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Kinetic theory of particles near resonances is a current topic of discussion in plasma
physics and astrophysics. We extend this discussion to the kinetic theory of the
interaction between alpha particles (energetic particles predicted to exist in large quantities
in next-generation fusion experiments) and a neoclassical tearing mode (NTM), a
resistively-driven perturbation which sometimes exists in a tokamak. We develop a
quasilinear treatment of the interaction between alpha particles and an NTM, showing why
an NTM can be a source of significant passing alpha particle transport in tokamaks. The
limitations on quasilinear theory constrain our theory’s applicability to small amplitude
NTMs, highlighting the importance of nonlinear studies.
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1. Introduction

Many recent studies have considered kinetic theory of particles near resonances, with
application to both plasma physics (Catto 2018; White et al. 2018; Catto 2019; Duarte
et al. 2019; Tolman et al. 2019; White et al. 2019; Catto 2020, 2021; Lestz & Duarte
2021; Catto, Tolman & Parra 2023; Duarte et al. 2023; White & Duarte 2023) and
galactic dynamics (Binney 2020; Chiba & Schönrich 2022; Hamilton et al. 2023). These
works are interesting from a fundamental perspective: the structure of kinetic theory has
intrinsic intellectual value. Furthermore, the works have practical value. In plasma physics,
resonant interactions between magnetic and electric field perturbations and energetic
particles can lead to transport that reduces fusion device performance and damages
device walls (Kurki-Suonio et al. 2009; Scott et al. 2020). In galactic dynamics, resonant
interactions help to determine a galaxy’s structure (Dehnen 2000) and influence the results
of cosmological galaxy formation simulations (Roshan et al. 2021; Hamilton et al. 2023).

In the recent literature, a type of resonance that remains less explored is one that
exists in a tokamak between passing energetic particles and the neoclassical tearing mode
(NTM). The NTM is a special type of resistive tearing mode which results from the
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bootstrap current created naturally by the toroidal nature of tokamaks (La Haye 2006).
Experimentally, NTMs are seen to produce significant energetic particle transport (Mynick
1993; García-Muñoz et al. 2007; Heidbrink et al. 2018). Wave–particle resonance with the
NTM differs from resonance with other mode classes studied in recent papers: the NTM
has a very low frequency (Buttery et al. 2003; Hirvijoki et al. 2014) and is characterised
by toroidal mode number n and poloidal mode number m related by nq = m, with q the
tokamak safety factor at the centre of the mode; both n and m are typically small.

In this paper, we aim to fill a gap in the literature. In particular, we derive the quasilinear
theory of passing alpha particle transport by NTMs. Very close to the resonant surface
that exists at the centre of the NTM, the mode resonates with energetic particles with
vanishing tangential drift frequency, which are freely passing. Slightly away from the
resonant surface, the mode–particle resonance can move closer to the pitch angle of the
trapped–passing boundary. Resonance causes alpha particle transport which can deplete
the slowing down distribution at even low mode amplitudes.

The paper begins in § 2 with a discussion of the tokamak equilibrium and the NTM
perturbation that affects it. Then, in § 3, we discuss the quasilinear approximation which
is used to study alpha particle transport, and use it to derive an expression for the alpha
particle energy flux. In § 4, we derive the perturbed alpha particle distribution necessary
to evaluate the energy flux, and discuss the nature of the resonance between the energetic
particles and the mode. In § 5, we evaluate the particle flux that results from this resonance,
and use it to estimate the mode amplitude at which depletion of the slowing down
distribution would occur. In § 6, we summarise our results, discuss their implications for
tokamak plasma physics and describe the limits on the validity of our treatment.

2. Equilibrium and NTM perturbation

In this section, we first describe the tokamak magnetic equilibrium in which the
alpha particle transport occurs. Then, we describe the NTM perturbation that modifies
this equilibrium. Finally, we present the parameters that describe alpha particles in this
equilibrium.

2.1. Description of equilibrium
The coordinates describing the tokamak equilibrium are ψ (the poloidal flux function), ϑ
(the poloidal angle) and α, defined by

α ≡ ζ − q (ψ) ϑ. (2.1)

Here, ζ is the toroidal angle, with |∇ζ | = R−1, where R is the major radius coordinate and
q(ψ) is the safety factor. We study the behaviour of alpha particles confined by a magnetic
field which is stationary and axisymmetric except for the NTM perturbation. Such a field
is stated in the Clebsch representation (Grad & Rubin 1958; Kruskal & Kulsrud 1958;
D’haeseleer et al. 2012) as

B = ∇α × ∇ψ = I (ψ)∇ζ + ∇ζ × ∇ψ, (2.2)

with I(ψ) characterising the strength of the toroidal magnetic field by Bζ = I(ψ)/R.
We do not consider background electric fields because they do not affect alpha particle
trajectories as strongly as the magnetic fields do (a discussion is found in § 2 of Tolman &
Catto 2021). The unit vector corresponding to the magnetic field is

B
B

≡ b̂. (2.3)
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Parameter Value
B0 1.2 × 105 G
R 185 cm
ne, ni 4 × 1014 cm−3

Te 20 keV
v0 1.3 × 109 cm s−1

TABLE 1. Example tokamak parameters used in this paper, similar to those planned for SPARC
(Creely et al. 2020; Rodriguez-Fernandez et al. 2020). The bulk plasma is assumed to be an
equal mix of deuterium and tritium. For convenience, we include the alpha particle birth speed,
v0, even though this parameter is the same in any tokamak.

