the total moment about $O X$ is

$$
\frac{h}{9}+\frac{h}{2(1+h)^{2}}+\frac{h}{2(1+2 h)^{2}}+\ldots+\frac{h}{2(1+\overline{n-1} h)^{2}}
$$

This exceeds the moment of the area under the curve, so that if we take the distances from OX too small, namely, $\frac{1}{2} \cdot \frac{1}{1+h}, \frac{1}{2} \cdot \frac{1}{1+2 h}$, etc., the result will be a better approximation for the curve. In this case the sum is

$$
\frac{h}{2(1+h)}+\frac{h}{2(1+h)(1+2 h)}+\frac{h}{2(1+2 h)(1+3 h)}+\cdots
$$

or $\frac{h}{2}$ times the proposed series. Hence the series stated means an approximate value of $\frac{2}{h}$ times the moment about $O X$ of the area under the graph of $\frac{1}{x}$ and between the ordinates at $x=1$ and $x=1+n h$.
G. D. C. Stokes.

The equation of the polar of a point with respect to a circle. The equation of the polar of a point (x^{\prime}, y^{\prime}) with respect to a circle $x^{2}+y^{2}=r^{2}$ can be found very easily by the use of

either the perpendicular or the intercept form of the equation of a straight line.

Thus if the equation of AB (Fig. 1), the polar of : P , is $p=x \cos \alpha+y \sin \alpha, p=\mathrm{OP}^{\prime}, \cos \alpha=\frac{x^{\prime}}{\mathrm{OP}}, \sin \alpha=\frac{y^{\prime}}{\mathrm{OP}}$. Hence the equation becomes on substitution of these values $x x^{\prime}+y y^{\prime}=\mathrm{OP} .{ }^{\prime} \mathrm{OP}^{\prime}$, that is $x x^{\prime}+y y^{\prime}=r^{2}$, since P and $: \mathrm{P}^{\prime}$ are inverse points with respect to the circle.

Again, if the equation of AB is $\frac{x}{a}+\frac{y}{b}=1$, then $a=O A$ and $b=\mathrm{OB}$. But from the cyclic quadrilaterals PMAP', PNBP^{\prime} (Fig. 1), OM.OA $-\mathrm{ON} . \mathrm{OB}=\mathrm{OP} . \mathrm{OP}^{\prime}=r^{2}$.

Therefore $a=\overline{x^{\prime}}$ and $b=\frac{r^{2}}{y^{\prime}}$, and the equation becomes

$$
x x^{\prime}+y y^{\prime}=r^{2}
$$

A simple geometrical method of finding the equation of the polar of a point with respect to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ did not occur to me until my colleague, Dr M•Whan, showed me the following very ingenious device for obtaining the equation of

the tangent at a point on the circle:-If $\mathrm{P}\left(x^{\prime}, y^{\prime}\right)$ is on the circle and Q is any point on the tangent at P, the power of Q with respect to the circle is equal to QP^{3}, and hence the equation of the tangent is

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2} . \tag{1}
\end{equation*}
$$

It was thus suggested that the standard equation of the tangent or polar, viz.,

$$
x x^{\prime}+y y^{\prime}+g\left(x+x^{\prime}\right)+f\left(y+y^{\prime}\right)+c=0
$$

could be written

$$
\begin{aligned}
\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2} & =x^{2}+y^{2}+2 g x+2 f y+c \\
& +x^{\prime 2}+y^{\prime 2}+2 g x^{\prime}+2 f y^{\prime}+c,
\end{aligned}
$$

which reduces to (1) if $\left(x^{\prime}, y^{\prime}\right)$ is on the circle. This form of the equation shows that the polar of a point $\mathrm{P},\left(x^{\prime}, y^{\prime}\right)$ with respect to a circle is the locus of a point Q, (x, y), which moves so that $P Q^{2}$ is equal to the sum of the powers of P and Q with respect to the circle. This well-known property of the polar can be very easily proved, for, from the triangle PCQ (Fig. 2), we have

$$
\begin{aligned}
\mathrm{PQ}^{2} & =\mathrm{CP}^{2}+\mathrm{CQ}^{2}-2 \mathrm{CP} \cdot \mathrm{CP}^{\prime} \\
& =\mathrm{CP}^{2}+\mathrm{CQ}^{2}-2 r^{2} \\
& =\left(\mathrm{CP}^{2}-r^{2}\right)+\left(\mathrm{CQ}^{2}-r^{2}\right) \\
& =\text { sum of the powers of } P \text { and } \mathbf{Q} .
\end{aligned}
$$

Thus, reversing the above steps, we have an easy geometrical way of obtaining the equation of the polar.

> R. J. T. Bell.

Abstract

Two Theorems on Determinants, and thelr Application to the Proof of the Volume-Formulia for Tetrahedra -Theorem I. If to each of the elements of any row of a determinant there be added the same fraction of the difference between the corresponding elements in two other rows, the value of the determinant is unaltered. This is a case of a well known elementary theorem.

Theorem II. If to each of the elements of two rows of a deter. minant there be added the same fraction of the difference between the corresponding elements in these rows, the value of the determinant is unaltered.

For

$$
\begin{gather*}
a_{1}+\lambda\left(a_{2}-a_{1}\right), b_{1}+\lambda\left(b_{2}-b_{1}\right), c_{1}+\lambda\left(c_{2}-c_{1}\right) \tag{151}\\
a_{2}+\lambda\left(a_{2}-a_{1}\right), b_{2}+\lambda\left(b_{2}-b_{1}\right), c_{2}+\lambda\left(c_{2}-c_{1}\right) \\
a_{3}, \\
b_{3}
\end{gather*}, \quad c_{3},\left|\begin{array}{ccc}
a_{1}+\lambda\left(a_{2}-a_{1}\right), & \ldots \ldots, \ldots \ldots \\
a_{2}-a_{1} & , b_{2}-b_{1}, c_{1}-c_{1} \\
a_{3}, & b_{3}, & c_{3}
\end{array}\right|
$$

