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Minimal generating sets for some

wreath products of groups

Yeo Kok Chye

Let d(G) denote the minimum of the cardinalities of the

generating sets of the group G . Call a generating set of

cardinality d{G) a minimal generating set for G . If A is

a finitely generated nilpotent group, B a non-trivial finitely

generated abelian group and A wr B is their (restricted,

standard) wreath product, then i t is proved (by explicitly

constructing a minimal generating set for A wr B ) that

d(AvrB) = maxd+dU), d(.A*B)} where A x B is their direct

product.

1. Introduction

The rank d(G) of a group G is defined as the minimum of the

cardinalities of the generating sets of G , and a generating set of

cardinality d[G) is called a minimal generating set for G . The main

result of the paper states that if A is a finitely generated nilpotent

group, B is a non-trivial finitely generated abelian group, and A wr B

is their (restricted, standard) wreath product then

d(AvrB) = max{l+dU)> d{A*B)}

(where A x B is their direct product)'. The proof includes an explicit

construction of a minimal generating set for A wr B . For comparison, we

also describe applications of results of Gaschutz to the determination of
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the ranks of some finite .wreath products. In particular, we show that the

above formula for d(AvrB) remains valid whenever A is a finite

nilpotent group and B a non-trivial finite group which is either

nilpotent or has order co-prime to that of A . However, this approach

does not appear to help find minimal generating sets for these wreath

products.

The following notation will be used. If G is a group, denote by

|ff| the order of G and by $(G) the Frattini subgroup of G . If

g, h, . . . , k are elements of G , let \g\ be the order of the element g

, . , h , -1 , l+h+...+k 1 h k
and l e t g = h gh , g = g g . . . g ,

[g> h] = g~ h~ gh = g~ . Also let C be the cyclic group of order p

and A the base group of the restricted wreath product A wr B . If G

is a group and n a positive integer, G denotes either the direct

product of n copies of G , or the subgroup generated by the nth powers

of the elements of G ; the context will make clear which meaning is

intended.

I t will be convenient to deal with a simple preliminary observation

here. Namely, if A is a finitely generated nilpotent group and B is a

group with a"non-trivial finite homomorphic image (say C ) , then

d(AvrB) i 1 + d(A) . Indeed, in this case there is a prime p such that

C is a homomorphic image of A so (by 22-.11 and 26.21 in Hanna

Neumann's book [7]) <7~ wr C i s a homomorphic image of A wr B . Thus

diAvrB). 2 d C^^wrC while of course d l c ^ M = |c |dU) and by the

Schreier Formula (Theorem 2.10 in Magnus, Karrass and Solitar [5]) we have

Id [d|Cd
1 I I P

^ w r C -1 + 1 » dffc^^M . The desired inequality is now an

immediate consequence.

2. The ranks of some finite wreath products

We shall be concerned with d(j4wrB) where A and B are finite and

B t 1 . The first thing to note is that AwrB/$(A) ^A/$(4)wrS and
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HA) = *(/l ) < HAvrB) so d(AvrB) = <i(/l/*U)wrB) : thus no generality

is lost if $(4) = 1 is assumed.

Let G be any non-trivial finite group, p a prime, e an integer,

e > 1 , and F a free group of rank e . If R is a normal subgroup of
&

F such that F /R = G (and one such isomorphism is specified), then

R/R'K may be considered a G-module in a natural way. The modules which

arise in this manner, and some applications to the ranks of certain groups,

form the subject of paper [2] of Gaschutz. In Satz U of [2] , he shows that

if p\\G\ , then R/R'Fp is the direct product of a C on which G acts

tr ivial ly and of the base group of CT wr G . As p | | c | > i t follows

that F /R'lP spli ts over R/R'FP and hence that

FJR'I? a Cp x

In fact, in this result p may be replaced by any integer t co-prime to

|ff| . This is immediate when t is square-free; for then R/R'R is the

direct product of the R/R'tf with p ranging through the prime divisors

of t .

Suppose now that A is a finite nilpotent group and B a finite

group with g.c.d. ( |i4| , \B\) = 1 . As we noted in the opening remark of

this section, we may assume that $(/!) = 1 ; now this means that A is

abelian of square-free exponent, t say, so i t is a homomorphic image of

C7 . Thus A wr B is a homomorphic image of CV wr B . But from

Gaschutz's result given above, CT wr B can be generated by
v

max.{l+d(A), d(B)} elements. On the other hand, A wr B cannot be

generated by fewer than majc{l+d(A), d(B)] elements. Thus Gaschutz's

result yields that

(l) if A is a finite nilpotent group, if B is a finite non-

trivial group and if g.c.d. (|d | , \B\) = 1 , then

d(AvrB) = max{l+dU), d(B)} .
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(Note here that max{l+d(A), d{B)} = max{l+dU), dUxfi)} , since

g . c . d . ( | 4 | , \B\) = 1 implies that d(A*B) = maxWU), d(B)} .)