The poloidal angle is chosen such that1

B · ∇ϑ = |I| / [q (ψ)R2] = q (ψ)−1 |B · ∇ζ | . (2.4)

At this point, ϑ is a fully general straightened field line poloidal coordinate which must
only be chosen such that (2.4) holds. This allows for shaping and finite aspect ratio. Later,
a circular-cross-section, high-aspect-ratio approximation is used.

The poloidal component of the field is denoted by Bp, and can be found from Bp ≈ εB/q,
with the inverse aspect ratio

ε ≈ r/R, (2.5)

where r is the local minor radius. The flux coordinate and the minor radius are related by

∂/∂ψ = (
1/RBp

)
∂/∂r. (2.6)

The shear of the field is given by

s ≡ (r/q) ∂q/∂r. (2.7)

The strength of the on-axis field is given by B0.
The total magnetic field affecting the alpha particles includes both the equilibrium

magnetic field and the magnetic field resulting from the NTM, which is discussed in § 2.2.
The total magnetic field from all of these sources is denoted Btot (with unit vector b̂tot).
Several parameters can be defined in terms of the total field or the unperturbed field; the
total quantities are in general only used before the perturbation analysis is carried out.

When numerical examples are needed in this paper, we use the equilibrium parameters
given in table 1, which are similar to those planned for SPARC, a DT tokamak experiment
currently being constructed (Creely et al. 2020; Rodriguez-Fernandez et al. 2020).

2.2. Description of NTM perturbation
We consider situations where the equilibrium discussed previously is perturbed by an
NTM, which we describe in this section. At rational surfaces ψ = ψs in the tokamak,

1Later in the paper, an approximate form of this definition, q(ψ) ≈ (Rb̂ · ∇ϑ)−1, is used to simplify expressions.
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the safety factor is given by

q (ψ = ψs) = m
n
. (2.8)

An NTM is a resistively-driven instability at this surface that introduces a perturbation to
the vector potential (Hirvijoki et al. 2012, 2014) given approximately by

A1 = A‖ (ψ, ϑ, ζ ) b̂, (2.9)

where

A‖ (ψ, ϑ, ζ ) = A‖ (ψ) cos (nζ − mϑ) = Re
[
A‖ (ψ) exp(inα + i(qn − m)ϑ)

]
. (2.10)

We consider only cases where a single NTM is present. This mode will be resonant with
the magnetic field at the rational surface. At this surface, the perturbation will not vary at
all along the direction of the magnetic field; its wavevector will be perpendicular to the
magnetic field. The values of n and m are typically low, as higher mode number modes
bend field lines more and, thus, are more stable (Buttery et al. 2000). A brief explanation
of how this mode arises is given in Appendix A.

The perturbed magnetic field from (2.9) is given by

B1 = ∇ × A1. (2.11)

The overall magnetic field unit vector b̂tot is related to the perturbation and the background
field by

b̂tot ≈ b̂ + B−1∇ × (
B−1A‖B

) ≈ b̂ + B−1∇ (
IA‖/B

)× ∇ζ, (2.12)

where the last form preserves axisymmetry and perturbs the flux by

ψ1 = −IA‖/B, (2.13)

assuming Bp � B.
Later, it will be helpful to have expressions for some quantities involving the perturbed

magnetic field. For example, we can state the convenient result, obtained using (2.2), that

B1 · ∇ψ = ∇ ·
(

A‖
B

B × ∇ψ
)

= B · ∇ (
IA‖/B

)− B∂A‖/∂ζ. (2.14)

Then, we also have that

B1 · ∇ψ + B · ∇ψ1 = B · ∇ (
ψ1 + IA‖/B

)− B∂ζA‖ = −B∂ζA‖, (2.15)

which vanishes upon toroidal averaging, implying that we can define perturbed,
axisymmetric flux surfaces.

