SECOND-ORDER NONCOMMUTATIVE DIFFERENTIAL AND LIPSCHITZ STRUCTURES DEFINED BY A CLOSED SYMMETRIC OPERATOR

S. J. BHATT ${ }^{\boxtimes}$ and MEETAL M. SHAH

(Received 15 January 2015; accepted 6 April 2015; first published online 25 November 2015)

Communicated by G. Willis

Abstract

The Banach *-operator algebras, exhibiting the second-order noncommutative differential structure and the noncommutative Lipschitz structure, that are determined by the unbounded derivation and induced by a closed symmetric operator in a Hilbert space, are explored.

2010 Mathematics subject classification: primary 47L40; secondary 46H99.
Keywords and phrases: second-order noncommutative differential structure, symmetric operator, noncommutative Lipschitz structure.

The aim of the present paper is to understand the noncommutative second-order differential structure and the noncommutative Lipschitz structure defined by a closed symmetric operator in a Hilbert space. Let S be a closed symmetric operator with dense domain $D(S)$ in a Hilbert space \mathcal{H}. Let $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ be the C^{*}-algebras consisting of all bounded operators and all compact operators on \mathcal{H}, respectively. Let \mathcal{A}_{S}^{1} consist of all operators A in $\mathcal{B}(\mathcal{H})$ such that $A D(S) \subset D(S), A^{*} D(S) \subset D(S)$ and $S A-A S$ extends by closure to a bounded operator on H. Let $A_{S}:=(S A-A S)^{-}$, where the bar above denotes the closure of the respective operator. Then \mathcal{A}_{S}^{1} is a Banach *-algebra with norm $\|A\|_{1}:=\|A\|+\left\|A_{S}\right\|$, with $\|\cdot\|$ denoting the operator norm. Let \mathcal{U}_{S} be the C^{*}-algebra obtained by completing \mathcal{A}_{S}^{1} in $\|\cdot\|$. Let δ_{S} be the $*$-derivation defined by S as $\delta_{S}(A)=i A_{S}$ with domain $D\left(\delta_{S}\right)=\mathcal{A}_{S}^{1}$ in \mathcal{U}_{S}. Let $\mathcal{K}_{S}^{1}:=\mathcal{A}_{S}^{1} \cap \mathcal{K}(\mathcal{H}), \mathcal{J}_{S}^{1}:=\left\{A \in \mathcal{K}_{S}^{1}: A_{S} \in \mathcal{K}(\mathcal{H})\right\}$ and \mathcal{F}_{S}^{1} be the closure in the norm $\|\cdot\|_{1}$ of all finite rank operators in \mathcal{A}_{S}^{1}. The algebra \mathcal{A}_{S}^{1} is a Banach $\left(D_{1}^{*}\right)$-algebra [KS2] in the sense that it is a Banach *-algebra that is a dense *-subalgebra of a C^{*}-algebra satisfying $\|T R\|_{1} \leq\|T\|_{1}\|R\|+\|T\|\|R\|_{1}$ for all T, R in \mathcal{A}_{S}^{1}. The algebras $\mathcal{K}_{S}^{1}, \mathcal{J}_{S}^{1}, \mathcal{F}_{S}^{1}$

[^0]are closed subalgebras of $\left(\mathcal{A}_{S}^{1},\|\cdot\|_{1}\right)$ and $\mathcal{F}_{S}^{1} \subset \mathcal{J}_{S}^{1} \subset \mathcal{K}_{S}^{1} \subset \mathcal{A}_{S}^{1}$. In [KS2, KS3, KS4], Kissin and Shulman have investigated the structure of these algebras, regarding them as noncommutative differential algebras defined by the derivation δ_{S}.

The classical Banach function algebra $C^{1}[a, b]$ (consisting of functions $f \in C[a, b]$ such that the derivative f^{\prime} exists on $[a, b]$ and $\left.f^{\prime} \in C[a, b]\right)$ as well as the Lipschitz algebra $\operatorname{Lip}[a, b]$ (consisting of functions $f \in C[a, b]$ such that the derivative f^{\prime} exists almost everywhere on $[a, b]$ and $f^{\prime} \in L^{\infty}[a, b]$) suggest that the algebras $\mathcal{A}_{S}^{1}, \mathcal{K}_{S}^{1}, \mathcal{J}_{S}^{1}$ and \mathcal{F}_{S}^{1} represent the noncommutative Lipschitz structure defined by S (more precisely, defined by S relative to $\mathcal{B}(\mathcal{H})$). The noncommutative C^{1}-structure defined by S may be described more accurately by the following modified versions of these algebras. Let

$$
\mathcal{A}_{S}^{(1)}:=\left\{A \in \mathcal{U}_{S}: A D(S) \subset D(S), A^{*} D(S) \subset D(S),(S A-A S)^{-} \in \mathcal{U}_{S}\right\},
$$

