data) and a validation set (one-
third of total data). Discriminate analysis was then performed on
the training data set using cross-validation, and the resultant
discriminant function was used to predict the validation data set.
Finally, we performed the Mixed procedure with SAS software to
analyze the pigment data. Differences between treatment least-
squares means were compared using the PDIFF option (Saxton
1998) at the 0.05 probability level.

Results and Discussion

Reflectance Data

Leaf reflectance data showed clear differences between sugarcane
and weed species in several distinct areas (Figure 1). All sugarcane
varieties exhibited higher reflectance values than any of the weed
species in the ultraviolet region from 350 to 400 nm. These
differences tended to remain (with sugarcane having higher
reflectance), although they were less pronounced, throughout the
violet, indigo, and blue regions from 400 to 490 nm (Figure 1). In
the green region (490 to 570 nm), two distinct groups emerged in
the data. The first group, which exhibited higher reflectance,
consisted of all the sugarcane varieties and johnsongrass,
vaseygrass, Italian ryegrass, timothy canarygrass, and divine
nightshade (Figure 1). The second group in the green region,
which had distinctly lower reflectance values, consisted of
bermudagrass, purple nutsedge, browntop millet, and itchgrass.

The same groups remained throughout the red region (680 to 780
nm), although they were somewhat less distinct (Figure 1). The
final area where clear differences were observed was the near-
infrared region from 780 to 850 nm, where three distinct groups
were apparent. The first group, with the highest reflectance,
consisted of the four sugarcane varieties (Figure 1). The second
group consisted of johnsongrass, itchgrass, vaseygrass, Italian
ryegrass, brown top millet, timothy canarygrass, and divine
nightshade. The final group contained bermudagrass and purple
nutsedge. It is clear from these data that several regions in the
spectrum offer opportunities to discriminate between sugarcane
varieties and the weed species present in commercial fields.

Canonical Discrimination

Canonical discrimination analysis was performed on the sugar-
cane varieties alone, the weed species alone, and on the combined
data set. For the sugarcane varieties alone, canonical axis 1
described 59% of the observed variability with canonical axis 2
increasing the variability described to 81% (data not shown). A
plot of canonical coefficients 1 and 2 show that two of the four
sugarcane varieties (L 01-283 and L 01-299) were clearly
separated from other varieties, while the remaining two varieties
(HoCP 96-540 and HoCP 04-838) exhibited some overlap with
each other (Figure 2). For the data set with weeds alone, canonical
axis 1 explained 46% of the observed variability and the addition
of canonical axis 2 increased the variability explained to 72%

Figure 2. Sugarcane variety discrimination with leaf reflectance. 838 = HoCP 04-838, 540 = HoCP 96-540, 299 = L 01-200, 283 = L01-283.
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(data not shown). When canonical coefficient 1 is plotted against
coefficient 2, three groups of weeds were identified (Figure 3).
The first group contained timothy canarygrass and Italian
ryegrass with the two species exhibiting a degree of overlap but
showing good separation from the remaining weed species
(Figure 3). The second group contained divine nightshade, purple
nutsedge, and bermudagrass. As in the first group, these species
exhibited some overlap but were well separated from the
remaining species. Finally, the third group contained itchgrass,
johnsongrass, vaseygrass, and brown top millet (Figure 3).
Considerable overlap was observed for these species, but they
were well separated from the species in groups 1 and 2.

When the reflectance of both sugarcane and weed species were
considered together, canonical axis 1 described 62% of the observed
variability with canonical axis 2 increasing the variability described
to 77% (data not shown). When canonical coefficient 1 is plotted
against canonical coefficient 2, two distinct groups appear. The first
group contains all the sugarcane varieties, and the second group
contains all of the weed species (Figure 4). Sugarcane varieties
exhibited considerable overlap but were clearly separated from the
weed species. The weed species also showed some overlap but could
be grouped into the same categories as were described when weeds
were considered alone. It is clear from the canonical discriminate
analysis that leaf reflectance data show considerable promise in
helping to delineate between sugarcane varieties and weed species.