He describes R/R'IF also in case p \G\ , but that description

involves parameters which can only be calculated i f the submodule structure

of the regular representation of G over GF(p) i s sufficiently well-

known: we know of no effective way of determining them in general. The

special cases of i n t e re s t to us in which th i s approach could be used are

more easily accessible from another resul t of Gasch'utz [ 3 ] , which we now

proceed to discuss.

In Satz h of another paper [3 ] , Gasch'utz gives a formula for the

eulerian function of an arbitrary f in i t e soluble group G . This formula

may be used to calculate d(G) in the following manner. If M i s an

irreducible (5-module, i t s ring of ff-endomorphisms, endJtf i s a f in i te

f i e ld . Let dimM denote the dimension of M as a vector space over

endjtf . If' M i s a non-tr ivial irreducible G-module, take an arbitrary

chief series of G , count the number of complemented factors of th i s chief

ser ies that are isomorphic to M (as C-modules), divide this number by

dimM and denote the resu l t by u(Af) . ( i t i s implicit in [3] and expl ic i t

in Satz U.X of 141, tha t v(M) i s independent of the par t icular chief

ser ies chosen.) The resu l t of Gasch'utz then yields that

(2) if G is any finite soluble group, then d(G) is the

least positive integer such that d(G) 2 d(G/G') and

d{G) > 1 + u(A/) for every non-trivial irreducible

G-module M .

We shal l now describe how (2) may be used to calculate d(AwrB) when

A i s a f in i t e nilpotent group and B i s a non-tr ivial f in i te soluble

group. For G = A wr B , G/G' i s just the direct product A/A' x B/B' .

Let d {G) denote the rank of the largest elementary abelian p-factor-
P

group of G , so that d{G/G') = max d (G) . Then one has
P P

d (G) = d (A) + d (B) , so d(G/G') = max {d U)+d(B)) . Thus the f i r s t

i n e q u a l i t y o f ( 2 ) y i e l d s t h a t d(AwrB) 2 m a x {d (A)+d (B)} .
P P y
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By the opening remark and since d {A) = d [A/<$(A)) for a l l p , we

may again assume that A is abelian of square-free exponent. As the base

group A of A wr B acts t r iv ia l ly on a l l chief factors of A wr B , we

may view M as a S-module Af_ without any essential loss; in particular

end_AL = endjtf and dimW_ = dimW .

Let M be any non-trivial G-module, p the unique prime divisor of

the order of M , and A , the Sylow p-complement of A so that

d{A) B B

A/A i = C * and A , is the Sylow p-complement of A . Take a chief

series of G through A , and A . The part of this from A to G

corresponds to a chief series of B . The contribution to M(Af) from this

part is y(Wg) where V[MB) is defined with reference to a chief series

of B instead of G . Observe that M cannot occur below A , .

B 7?

Consider the complemented chief factors between A , and A isomorphic

to M . Let there be t such factors, choose for each a complement and
T>

let K denote the intersection of A and all these complements. Then K

7? H

is normal in G and K 2 A , . Observe also that A /K is a direct sum
P

n D

of t isomorphic copies of ML and A IA , is the direct sum of d (A)
copies of the regular GF(p)B-module. How Theorem 6l. l6 in Curtis and

Reiner [ I ] t e l l s us that t S d (,4)dimMD • I t also t e l l s us that there is
p ts

a submodule S in A , with S > A , , such that A /S is the direct sum

of d (4)dimM_ copies of WD ; a chief series of G through 5 and A
P D D

then has d (4)dimWR chief factors between S and A , all isomorphic to

M-r, and all complemented. Such a choice of the chief series would result
Di n t > d (iOdimMD . Thus t = d U)dimMD and sop ts p ts

(3) if A ia a finite niVpotent group and B a non-trivial

finite soluble group, then d(A\trB) is the least positive

integer d suck that d > majz{d (A)+d (B)} and
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d > 1 + d (A) + \i(Afg) for each prime p and each non-

trivial irreducible B-module M* of characteristic p .

A special case of (3) wi l l be of par t icular in te res t : namely, that of

a nilpotent B . In th i s case v[MB) = 0 for a l l M_ and

max {l+d (A)} = 1 + d(A) , so we have
P

(h) if A and B are finite nilpotent groups with B ?s 1 ,

then d(AwrB) = max{l+dU), d(A*B)} .