2.3. Description of particles
We study the behaviour of a population of alpha particles in tokamak magnetic fields
perturbed by an NTM of the form (2.9). In this section, we present the system of
quasilinear equations used to study this population. Alpha particles are characterised by
their speed, v (or, equivalently, energy normalised to mass, E ≡ v2/2), the sign of v‖, the
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component of their velocity parallel to the equilibrium magnetic field, and their magnetic
moment. The sign of v‖ is given by the variable σ , defined as follows:

σ =
⎧⎨
⎩

0, trapped particles,
v‖∣∣v‖
∣∣ , passing particles. (2.16)

The magnetic moment can be defined relative to the total magnetic field,

μtot ≡ v2
⊥,tot

2Btot
, (2.17)

or relative to the unperturbed field,

μ ≡ v2
⊥

2B
. (2.18)

(Here, v⊥,tot is the component of their velocity perpendicular to total field and v⊥ is
the component of their velocity perpendicular to the unperturbed field.) Note that these
definitions of magnetic moment exclude the alpha particle mass. We can also define

λ ≡ 2μB0/v
2. (2.19)

The alpha particle mass and charge number are given by Mα and Zα, respectively;Ωtot ≡
ZαeBtot/Mαc is the gyrofrequency in the total field andΩ ≡ ZαeB/Mαc the gyrofrequency
in the unperturbed field. The alpha particle poloidal gyrofrequency (in the unperturbed
field) is Ωp ≡ ZαeBp/Mαc. The alpha particle gyroradius is ρα ≡ v⊥/Ω and the poloidal
gyroradius ρpα ≡ v⊥/Ωp.

3. Development of quasilinear formulation

Outside the narrow tearing layer, the NTM perturbation (2.9) has a radial scale length
which is large compared with the alpha gyroradius. Therefore, we can begin our study
from the drift-kinetic equation (Hazeltine 1973):

∂f
∂t

+
(
v‖b̂tot + vd,tot

)
· ∇f +

[
Zαe
Mα

(
v‖b̂tot + vd,tot

)
· Etot + μtot

∂Btot

∂t

]
∂f
∂E

= C { f } + Sfusδ (v − v0)

4πv2
. (3.1)

Note that this expression neglects the finite spread of alpha particle birth speeds. Here,
the collision operator appropriate for alpha particles with speed much faster than the ion
thermal speed is given by (Cordey 1976; Catto 2018)

C { f } = 1
τsv2

∂

∂v

[(
v3 + v3

c

)
f
]+ 2v3

λB0

τsv3B
v‖
v

∂

∂λ

(
λ
v‖
v

∂f
∂λ

)
. (3.2)

The first term represents electron and ion drag whereas the second represents pitch angle
scattering off of bulk ions. Here, the alpha slowing down time is given by

τs (ψ) = 3MαT3/2
e (ψ)

4 (2πme)
1/2 Z2

αe4ne (ψ) lnΛc
, (3.3)

with lnΛc, Te, ne, and me the Coulomb logarithm, the electron temperature, the electron
density, and the electron mass, respectively. The critical speed at which alpha particles
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6 E.A. Tolman and P.J. Catto

switch from mainly losing energy to electrons to mainly losing energy to ions is found by
summing over background ions,

v3
c (ψ) = 3π1/2T3/2

e (ψ)

(2me)
1/2 ne (ψ)

∑
i

Z2
i ni (ψ)

Mi
, (3.4)

with Zi, ni, and Mi the charge, density, and mass of each of the background species. This is
of similar size to vλ, the speed at which pitch angle scattering is important to the behaviour
of the equilibrium energetic alpha population:

v3
λ (ψ) ≡ 3π1/2T3/2

e (ψ)

(2me)
1/2 ne (ψ)Mα

∑
i

Z2
i ni (ψ) . (3.5)

The velocity coordinate contains a component along the magnetic field b̂tot, v‖,tot, and a
component perpendicular to it, vd,tot. The drift velocity is given by

vd,tot = λtotv
2

2B0Ωtot
b̂tot × ∇Btot +

v2
‖,tot

Ωtot
b̂tot ×

(
b̂tot · ∇b̂tot

)
≈ Ω−1

tot v‖,tot∇⊥,tot ×
(
v‖,totb̂tot

)
,

(3.6)

where ∇⊥,tot = −b̂tot × (b̂tot × ∇). Later, we use v‖ and vd to refer to the parallel velocity
and drift in the presence of only the unperturbed field.

For a mode of form (2.9), there is no significant perturbed electric field as any time
variation of the perturbed magnetic field is unimportant. In addition, the effect of the
tokamak’s unperturbed electric field is unimportant relative to the effect of the magnetic
drift.2 Thus, the coefficient of ∂f /∂E can be set to zero. In addition, we neglect the time
derivative as we are seeking steady-state solutions in a slowly time-varying NTM field.
Then, our kinetic equation becomes

(
v‖,totb̂tot + vd,tot

)
· ∇f = C { f } + Sfusδ (v − v0)

4πv2
. (3.7)

Our goal is to develop approximate expressions from and solutions of (3.7) that allow us
to evaluate the radial energy flux of the passing alpha particles under the influence of the
NTM. We begin by recognising that