$\mathcal{K}_{S}^{(1)}:=\mathcal{K}(H) \cap \mathcal{A}_{S}^{(1)}, \mathcal{J}_{S}^{(1)}:=\left\{A \in \mathcal{K}_{S}^{(1)}: A_{S} \in \mathcal{K}(\mathcal{H})\right\}$ and $\mathcal{F}_{S}^{(1)}$ be the $\|\cdot\|_{1}$-closure of finite rank operators in $\mathcal{A}_{S}^{(1)}$. These Banach algebras, together with the Banach algebras considered in the previous paragraph, exhibit the first-order differential structure defined by S and described in terms of the derivation δ_{S}. We consider the secondorder differential structure defined by S, which is exhibited by the algebras and is defined as follows.

Let $\mathcal{A}_{S}^{2}:=\left\{A \in \mathcal{A}_{S}^{1}: \delta_{S}(A) \in \mathcal{A}_{S}^{1}\right\}$, which is a Banach *-algebra with norm $\|A\|_{2}=$ $\|A\|+\left\|\delta_{S}(A)\right\|+(1 / 2)\left\|\delta_{S}^{2}(A)\right\|, \mathcal{K}_{S}^{2}=\mathcal{A}_{S}^{2} \cap \mathcal{K}(H)$ and $\mathcal{J}_{S}^{2}=\left\{A \in \mathcal{K}_{S}^{1}: \delta_{S}(A) \in \mathcal{J}_{S}^{1}\right\}$, and let \mathcal{F}_{S}^{2} be the closure in $\|\cdot\|_{2}$ of finite rank operators in \mathcal{A}_{S}^{2}. Notice that, for A in \mathcal{A}_{S}^{2}, $\delta_{S}^{2}(A) \in \mathcal{B}(\mathcal{H})$, and thus the algebra \mathcal{A}_{S}^{2} corresponds to the algebra of C^{1}-functions whose derivatives are Lipschitzian. The analogues of the algebra of C^{2}-functions are given as follows. Let $\mathcal{A}_{S}^{(2)}=\left\{A \in \mathcal{A}_{S}^{(1)}: \delta_{S}(A) \in \mathcal{A}_{S}^{(1)}\right\}$, which is a closed subalgebra of $\mathcal{A}_{S}^{2}, \mathcal{K}_{S}^{(2)}=\mathcal{A}_{S}^{(2)} \cap \mathcal{K}(H), \mathcal{J}_{S}^{(2)}=\left\{A \in \mathcal{K}_{S}^{(1)}: \delta_{S}(A) \in \mathcal{J}_{S}^{(1)}\right\}$, and let $\mathcal{F}_{S}^{(2)}$ be the closure in $\|\cdot\|_{2}$ of finite rank operators in $\mathcal{A}_{S}^{(2)}$. Thus the noncommutative second-order differential structure defined by S is manifested as the following complex of Banach algebras which are dense smooth subalgebras of C^{*}-algebras.

$$
\begin{array}{ccccccccc}
\mathcal{A}_{S}^{(2)} & \subset & \mathcal{A}_{S}^{2} & \subset & \mathcal{A}_{S}^{(1)} & \subset & \mathcal{A}_{S}^{1} & \subset & \mathcal{U}_{S} \\
\cup & & U & & U & & U & & \\
\mathcal{K}_{S}^{(2)} & \subset & \mathcal{K}_{S}^{2} & \subset & \mathcal{K}_{S}^{(1)} & \subset & \mathcal{K}_{S}^{1} & & \\
\cup & & U & & \cup & & U & & \\
\mathcal{J}_{S}^{(2)} & \subset & \mathcal{J}_{S}^{2} & \subset & \mathcal{J}_{S}^{(1)} & \subset & \mathcal{J}_{S}^{1} & & \\
\cup & & U & & & \cup & & U \\
\mathcal{F}_{S}^{(2)} & \subset & \mathcal{F}_{S}^{2} & \subset & \mathcal{F}_{S}^{(1)} & \subset & \mathcal{F}_{S}^{1} & &
\end{array}
$$