Linear Discriminant Analysis

Linear discriminant analysis was performed on the sugarcane
varieties alone, the weed species alone, and on the combined data
set. Discriminant analysis was performed initially by resubstitution
and then by cross-validation to reduce bias. When varieties were
considered alone L 01-283, L 01-299, and HoCP 96-540 were
correctly predicted in 100% of the cases, while HoCP 04-838 was
correctly predicted in 95.8% of the cases (Table 1). When cross-
validation was implemented, the accuracy was reduced slightly to
98.6%, 94.9%, 97.2%, and 90.0% for L 01-283, L 01-299, HoCP 96-
540, and HoCP 04-838, respectively. When weeds were considered
alone the range of correct predictions varied from 97.2% to 100.0%
for discriminant analysis with resubstitution and from 91.7% to
100.0% for cross-validation (Table 2). The lowest accuracy was
produced with johnsongrass and vaseygrass, although the
successful prediction rate was still greater than 90% (Table 2).
Finally, when both sugarcane varieties and weed species were
considered together, the range of correct predictions varied from
91.7% to 100% for resubstitution and from 81.1% to 100.0% for
cross-validation (Table 3). In this case, the lowest accuracy was
observed with vaseygrass, Italian ryegrass, and HoCP 04-838
(Table 3). To further remove bias in the modeling procedure the
combined data set (sugarcane and weeds) was divided into a
training set (two-thirds of the data) and a validation set (one-third
of the data). Linear discriminant analysis with cross-validation was

Figure 3. Weed species discrimination with leaf reflectance. JG = johnsongrass, VG = vaseygrass, IG = itchgrass, BTM = browntop millet, NS = divine nightshade, NE = purple
nutsedge, BG = bermudagrass, IR = Italian ryegrass, TIM = timothy canarygrass.
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then performed on the training data set and the resultant model
was used to predict the validation set. For this analysis, the range of
correct predictions varied from 67% to 100%. The lowest
accuracies were observed with vaseygrass and HoCP 04-838 with
67% each, and Italian ryegrass with 79% (Table 4). The remaining
varieties and species showed accuracies greater than 80% (Table 4).

Plant Pigments

Plant pigment analysis was performed on all sugarcane varieties
and weed species to determine whether variation in the pigment
levels can help explain the observed variation in leaf reflectance.
Significant variation was apparent in both chlorophyll and
carotenoid levels for both sugarcane varieties and weed species
(Table 5). Sugarcane variety L 01-299 exhibited the highest level of
total chlorophyll and the second highest levels of total carotenoids
(Table 5). The remaining sugarcane varieties were fourth, fifth, and
sixth in terms of total chlorophyll and third, fifth, and eighth in
terms of total carotenoids. The weeds purple nutsedge and
bermudagrass were ranked second and third in terms of total
chlorophylls and total carotenoids (Table 5). Browntop millet
exhibited the lowest levels for all pigments evaluated (Table 5). If
the sugarcane varieties and weed species are ranked for each
pigment and resultant values are totaled and averaged, an index of
total pigment content is obtained. Sugarcane variety L 01-299 and

purple nutsedge had the highest pigment levels after this procedure
was accomplished, followed by bermudagrass, HoCP 04-838, L01-
283, Italian ryegrass, and HoCP 96-540. The four sugarcane
varieties occupied four of the top seven spots in terms of total
pigment content. The remaining six spots were occupied by weed
species in descending order with timothy canarygrass, divine
nightshade, itchgrass, johnsongrass, vaseygrass, and browntop
millet at the bottom. When the ratio of chlorophyll a and
chlorophyll b were calculated, a separation of sugarcane and all
weed species was evident, with all sugarcane varieties having a
higher ratio (Table 5).