(
v‖,totb̂tot + vd,tot

)
· ∇f = v‖,tot

Btot
∇ ·

[
f
(

Btot + Btot

v‖,tot
vd,tot

)]
. (3.8)

We can average (3.7) over ζ and over a transit using dτtot = dϑ/(v‖,totb̂tot · ∇ϑ):
1

2π

∮
dτtot

∮
dτtot dζv‖,tot

Btot
∇ ·

[
f
(

Btot + Btot

v‖,tot
vd,tot

)]

= 1

2π

∮
dτtot

∮
dτtot dζ

[
C { f } + Sfusδ (v − v0)

4πv2

]
. (3.9)

2For an explanation, see footnote 4 of Tolman & Catto (2021).
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Using the divergence in ψtot = ψ + ψ1, ϑ, ζ variables, we can simplify the left-hand side
of the previous equation:

1

2π

∮
dτtot

∮
dτtot dζv‖,tot

Btot
∇ ·

[
f
(

Btot + Btot

v‖,tot
vd,tot

)]

= 1

2π

∮
dτtot

∂

∂ψtot

∮
σ dϑ dζ
Btot · ∇ϑ

[
f
(

Btot + Btot

v‖,tot
vd,tot

)
· ∇ψtot

]
. (3.10)

In this expression, the term vd,tot · ∇ψtot drives neoclassical transport, which we do not
evaluate here.3 Let us now consider the term f Btot · ∇ψtot. First, consider that in the
absence of an NTM, the distribution function must be the axisymmetric

f (ψ, ϑ, v, σ, λ) = f0 (ψ, ϑ, v, σ, λ) . (3.11)

The introduction of the NTM causes two effects in the distribution function. First, the
equilibrium distribution function acquires the structure of the perturbed flux surfaces,
i.e. f0(ψ, ϑ, v, σ, λ) → f0(ψ + ψ1, ϑ, v, σ, λ). Second, the distribution function itself may
be changed due to the motions resulting from the NTM, i.e. f0(ψ + ψ1, ϑ, v, σ, λ) →
f0(ψ + ψ1, ϑ, v, σ, λ)+ f1(ψ + ψ1, ϑ, ζ, v, σ, λ). That is, we have

f = f0 (ψ + ψ1, ϑ, v, σ, λ)+ f1 (ψ + ψ1, ϑ, ζ, v, σ, λ) . (3.12)

With this expression, we can evaluate f Btot · ∇ψtot. Neglecting the very small ζ
dependence in Btot · ∇ψtot, we note that all first-order terms go to zero when averaged
over ζ , and we can write

1

2π

∮
dτtot

∂

∂ψtot

∮
σ dϑ dζ
Btot · ∇ϑ f Btot · ∇ψtot

= 1

2π

∮
dτtot

∂

∂ψtot

∮
σ dϑ dζ
Btot · ∇ϑ f (B · ∇ψ1 + B1 · ∇ψ) . (3.13)

Making use of (2.15) we find that

Sfusδ (v − v0)

∮
ζ

dτ

4πv2
+
∮
ζ

dτ C { f0} = − ∂

∂ψ

∮
σ dϑ dζ

b̂ · ∇ϑ f1∂ζA‖. (3.14)

The subscript ζ indicates that the integral is performed at a fixed value of ζ . When the
right-hand side of (3.14) is negligible, the value of f0 is found to be the slowing down
distribution,

f0 (ψ, v) = Sfus (ψ) τs (ψ)H (v0 − v)

4π
[
v3 + v3

c (ψ)
] , (3.15)

with H a unit step function. To find the energy flux Γq that results from the right-hand
side of (3.14), we can multiply by Mαv

2/2 and v‖d3v/B, where (summing over both

3The neglected contribution to the transport can be found as explained in Hsu, Catto & Sigmar (1990) and Catto
(2018) and is unaffected by the NTM.
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signs of v‖)

d3v = 2πBv3 dv dλ
B0

∣∣v‖
∣∣ , (3.16)

and divide by
∮
ζ

dϑ/(B · ∇ϑ). We find, assuming large aspect ratio,

Mαv
2
0

2
Sfus + Mα

2
∮
ζ

dϑ/B · ∇ϑ

∮
ζ

dϑ
B · ∇ϑ

∫
d3v v2C { f0}

= −Mα/2

2π

∮
dϑ/ (B · ∇ϑ)

∂ψ

[∮
dϑ dζ

B · ∇ϑ
∫

d3v v2v‖f1∂ζA‖

]
≡ 1

r
∂

∂r

(
rΓq

)
. (3.17)

Then, we can write that the alpha particle energy flux is given by

Γq ≈ − Mα

4πRBp

∮
dϑ/B · ∇ϑ

∮
dϑ dζ

B · ∇ϑ
∫

d3v v2v‖f1∂ζA‖. (3.18)