An algebra of the form \mathcal{B}_{S}^{2} (and, analogously, $\mathcal{B}_{S}^{(2)}$) should not be confused with $\left(\mathcal{B}_{S}\right)^{2}$ which is the linear span in \mathcal{B}_{S} of the set $\left\{X Y: X \in \mathcal{B}_{S}, Y \in \mathcal{B}_{S}\right\}$. Notice that, when S is a bounded operator, all the three norms $\|\cdot\|_{2},\|\cdot\|_{1}$ and $\|\cdot\|$ are equivalent, $\mathcal{A}_{S}^{(2)}=\mathcal{A}_{S}^{2}=\mathcal{A}_{S}^{(1)}=\mathcal{A}_{S}^{1}=\mathcal{U}_{S}=\mathcal{B}(\mathcal{H})$, and the remaining Banach algebras coincide
with the C^{*}-algebra $\mathcal{K}(\mathcal{H})$. A comparison with the classical C^{1}-algebra and the Lipschitz algebra in real analysis suggests that the noncommutative C^{1}-structure is likely to be more rigid than the noncommutative Lipschitz structure. The purpose of the present paper is to contribute to the understanding of the noncommutative secondorder differential and Lipschitz structures defined by S using the method adopted in Kissin and Shulman [KS2] and in Weaver [W1, W2] for the investigation of the first-order structures. Throughout the paper, we assume that the closed symmetric operator S is such that the operator S^{2} with domain $D\left(S^{2}\right):=\{x \in D(S): S x \in D(S)\}$ is a densely defined operator. This would ensure that S^{2} is closable.

The paper is organized as follows. In Section 1, we develop basic properties of the Banach *-algebra \mathcal{A}_{S}^{2}, and compute the finite rank operators therein. The densely defined second-order derivation $\delta_{S}^{2}: \mathcal{A}_{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$, with domain $D\left(\delta_{S}^{2}\right)=\mathcal{A}_{S}^{2}$, turns out to be a closed operator in the C^{1}-norm $\|\cdot\|_{1}$ on \mathcal{A}_{S}^{1} and the operator norm on $\mathcal{B}(\mathcal{H})$. We also discuss the regularity properties, such as spectral invariance and closure, under functional calculi. In Section 2, it is noticed that the derivations δ_{S} and δ_{S}^{2} are W^{*}-derivations in the sense of Weaver [W1, W2] with the result that \mathcal{A}_{S}^{1} and \mathcal{A}_{S}^{2} are W^{*}-domain algebras [W1] which are duals of Banach spaces. This enables us to discuss Lipschitz functional calculus in these Banach algebras. In Section 3, we discuss approximation properties in \mathcal{A}_{S}^{2}; the approximation being by a $\|\cdot\|_{1-}-$ convergence of a $\|\cdot\|_{2}$-bounded sequence. In Section 4, closed essential left ideals in the algebra \mathcal{F}_{S}^{2} are determined. As a whole, the paper seeks analogues for secondorder derivation δ_{S}^{2} of results pertaining to first-order operator δ_{S} in [KS2], and adds a new perspective to a noncommutative Lipschitz structure defined by S. The paper discusses only some basic properties. Many important issues such as duality [KS3], isomorphisms [KS3], second-order analogues of differential Schatten algebras [KS4], analogues of Calkin algebra, as well as higher-order differential structures defined by S remain to be investigated.

1. Noncommutative differential structure

Proposition 1.1.

(1) The class \mathcal{A}_{S}^{2} is a Banach ${ }^{*}$-algebra with norm $\|A\|_{2}=\|A\|+\left\|\delta_{S}(A)\right\|+$ $(1 / 2)\left\|\delta_{S}^{2}(A)\right\|$. Also, for any A in $\mathcal{A}_{S}^{2}, A D\left(S^{* 2}\right) \subset D\left(S^{* 2}\right)$, and $\left.\delta_{S}^{2}(A)\right|_{D\left(S^{* 2}\right)}=$ $-\left[S^{* 2} A-2 S^{*} A S^{*}+A S^{* 2}\right]$.
(2) For each $i=1,2$, the algebra $\mathcal{A}_{S}^{(i)}$ is a closed ${ }^{*}$-subalgebra of \mathcal{A}_{S}^{i}.
(3) If δ_{S} is a generator and, in particular, if S is self-adjoint, the algebra \mathcal{A}_{S}^{2} is dense in \mathcal{U}_{S}. Also, the algebra $\mathcal{A}_{S}^{(2)}$ is dense in \mathcal{U}_{S}.