The discrimination of weeds from sugarcane in commercial
sugarcane fields has important economic implications. The cost of
many herbicides used for weed control in sugarcane has increased,
particularly when used in a broadcast application. Developing a
system that could more effectively target weeds in the emerging
and growing crop would decrease both costs and environmental
impacts. An examination of the leaf reflectance data from the
combined data set that contained both sugarcane varieties and
weeds (Figure 1) shows that several areas of the electromagnetic
spectrum may be useful in their discrimination. The areas where
the greatest differences were observed between weeds and
sugarcane include the ultraviolet (350 to 400 nm); violet, indigo,
and blue (400 to 490 nm); green (490 to 570 nm); and infrared
regions (780 to 850 nm). These regions have been previously

Figure 4. Weed species and sugarcane variety discrimination with leaf reflectance. 838 = HoCP 04-838, 540 = HoCP 96-540, 299 = L 01-200, 283 = L01-283, JG = johnsongrass,
VG = vaseygrass, IG = itchgrass, BTM = browntop millet, NS=divine nightshade, NE = purple nutsedge, BG = bermudagrass, IR = Italian ryegrass, TIM = timothy canarygrass.
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identified as being important in the discrimination of sugarcane
varieties (Johnson et al. 2008), sugarcane infected with yellow leaf
disease (Grisham et al. 2010), and sugarcane sucrose levels
(Johnson and Richard 2011).

In the ultraviolet and blue regions, all four sugarcane varieties
exhibited higher reflectance than any of the weed species
(Figure 1). Johnson and Richard (2011) speculated on the potential
influence of anthocyanins and other flavonoids on the reflectance
response of sugarcane in the ultraviolet and blue regions. The

presence of flavonoids has been documented in sugarcane leaves,
bagasse, and juice (Columbo et al. 2006), and their levels have been
documented to increase in response to sugar accumulation in
sugarcane leaves (McCormick et al. 2008). Dahiya et al. (2017)
discussed the allelopathic properties of many weed species,
including johnsongrass, bermudagrass, and sedges, and indicated
that many allelochemicals are flavonoids. The blue region has been
associated with the absorption of the carotenoids violaxanthin,
neoxanthin, lutein, and β-carotene (Sims and Gamon 2002), and
there were distinct differences in carotenoid levels between
sugarcane varieties and many weed species; in this study,
particularly neoxanthin (Table 5). In addition, chlorophyll a and
chlorophyll b also absorb strongly in both the blue and red regions
(Barragán et al. 2018) and significant variation occurred in
chlorophyll levels between sugarcane and weed species. The
observed variation in the green region between sugarcane varieties
and weeds (Figure 1) may also be related to the differential
absorbance of flavonoids; specifically, anthocyanin, which has an
absorption peak near 550 nm (Barragán et al. 2018). The
differences in the infrared region are not related to pigment levels
and are instead primarily determined by the properties of the leaf
itself, including leaf thickness, water content, and light scattering
(Merzlyak et al. 2003). When the ratio of chlorophyll a to
chlorophyll b was calculated, all the sugarcane varieties had higher
ratios than all weed species (Table 5). The ratio of chlorophyll a to
chlorophyll b is associated with the antenna size of photosystem II
(Dinç et al 2012) and is higher in C4 plants (Lichtenthaler and
Babani 2021), so it is not surprising that all sugarcane varieties
showed the highest ratios. Sugarcane is a C4 plant and is also
known as one of the most photosynthetically efficient plants
(Irvine 1983; Sage et al. 2013). This was also evident from
examining the chlorophyll ratio data for the weed species. The
lowest chlorophyll ratio was observed for divine nightshade, with
Italian ryegrass and timothy canarygrass ranked third and fourth
lowest, respectively. Future research will focus on developing
reflectance models that can predict this ratio.

It was possible to discriminate sugarcane varieties from weeds
in virtually all cases using hyperspectral leaf reflectance data and
canonical discrimination or linear discrimination analysis
(Figure 4; Tables 3 and 4). In cases where the prediction accuracy

Table 1. Discrimination of commercial sugarcane varieties using leaf
reflectance, 2018.

Correct predictionsa

Variety Re-substitution Cross-Validation

—————————%—————————

L 01-283 100 99
L 01-299 100 94
HoCP 96-540 100 97
HoCP 04-838 96 90

aPercentage of sugarcane varieties correctly predicted from linear discriminant models of
reflectance data using resubstitution or cross-validation techniques.

Table 2. Discrimination of weed species using leaf reflectance, 2018.