In the next section we find a solution for f1. If unperturbed trajectories are sufficient
to calculate the distribution response, it is possible to neglect the nonlinear terms in the
kinetic equation.4 Then, we need only solve the linear equation(

v‖b̂ + vd

)
· ∇f1 − v‖

(
∂ζA‖

)
(∂f0/∂ψ) = C {f1} . (3.19)

4. Plasma response to perturbations

In this section, we calculate the plasma response to the NTM perturbation described
in the previous section. Our expression (2.9) for the vector potential and the use
of unperturbed trajectories in (3.19) suggests using drift kinetic angular momentum
ψ� = ψ − Iv‖/Ω , ϑ , and α� = ζ − q�ϑ as the variables, with q� = q(ψ�), since nζ −
mϑ = nα − (m − nq)ϑ = nα� − (m − q�n)ϑ . (Note that these variables mean that to the
requisite order (v‖b̂ + vd) · ∇ψ� = 0.) Then, we can posit that

f1 = Re
[−iF1 (ψ�, ϑ, v, μ, σ ) einα�

]
. (4.1)

Using (2.10) and (3.19), we find that the equation governing F1 is

iv‖b̂ · ∇ϑ ∂ϑF1|α� + inωαF1 − exp(inq�ϑ)C {F1 exp(−inq�ϑ)}

= −nv‖

(
∂f0

∂ψ

)
A‖ exp(−i (m − q�n) ϑ). (4.2)

Here, we have defined

ωα ≡
(
v‖b̂ + vd

)
· ∇α�≈v‖b̂ · ∇ϑ ∂

∂ψ

(
qIv‖
Ω

)
. (4.3)

(Owing to the dominance of parallel streaming over drifts, we have that v‖b̂ · ∇ϑ � vd ·
∇ϑ .) Let us integrate (4.2) over the particle trajectory, assuming A‖(ψ) ≈ A‖(ψ�) because

4The validity of this approximation is discussed in § 6.
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Drift kinetic theory of alpha particle transport by NTMs 9

ψ� − ψ = −(Iv‖/Ω)(∂q/∂ψ) is assumed small, i.e.∮
dτ
[
iv‖b̂ · ∇ϑ ∂ϑF1|α� + inωαF1 − exp(inq�ϑ)C {F1 exp(−inq�ϑ)}

]

= −nA‖ (ψ�)
(
∂f0

∂ψ

)∮
v‖ exp(−i (m − q�n) ϑ) dτ. (4.4)

We note the radial ponderomotive force departure during a poloidal transit due to the
nonlinear radial drift from the NTM drive is small compared with a poloidal gyroradius
for our small NTM amplitude ordering as is seen by expanding A‖(ψ + ψ1) ≈ A‖ −
(I/B) dA2

‖/dψ .
For trapped particles, whose trajectories traverse a closed path in ϑ , the right-hand side

of (4.4) vanishes, which shows that the trapped particle response vanishes. The drift caused
by the perturbation is proportional to the particle parallel velocity, so particles on closed
trajectories along which parallel velocity reverses sign experience no significant drift.

For passing particles there is a significant response when there is a resonance. For the
passing particles, we can also Fourier transform in poloidal angle, writing that

f1 = Re
[−iF1 (ψ�, v, μ, σ ) exp(inα� − i (m − q�n) ϑ)

]
. (4.5)

With this new expression, we can again integrate over the passing trajectory, and recognise
that q ≈ q� for the collision term and that the magnetic shear term in the drift term will
cancel one in the streaming term. We can define a drift without shear,

qv‖b̂ · ∇ϑ ∂

∂ψ

(
Iv‖
Ω

)
≡ ωq, (4.6)

and write that

2πσ i (nq − m)F1 + inω̄qτf F1 −
∮

dτC {F1} = −2πqRσV (v)
v
√
ε

∂f0

∂r
, (4.7)

where

τf =
∮

dτ ≈ 4qR
√
(1 − ε) k2 + 2εK (k)

v
√

2ε
−−→
k→1

−
(

2qR

v
√

2ε

)
log (1 − k), (4.8)

ω̄qτf ≡
∮

dτ ωq, (4.9)

and we have used quantities defined in table 2. We have adopted the following approximate
expression for the strength of the axisymmetric magnetic field:

B = B0 [1 − ε (ψ) cosϑ] , (4.10)

with ε ≈ r/R � 1 (as introduced in § 2). In this field, the parallel velocity is given by v‖ =
±v
√

[1 − (1 − ε)λ] − 2ελ sin2 ϑ/2. We also introduce the parameter k, which is defined
in terms of λ,

k−2 ≡ 1 − (1 − ε) λ

2ελ
. (4.11)

A value of k = 1 corresponds to a barely passing particle and a value of k = 0 corresponds
to a freely passing particle. [A pedagogical introduction to this parameter can be found in
Helander & Sigmar (2005).]
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Quantity Value Description

ωd(v)
nv2

ΩpR2 Tangential drift frequency

νpas(v)
v3
λ

v3τsε
Pitch angle scattering frequency

V(v)
vqnA‖√
εRB0

Drift due to NTM drive

TABLE 2. Values defined in order to simplify expressions in the paper.