Proof. (1) First, we note that, for $A \in \mathcal{A}_{S}^{2}, A D\left(S^{2}\right) \subset D\left(S^{2}\right)$ and $A^{*} D\left(S^{2}\right) \subset D\left(S^{2}\right)$. Indeed let $A \in \mathcal{A}_{S}^{2}$. Then $A \in \mathcal{A}_{S}^{1}$ and, as $A^{*} \in \mathcal{A}_{S}^{1}, A^{*} D(S) \subset D(S)$. Let $y \in D\left(S^{2}\right)$.

Then $S A^{*} y$ is defined. Let $x \in D\left(S^{*}\right)$. Then

$$
\begin{aligned}
i\left(S A^{*} y, S^{*} x\right) & =i\left(S A^{*} y, S^{*} x\right)-i\left(A^{*} S y, S^{*} x\right)+i\left(A^{*} S y, S^{*} x\right) \\
& =\left(\delta_{S}\left(A^{*}\right) y, S^{*} x\right)+i\left(A^{*} S y, S^{*} x\right) \\
& =\left(\delta_{S}(A)^{*} y, S^{*} x\right)+i\left(A^{*} S y, S^{*} x\right) \\
& =\left(S \delta_{S}(A)^{*} y, x\right)+i\left(A^{*} S y, S^{*} x\right)
\end{aligned}
$$

because $A \in \mathcal{A}_{S}^{2}$, with the result $\delta_{S}(A)^{*} D(S) \subset D(S)$. Also, since $y \in D\left(S^{2}\right), A^{*} S y \in$ $D(S)$ and $S A^{*} S y$ is defined. Hence, in the above expression, $i\left(S A^{*} y, S^{*} x\right)=$ $\left(S \delta_{S}(A)^{*} y, x\right)+i\left(S A^{*} S y, x\right)$. It follows, from the definition of the domain of the adjoint of an unbounded operator, that $S A^{*} y \in D\left(S^{* *}\right)=D(S)$, with S being closed. Thus $A^{*} y \in D\left(S^{2}\right)$. This proves $A^{*} D\left(S^{2}\right) \subset D\left(S^{2}\right)$. Similarly, it follows that $A D\left(S^{2}\right) \subset$ $D\left(S^{2}\right)$.

Clearly, \mathcal{A}_{S}^{2} is a complex vector space. We assume $A \in \mathcal{A}_{S}^{2}, B \in \mathcal{A}_{S}^{2}$ and verify that $A B \in \mathcal{A}_{S}^{2}$. As \mathcal{A}_{S}^{1} is an algebra and $A, B \in \mathcal{A}_{S}^{1}$, we have $A B \in \mathcal{A}_{S}^{1}$. As $\delta_{S}(A B)=$ $\delta_{S}(A) B+A \delta_{S}(B)$ and $\delta_{S}(A), \delta_{S}(B) \in \mathcal{A}_{S}^{1}$, we have $\delta_{S}(A B) \in \mathcal{A}_{S}^{1}$. Thus $A B \in \mathcal{A}_{S}^{2}$. To show that \mathcal{A}_{S}^{2} is a *-algebra, we show that $A^{*} \in \mathcal{A}_{S}^{2}$ for $A \in \mathcal{A}_{S}^{2}$. We have $A \in$ $\mathcal{A}_{S}^{1}, \delta_{S}(A) \in \mathcal{A}_{S}^{1}$. Since \mathcal{A}_{S}^{1} is a ${ }^{*}$-algebra and δ_{S} is a ${ }^{*}$-derivation, $A^{*} \in \mathcal{A}_{S}^{1}, \delta_{S}\left(A^{*}\right)=$ $\delta_{S}(A)^{*} \in \mathcal{A}_{S}^{1}$. Thus $A^{*} \in \mathcal{A}_{S}^{2}$.