Correct predictionsa

Variety Re-substitution Cross-Validation

———————%————————

Browntop millet 100 97
Italian ryegrass 97 97
Itchgrass 99 99
Johnsongrass 99 90
Divine nightshade 99 99
Purple nutsedge 100 100
Timothy canarygrass 100 100
Vaseygrass 99 92

aPercentage of weed species correctly predicted from linear discriminant models of
reflectance data using resubstitution or cross-validation techniques.

Table 3. Discrimination of commercial sugarcane varieties from weed species
using leaf reflectance, 2018.

Correct predictionsa

Variety Re-substitution Cross-validation

———————%————————

L 01-283 99 97
L 01-299 96 94
HoCP 96-540 100 93
HoCP 04-838 89 88
Bermudagrass 96 96
Browntop millet 99 94
Italian ryegrass 96 90
Itchgrass 100 99
Johnsongrass 96 93
Divine nightshade 99 97
Purple nutsedge 100 100
Timothy canarygrass 100 99
Vaseygrass 92 86

aPercentage of commercial sugarcane varieties and weed species correctly predicted from
linear discriminant models of reflectance data using resubstitution or cross-validation
techniques.

Table 4. Discrimination of Commercial sugarcane varieties from weed species
using leaf reflectance based on a training data set to predict test data.

Correct predictionsa

Variety Cross-Validation

L 01-283 96
L 01-299 88
HoCP 96-540 96
HoCP 04-838 67
Bermudagrass 100
Browntop millet 83
Italian ryegrass 79
Itchgrass 96
Johnsongrass 100
Divine nightshade 100
Purple nutsedge 100
Timothy canarygrass 100
Vaseygrass 67

aPercentage of commercial sugarcane varieties and weed species correctly predicted from
linear discriminant models of reflectance data using cross-validation techniques based on a
training data set composed of two-thirds of the original data set used to predict the
remaining one-third of data.
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was less than 100% for a given sugarcane variety, the error was due
to the sample being classified as another sugarcane variety, not a
weed (Figure 4). This was most evident for the sugarcane variety
HoCP 04-838, which has a prediction accuracy of 66.7% when the
function was based on training data and cross-validation (Table 4).
In this case, HoCP 04-838 wasmisclassified as L 01-299 in 29.2% of
the cases, and HoCP 96-540 in 4.1% of the cases (data not shown).
This error would still result in the correct decision to not spray a
sugarcane plant. Also, the HoCP 04-838 variety is on the decline
and currently accounts for less than 5% of the planted hectares
(Kimbeng 2022). There were similar but smaller errors associated
with the classification of the other sugarcane varieties (Table 4), but
sugarcane was not incorrectly classified as a weed in any case.
There were similar misclassifications among weed species by both
canonical discrimination and linear discriminant analysis
(Figures 3 and 4; Tables 2, 3, and 4). For weed species, they could
be delineated into three groups based on their canonical
coefficients and their pigment levels: 1) timothy canarygrass and
Italian ryegrass; 2) bermudagrass, purple nutsedge, and divine
nightshade; and 3) itchgrass, johnsongrass, vaseygrass, and
browntop millet. It may be possible to target these weeds more
effectively due to their reflectance behavior.

Some of the systems that have been developed to identify and
target weeds in sugarcane production systems use image analysis
for the classification process (Sujaritha et al. 2017), whichmay have
more difficulty detecting grass weeds in a grass crop. This issue was
the principal motivation for our work to use hyperspectral leaf
reflectance data and multivariate analysis for the discrimination
process. Souza et al. (2020) used hyperspectral imagery to classify
weeds in Brazil and indicated that the spectrum could be divided
into four regions of interest to simplify the discrimination process.
The goal of our study was to develop hyperspectral, leaf reflectance
data that could be used to identify weeds quickly and accurately in
an emerged sugarcane crop so that weeds can be targeted for
control. The sensing system could either be airborne or tractor-
based to allow for flexibility in the spray system that is ultimately
employed.