Quantity Value for passing particles Approximate value used in calculations

nω̄qτf
2ωd(v)Rqk[2E(k)− (2 − k2)K(k)]

v[(1 − ε)k2 + 2ε]
√

2ελ

ωd(v)Rq log [1 − k]

v
√

2ε∮
dτv2

‖
4qRv

√
2ελ

k
E(k) 4qRv

√
2ε

TABLE 3. Quantities appearing in the kinetic equation. The complete elliptic integral of the
first kind is denoted by K(k); the complete integral of the second kind is E(k). (This table uses
quantities defined in table 2.)

At a sharp resonance, the pitch angle scattering part of the collision operator (3.2) is
most important. The drift resonance is strongest for the barely passing (k → 1) alpha
particles because the transit time τf in ω̄qτf diverges logarithmically. We can set λ ≈ 1
in the pitch angle scattering part of the collision operator. (This simplification reflects
that the most important λ-dependence in the collision operator comes from the second
derivative with respect to λ of F1.) Then we can write, using quantities in tables 2 and 3,∮

dτ C {F1} ≈ 8
√

2εενpas (v) qR
v

∂2F1

∂λ2
≈ νpas (v) qR√

2εv

∂2F1

∂k2
. (4.12)

Here, we have also modified the derivative in the collision operator with the approximate
expression ∂/∂λ ≈ [1/(4ε)]∂/∂k.

With the definitions of λ, (2.18), and k, (4.11), we can evaluate the bounce time, the
transit averaged drift, and an average present in the collision operator, which are given in
table 3. Then, our kinetic equation (4.7) becomes

ωd (v) log
[
γ (1 − k)

]
F1 + iνpas (v)

∂2F1

∂k2
= i2π

√
2σV (v)

∂f0

∂r
, (4.13)

where we have defined the normally large factor

γ (v) ≡ exp

(
2π

√
2εσv (qn − m)
ωd (v) qR

)
, (4.14)

which increases with distance in flux space from the centre of the NTM for
σ(qn − m) > 0.
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In order to simplify the kinetic equation, let us make an additional set of definitions and
approximations. First, we define a variable x such that

x ≡ γ (1 − k) , (4.15)

which represents distance from the trapped–passing boundary and accounts for the
distance from the rational surface of interest. We note that γ � 1 and that expanding
around x = 1 gives

log x ≈ x − 1. (4.16)

We also define a small quantity

u (v) ≡ γ 2/3 (v) ν1/3
pas (v)

ω
1/3
d (v)

, (4.17)

which represents the width of the resonance, allowing the definition of an order-unity
quantity

z ≡ x − 1
u

. (4.18)

Furthermore, we can define a normalised version of the distribution function Υ (z) such
that

F1 (z) ≡ −
[

2π
√

2σu2V (v)
νpasγ 2

∂f0

∂r

]
Υ (z) . (4.19)

Then, our kinetic equation reduces to

∂2Υ/∂z2 − izΥ = −1. (4.20)

This has the particular solution of Su & Oberman (1968)

ΥSO (z) =
∫ ∞

0
dτ exp(−izτ − τ 3/3). (4.21)

The homogeneous solution, subject to the constraint that it must vanish at z → ∞, is

Υh (z) = Ai
(
zeiπ/6) , (4.22)

where Ai is the Airy function. To find the overall solution, we apply the constraint that the
plasma response must vanish at the trapped–passing boundary z = −1/u, giving

Υ = ΥSO (z)+ Υ√
ν (z) , (4.23)

where we have defined

Υ√
ν (z) ≡ −ΥSO (−1/u)Ai

(
zeiπ/6) /Ai

(−eiπ/6/u
)
. (4.24)

This expression is plotted in figure 1, showing that γ controls the proximity of the response
to the freely passing location k = 0 and u controls the width of the resonance response.

5. Evaluation of flux

In this section, we show how to use the alpha distribution perturbation f1 derived in
the previous section to obtain the resulting alpha energy flux. This energy flux is the
quantity of practical use in understanding and predicting tokamak discharges. In addition,
we discuss key parts of the expression for this flux.
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(a)

(b)

FIGURE 1. Plasma response function Υ , (4.23), showing that γ controls the proximity of the
resonance to the trapped–passing boundary and u controls the width of the resonance response.