We show that $\left(\mathcal{A}_{S}^{2},\|\cdot\|_{2}\right)$ is complete. Let $\left(A_{n}\right)$ be a Cauchy sequence in \mathcal{A}_{S}^{2}. Then $\left(A_{n}\right)$ is $\|\cdot\|_{1}$-Cauchy in the Banach algebra $\left(\mathcal{A}_{S}^{1},\|\cdot\|_{1}\right)$. Hence there exists A in \mathcal{A}_{S}^{1} such that in the operator norm, both $\left\|A_{n}-A\right\| \rightarrow 0$ and $\left\|\delta_{S}\left(A_{n}\right)-\delta_{S}(A)\right\| \rightarrow 0$. Also, since $A_{n} \in \mathcal{A}_{S}^{2}, \delta_{S}\left(A_{n}\right) \in \mathcal{A}_{S}^{1}$ and since $\left(A_{n}\right)$ is $\|\cdot\|_{2}$-Cauchy, $\left(\delta_{S}\left(A_{n}\right)\right)$ is $\|\cdot\|_{1}$-Cauchy. Hence, for some $T \in \mathcal{A}_{S}^{1},\left\|\delta_{S}\left(A_{n}\right)-T\right\| \rightarrow 0,\left\|\delta_{S}^{2}\left(A_{n}\right)-\delta_{S}(T)\right\| \rightarrow 0$. It follows that $T=\delta_{S}(A)$. Thus $A \in \mathcal{A}_{S}^{2}$ and $\left\|A_{n}-A\right\|_{2} \rightarrow 0$, showing that $\left(\mathcal{A}_{S}^{2},\|\cdot\|_{2}\right)$ is complete. The norm inequality $\|A B\|_{2} \leq\|A\|_{2}\|B\|_{2}\left(A, B\right.$ in $\left.\mathcal{A}_{S}^{2}\right)$ follows easily from the derivation property of δ_{S}. Thus $\left(\mathcal{A}_{S}^{2},\|\cdot\|_{2}\right)$ is a Banach ${ }^{*}$-algebra.

Let $A \in \mathcal{A}_{S}^{2}$. We show that $A D\left(S^{* 2}\right) \subset D\left(S^{* 2}\right)$ and $\left.\delta_{S}^{2}(A)\right|_{D\left(S^{* 2}\right)}=-\left[S^{* 2} A-\right.$ $\left.2 S^{*} A S^{*}+A S^{* 2}\right]$. By [R, Theorem 13.2, page 330], $S^{* 2} \subset\left(S^{2}\right)^{*}$. Now let $y \in$ $D\left(S^{2}\right), x \in D\left(S^{* 2}\right)$. Since $A \in \mathcal{A}_{S}^{1}, A D\left(S^{*}\right) \subset D\left(S^{*}\right)$, by [KS2, Lemma 3.1, page 16], and $\left.\delta_{S}(A)\right|_{D\left(S^{*}\right)}=i\left(S^{*} A-A S^{*}\right)$. Also, $\delta_{S}(A) \in \mathcal{A}_{S}^{1}$. Hence $\delta_{S}(A) D\left(S^{*}\right) \subset D\left(S^{*}\right)$. Now $x \in D\left(S^{* 2}\right), S^{*} x \in D\left(S^{*}\right), A S^{*} x \in D\left(S^{*}\right)$ and

$$
\begin{aligned}
-\left(\delta_{S}^{2}\right. & (A) x, y)-\left(A S^{* 2} x, y\right)+2\left(S^{*} A S^{*} x, y\right) \\
& =-\left(x, \delta_{S}^{2}\left(A^{*}\right) y\right)-\left(x, S^{2} A^{*} y\right)+2\left(x, S A^{*} S y\right) \\
& =\left(x, A^{*} S^{2} y\right)=\left(A x, S^{2} y\right)
\end{aligned}
$$

Hence $y \rightarrow\left(S^{2} y, A x\right)$ is a bounded linear functional on $D\left(S^{2}\right)$ and so $A x \in D\left(S^{2 *}\right)$. As $x \in D\left(S^{* 2}\right), x \in D\left(S^{*}\right)$. Since $A D\left(S^{*}\right) \subset D\left(S^{*}\right), A x \in D\left(S^{*}\right)$ and $y \rightarrow\left(S^{*} A x, S y\right)=$ $\left(A x, S^{2} y\right)$ is $\|\cdot\|$ bounded. Thus $S^{*} A x \in D\left(S^{*}\right)$ and so $A x \in D\left(S^{* 2}\right)$. This gives $A D\left(S^{* 2}\right) \subset D\left(S^{* 2}\right)$ and $\left.\delta_{S}^{2}\right|_{D\left(S^{* 2}\right)}=-\left[S^{* 2} A-2 S^{*} A S^{*}+A S^{* 2}\right]$. This completes the proof of (1).
(2) Is obvious.
(3) If δ_{S} is a generator, then the set $C^{\infty}\left(\delta_{S}\right)$ of smooth vectors (in $\mathcal{B}(\mathcal{H})$) of δ_{S} is dense in \mathcal{U}_{S} [S1]. Since $C^{\infty}\left(\delta_{S}\right) \subset \mathcal{A}_{S}^{(2)} \subset \mathcal{A}_{S}^{2}$, it follows that each of $\mathcal{A}_{S}^{(2)}$ and \mathcal{A}_{S}^{2} is dense in \mathcal{U}_{S}.