3. Minimal generating sets for some wreath products

The purpose of th i s section is to establish (independently) a pa r t i a l

generalization of (k):

(5) if A is a finitely generated nilpotent group and B is a

finitely generated non-trivial abelian group, then

d(AvrB) = max{l+d{A), d(A><B)} .

In fac t , we can give expl ic i t minimal generating sets for such wreath

products. However, to simplify expression we f i r s t perform a reduction. A

resu l t of McLain (Lemma 2, [6]) says that i f N i s a nilpotent normal

subgroup of a group G , and i f H is a subgroup of G such that

HN' = G , then H = G . I t follows that i f i i s a nilpotent group and B

an arbi t rary group, the generating sets of A x B correspond naturally to

those of A/A' x B . Under the same assumptions, the generating sets of

A wr B correspond natural ly to those of A/A' wr B (the l a t t e r wreath

product being isomorphic to the factor group of the f i r s t over the derived

group of i t s base group). Thus for the purpose of discussing generating

sets of A x B and A wr B with nilpotent A , one may replace A by

A/A' .

Once A i s abelian, A x B is a homomorphic image of A wr B , so

d(AvrB) i d(AxB) . On the other hand, we have already seen that

d(AvrB) > 1 + d(A) whenever B ? 1 . Thus for the proof of (5) i t remains

to construct generating sets of the appropriate size for wreath products of

f in i t e ly generated abeliar. groups, which we now proceed to do.

Let A and B be non-tr ivial f in i te ly generated abelian groups; put
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d(.A) = m and d{B) = n . I t i s well-known (see for instance Theorem 3.6

in [5]) that A has a generating set {a , •••» a } such that

la..., I whenever 1 5 i < m (where one writes 0 for the order of an

element generating an inf in i te cycle), and B has a generating set

{b , . . . , b } subject to similar conditions. Put d = maxd+dU), d(A*B)}

and k = m + n-d; note k 5 m and k < n . If l S - i s f e and

g.c.d. f \b. | , la, . . ,1) = t then t divides each of

o C, is

a homomorphic image of A x B : hence t = 1 . I t follows that each

congruence

Ib^x. i l m o d | V i + 1 | , 1 S i <fc ,

has a solution, say t . . Observe that also

\b.\t. = 1 mod la, . | whenever l 2 i < j £ fc .

(in par t icular , none of |2> | , . . .» |Z?, | can be 0 .]

For i = 1, . . . , m , l e t / . denote that function in the base group
if

A of A wr £ for which /.(l) = a. and f-(y) = 1 whenever
"h % %

\ t y € B ; also, for i = 1, . . . , k , put h. = / , . . The integral

group ring ZB acts on A in a natural way, and provides a convenient

notation for what follows. We shall use some of its elements:

2 l ^ l
+ b + b + +b

where i ranges from 1 to k . We shall make use of the following

congruences, which are easily verifiable by direct calculation:
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(6) fr-bj&j, = 0 .

(7) - Y ^ = &t mod

(8) ( l - M 6 - B 1 - B. mod

(9) ^ U ^ ) + V i - 1 mod lhjl

whenever 1 5 i £ j S k .

We claim that

(10) the d-elemsnt set

h 2 \ 1 2 ...hk
2

i > bk+2' • • •

generates A vr B

u

Let K be the subgroup generated by th is se t . Clearly KA = A wr B ,
B

so K n A i s a normal subgroup of A wr B and so a ZB-submodule of

A . Using (7) one obtains that

p . ( y *^ > &• g

?!. = p . /z . € A: n i4 whenever 1 £ i 2 fe .

Next, calculate a useful form for another element of K n A :

A • W A ••• *fc J = LfcA ' *fc+Aj by (6)

As we already know t h a t h € K n A , i t follows tha t 7^ € X n A

whence by (9) one has h (. K n A . Consequently a l so b € K . Now look

U - Z O Y - r YJ-I B

&t h. J = 2?,-, fc J i . € K n >! for 2 < J 5 k : as we already have
3 L 1 J J j
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6 . H X-fc • „ " 1-6 B

h.J I K n A , (9)- t e l l s us that h. x t K n A so that h. x I K r\ A
3 0 3

by (8). It follows that the set

Y? YJ- e? e p " - 6 ^ l

2 • • • •' W - VlV3 • • * V •
lies in K . By repeated application of the steps above, we may then show

that h , b • , — , h, , b, , and finally ^^+1 » a-re all in X . As

h^, ..., ?z, ,/,.-, ..., f , b. i> generate ^ wr B , this completes

the proof.

It would be interesting to know whether (5) remains valid if B is

assumed to be only'nilpotent instead of abelian. The fact that this is

true in all finite cases (k) suggests a positive answer.
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