5.1. Setup of flux expression
The alpha particle energy flux of (3.18) is evaluated by recalling (3.16) to obtain

Γq ≈ − Mα

2RBp

∮
dϑ/B · ∇ϑ

∫
dϑ dζ dv dλ

v5v‖
B · ∇ϑ ∣∣v‖

∣∣ f1∂ζA‖. (5.1)

Using (2.10), (4.5), and (4.19), and the approximate expression dλ ≈ 4ε dk, we can
simplify this expression to

Γq = −4
√

2π2εMαnA‖
RBpνpas

∫ v0

0
dv
∫ 1

0
dk
v5u2V (v)

γ 2

∂f0

∂r
Re [Υ (z)] . (5.2)

Using the expression dk = −(u/γ ) dz, the pitch angle integral is performed for u � 1 by
using the asymptotic forms in Abramowitz & Stegun (1968) to find∫ 1

0
dk Re[Υ (z)] ≈ uπ

γ

(
1 + u3/2

√
2π

)
. (5.3)
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The first term in (5.3) is the resonant plateau contribution to the energy transport, whereas
the u3/2 ∝ ν1/2

pas term is the small correction due to the presence of the trapped–passing
boundary. As important contributions to the speed integral are from the v near the birth
speed, we can use the approximate expression

∂f0

∂r
≈ ∂nα/∂r

4πv3 ln (v0/vc)
, (5.4)

along with the speed-dependent (4.17) and the expressions in table 2, to write our energy
flux as

Γq = −
√

2π2nA2
‖Mαq2Ωp√

εB2
0 ln (v0/vc)

∂nα
∂r

∫ v0

0
dv
v

γ
. (5.5)

Then, let us write
γ = exp(2Π0v0/v), (5.6)

where we have defined

Π0 ≡
√

2εΩpRπσ (nq − m)
nv0q

, (5.7)

such that we can write ∫ v0

0

v

γ
dv ≈ v2

0e−2Π0

2 + 2Π0
≡ v2

0

2
G (Π0) , (5.8)

where 2Π0 → 2Π0 + 2 is inserted to avoid singular behaviour at qn = m and recover
the appropriate value as Π0 → 0. Then, ignoring the small u3/2 correction from the
trapped–passing boundary, our energy flux is

Γq = −
√

2π2nA2
‖Mαq2Ωpv

2
0G (Π0)

2
√
εB2

0 ln (v0/vc)

∂nα
∂r
. (5.9)

From here, we can also define a diffusion coefficient:

Drp = − 2Γq

(∂nα/∂r)Mαv
2
0

=
√

2π2nA2
‖q2ΩpG (Π0)√

εB2
0 ln (v0/vc)

. (5.10)

We next show how a phenomenological estimate of this diffusivity can be made for
Π0 ∼ 1.

5.2. Comparison to phenomenological estimates
Let us compare (5.10) with an expression that can be arrived at via phenomenological
methods. In particular, the resonant plateau diffusivity can be estimated as

Drp = FtrapV2/νeff, (5.11)

where Ftrap is the fraction of particles in resonance, V is the radial drift, and νeff is the
effective collision frequency. The width of the resonance in k is given by

uk = u
γ

=
(
νpas

γωd

)1/3

, (5.12)
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where u is defined in (4.17). (The additional γ relative to (4.17) reflects the factor of γ in
(4.15).) Then, the fraction of passing particles in resonance is

Ftrap = √
εuk. (5.13)

The radial drift is V(v), defined in table 2. The effective collision frequency is

νeff = νpas

u2
k

=
(
ν1/3

pas γ
2/3ω

2/3
d

)
. (5.14)

Then, the diffusivity can be estimated as

Drp =
√
εV2

γωd
= nq2ΩpA2

‖
γ
√
εB2

0
, (5.15)

in qualitative agreement with (5.10).

5.3. Constraints on transport from quasilinear calculation
To avoid significant transport, we require

1 � Drpτs

a2
=

√
2nA2

‖π
2q2ΩpτsG (Π0)

τs
√
εB2

0 ln (v0/vc)a2

=
(

B⊥
B

)2 √
2ε3/2R2π2ΩpτsG (Π0)

a2n ln (v0/vc)
, (5.16)

where in the final equality we have used B⊥/B0 = nA‖/(RBp). Using values in table 1, we
calculate that τs = 0.2 s,Ωp = 108 s−1, v0/vc ≈ 2.3, ε ≈ 1/5, and our expression becomes

(B⊥/B0)
2 � 10−9/G (Π0) . (5.17)

These results show that concern for NTM-driven alpha transport loss is well-founded as
(5.17) implies even a very small NTM amplitude can lead to substantial alpha particle
energy loss. In the next section, we estimate when we expect our treatment begins to fail
because the unperturbed axisymmetric tokamak alpha particle trajectories are perturbed
by the NTM magnetic field.

6. Conclusions and discussion

We have evaluated the quasilinear transport of alpha particles caused by NTMs in
a tokamak. We have shown that this transport can be significant even at small mode
amplitudes, suggesting that it may influence the physics of next-generation devices.