Canonical discrimination analysis of the leaf reflectance data
demonstrated that sugarcane varieties could be successfully
differentiated from weeds in all cases. Linear discriminant analysis
showed that the accuracy of the classification varied from 67% to
100% for individual sugarcane varieties and weed species. In all
cases, sugarcane was not misclassified as a weed. Plant pigment
levels exhibited marked differences between sugarcane varieties

and weed species with differences in chlorophylls and carotenoids
explaining much of the observed variation in reflectance. The
successful implementation of this technology as either an airborne
system to scout and map weeds or a tractor-based system to
identify and spray weeds in real time would offer sugarcane
growers a valuable tool for managing their crops. By accurately
targeting weeds in an emerged and growing sugarcane field, the
total amount of herbicide applied could be decreased, resulting in
cost savings for the grower and reduced environmental impacts.

Practical Implications

Managing weeds in a sugarcane system is a complex task. Perennial
grass and sedge weeds are highly problematic and are difficult to
control once they are established within the planting area.
Bermudagrass (Cynodon dactylon), johnsongrass (Sorghum hale-
pense), vaseygrass (Paspalum urvillei), and purple nutsedge
(Cyperus rotundus) can commonly be found in sugarcane fields
throughout Louisiana, and severe infestations can result in
significant yield losses. While numerous PRE herbicides are
labeled for use with sugarcane, the persistence of biologically
effective doses to sustain suitable weed control is contingent on
many factors including herbicide rate, soil type, activation,
microbial degradation, temperature, etc. Effective in-crop POST
herbicide options for controlling grass weeds in sugarcane are
limited to asulam or the combination of asulam and triflox-
ysulfuron-sodium. Broadcast application of these herbicides is
costly, and producers often selectively band-apply or spot-treat
emerged grass weeds. While these measures are used to reduce
weed management costs, some weeds are inevitably missed.
Manual identification of grass weeds is a challenging task because
these grass weeds are often interspersed with sugarcane and
become difficult to distinguish in the vegetative canopy. The
hyperspectral leaf reflectance technology described in this paper
could be used in an airborne system (i.e., an unmanned aerial
vehicle or an airplane) to scout and map weeds on a large scale.
These maps could then be used in variable-rate herbicide
application systems. The technology could also be used in a
tractor-based system to identify and spray weeds in real time. In
either case, by accurately targeting weeds in an emerged and
growing sugarcane field, the total amount of herbicide applied
could be decreased, resulting in cost savings for the grower and
reduced environmental impacts.

Table 5. Plant pigment contents of four sugarcane varieties and nine weed species from leaf reflectance study in Louisiana, 2018.

Neoxanthin Violaxanthin Lutein Chlorophyll a Chlorophyll b
β-

Carotene
Total

chlorophylls
Total

carotenoids
Chlorophyll a/
Chlorophyll b

Variety/Species ————————————————————————————ng mm2
————————————————————————

HoCP 96-540 12.5efg 11.5d 216b 2,510de 368def 211cd 2,880de 240b 6.8a
L 01-299 18.0cd 20.7a 257a 4,420a 761a 359a 5,180a 295a 6.0c
L 01-283 11.0fg 19.7a 1,716c 2,840cd 444cd 222bc 3,280d 201c 6.4b
HoCP 04-838 12.1efg 13.8cd 259a 2,740de 415de 247b 3,150d 284a 6.6ab
Johnsongrass 16.0de 6.8e 111d 2,070fg 360ef 156efg 2,430ef 134d 5.7d
Vaseygrass 14.4def 6.2ef 117d 1,770gh 368def 130fg 2,130fg 138d 4.8f
Itchgrass 19.2bcd 6.0ef 96.3de 2,080fg 370def 149efg 2,450ef 122d 5.6d
Browntop millet 8.7g 4.4f 70.3e 1,490h 329f 76.9h 1,810g 83.4e 4.5f
Divine nightshade 21.7bc 7.0 e 1178d 1,860gh 442cd 124g 2,300fg 146d 4.2g
Purple nutsedge 24.2ab 16.4b 276a 3,700b 679b 350a 4,380b 316a 5.5de
Bermudagrass 16.4de 14.9bc 207b 3,250c 618b 247b 3,870c 239b 5.3e
Italian ryegrass 15.6def 14.4bc 198bc 2,330ef 509c 180de 2,840de 227bc 4.6f
Timothy canarygrass 28.6a 7.5e 214b 1,630h 360ef 161ef 1,990fg 251b 4.5f
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