A major limitation of our work is that it does not include the nonlinear physics which
is, in practice, important to realistic NTMs which might be encountered in plasma
experiments. Our quasilinear treatment will fail when nonlinear terms in the kinetic
equation become comparable to linear terms, i.e. when

V∂f1/∂r
f1νpas/u2

k
∼ Vf1/ (ukR)

f1νpas/u2
k

∼ V

γ 1/3ν
2/3
pasω

1/3
d R

∼ 1. (6.1)

This shows our results will fail at low collisionalities or high mode amplitudes, suggesting
nonlinear work is necessary to fully understand the transport. We suspect that some of
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the physics insight obtained in our work may nonetheless be important in understanding
nonlinear transport. If the estimate of (6.1) is used along with (5.15), we obtain the
condition for the NTM-driven alpha transport to remain small as our quasilinear transport
treatment fails: (

νpas/γωd
)1/3 � ε5/2v3

0/v
3
λ, (6.2)

implying there is a meaningful regime of validity for our results, but our quasilinear
treatment will fail before the alpha energy transport loss becomes substantial. As a result,
our resonant plateau transport estimate may be overly pessimistic. Indeed, we expect the
NTM-perturbed alpha particle motion will diminish the resonant interaction and lead to
some reduction in the transport provided stochastic behaviour due to island overlap is
avoided.
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Appendix A. NTM description

In this Appendix, we present a heuristic description of tearing mode physics. The
equilibrium magnetic field along the direction of the NTM wavevector is zero at the
resonant surface and reverses direction on either side of it due to the shear in the magnetic
field. Such a reversing field could possibly be unstable to a plasma instability known as
the tearing mode (Furth, Killeen & Rosenbluth 1963; Coppi et al. 1976). Analysis of the
tearing stability of a reversing magnetic field in non-toroidal slab geometry shows that the
nonlinear growth rate is given by Rutherford (1973)

dw
dt

= ηc2

4π
Δ′ (w) . (A1)

Here, w is the width of the tearing eigenmode, equivalent in our case to (Wesson &
Campbell 2011)

w = 4
[

qA‖ (ψs)

∂rqBp

]1/2

, (A2)

and Δ′(w) is the tearing mode index that allows the narrow, inner tearing layer to be
matched to the outer, global NTM eigenfunction of interest here as the alpha transport
drive.

This instability is modified somewhat in tokamak geometry due to the naturally-driven
bootstrap current present in tokamaks. A heuristic derivation of this current follows,
based directly on that typically available in pedagogical sources (for example, Helander &
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Sigmar 2005; Wesson & Campbell 2011). The fraction of trapped particles in a tokamak
is given by

ftrap ∼ √
ε, (A3)

where ε is as defined in (2.5). These trapped particles have a parallel velocity given
approximately by

v‖∼
√
εvth; (A4)

see, for example, (5.22) of Tolman & Catto (2021). The width of a banana orbit is given
by

wb ∼ B
√
ερ

Bp
. (A5)

In a tokamak, a density gradient exists across the minor radius. This means that the barely
passing electrons will carry a current somewhat similar to a typical diamagnetic current in
a plasma (note, however, that the current is in the parallel direction and enhances the
Ohmic current). Considering the collisional exchange between electrons and ions and
between trapped and passing populations gives that

jb ∼ −ε
1/2

Bp
T

dn
dr
. (A6)

A more precise derivation shows that temperature gradients also contribute to the bootstrap
current, such that we can write

jb ∼ −ε
1/2

Bp

dp
dr
. (A7)

Notably, this bootstrap current depends on the gradient in pressure and is carried
by the barely passing electrons as implied by the ε1/2 factor. This means that if
magnetohydrodynamic activity creates an island in the magnetic field over which the
background plasma pressure gradient is flattened, this will yield a change in the bootstrap
current. This change is destabilising to the tearing mode, such that the nonlinear growth
rate (A1) is modified to become (Wesson & Campbell 2011)

dw
dt

= ηc2

4π

[
Δ′ (w)+ αpqε

1/2βp

w

]
, (A8)

where

βp ≡ 8πp
B2

p
(A9)

and

αpq ≡ −8p′q
pq′ , (A10)

a value that is usually positive. This equation indicates that tearing mode instability can
exist even in cases where Δ′ < 0 and, in fact, suggests that instability should always exist
for sufficiently small w. In fact, islands that are too small cannot flatten the pressure
gradient effectively (Wesson & Campbell 2011). A seed magnetic island, perhaps due to a
sawtooth or fishbone, can seed a perturbation in the bootstrap current, creating a magnetic
island over which pressure gradients are flattened significantly (Buttery et al. 2000;
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La Haye 2006). From (A8) we can find the equation defining the saturated neoclassical
tearing mode island width, wsat, as

Δ′ (wsat) = −αpq
√
εβp

wsat
. (A11)
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