Given norms $|\cdot|$ and $\|\cdot\|$ on a vector space $X,|\cdot|$ is called closable with respect to $\|\cdot\|$ if, for any sequence $\left(x_{n}\right)$ in X, the assumptions $\left(x_{n}\right)$ is $|\cdot|$-Cauchy and $\left\|x_{n}\right\| \rightarrow 0$ imply that $\left|x_{n}\right| \rightarrow 0$. The following lemma captures, in the present framework, an important property of the C^{2}-norm on the commutative Banach algebra $C^{2}[a, b]$ of C^{2}-functions.

Lemma 1.2. On the Banach algebra \mathcal{A}_{S}^{2}, each of the norms $\|\cdot\|_{2}$ and $\|\cdot\|_{1}$ is closable with respect to the operator norm $\|\cdot\|$, and $\|\cdot\|_{2}$ is closable with respect to $\|\cdot\|_{1}$.

Proof. First, we show that $\|\cdot\|_{1}$ is closable with respect to $\|\cdot\|$ on \mathcal{A}_{S}^{1} (and hence also on \mathcal{A}_{S}^{2}). As S is closed, δ_{S} is a closed operator. If $A_{n} \rightarrow 0$ in $\|\cdot\|$ and if A_{n} is a Cauchy sequence in $\|\cdot\|_{1}$, then $\delta_{S}\left(A_{n}\right)$ is Cauchy in $\|\cdot\|$. As δ_{S} is a closed operator, $\| \delta_{S}\left(A_{n}\right) \rightarrow 0$. Hence $\left\|A_{n}\right\|_{1} \rightarrow 0$. If A_{n} is Cauchy in $\|\cdot\|_{2}$, then $\delta_{S}\left(A_{n}\right)$ and $\delta_{S}^{2}\left(A_{n}\right)$ are Cauchy in $\|\cdot\|$. As above, $\left\|\delta_{S}\left(A_{n}\right)\right\| \rightarrow 0$. Applying this again, $\| \delta_{S}^{2}\left(A_{n}\right) \rightarrow 0$. Hence $\left\|A_{n}\right\|_{2} \rightarrow 0$. Since $\|\cdot\| \leq\|\cdot\|_{1} \leq\|\cdot\|_{2},\|\cdot\|_{2}$ is closable with respect to $\|\cdot\|_{1}$.

The following follows immediately as in the previous lemma.
Proposition 1.3. The operator δ_{S}^{2} with domain $D\left(\delta_{S}^{2}\right)=\mathcal{A}_{S}^{2}$ is a closed operator from $\left(\mathcal{A}_{S}^{1},\|\cdot\|_{1}\right)$ to $(\mathcal{B}(\mathcal{H}),\|\cdot\|)$.

For x, y in \mathcal{H}, let $x \otimes y$ be the rank one operator defined as $z \rightarrow(z, x) y$. For a densely defined operator T, if $y \in D(T), x \in D\left(T^{*}\right)$, then $\|x \otimes y\|=\|x\|\|y\|,(x \otimes y)^{*}=$ $y \otimes x,(x \otimes y)(u \otimes v)=(v, x)(u \otimes y), T(x \otimes y)=x \otimes T y$, and $(x \otimes y) T$ extends to $\left(T^{*} x\right) \otimes y$. It is shown in [KS2, Lemma 3.1] that $x \otimes y \in \mathcal{A}_{S}^{1}$ if and only if $x, y \in D(S)$, and that any finite rank operator $F \in \mathcal{A}_{S}^{1}$ is of the form $F=\sum x_{i} \otimes y_{i}$, a finite sum, where $x_{i}, y_{i} \in D(S)$. We use this to prove the following analogue in the present framework.
Proposition 1.4. Given x, y in \mathcal{H}, the rank one operator $x \otimes y \in \mathcal{A}_{S}^{2}$ if and only if both x and y are in $D\left(S^{2}\right)$. Further, any finite rank operator F in \mathcal{A}_{S}^{2} is of the form $F=\sum x_{i} \otimes y_{i}$, a finite sum, with all $x_{i} \in D\left(S^{2}\right), y_{i} \in D\left(S^{2}\right)$.
Proof. Let $x \in D\left(S^{2}\right), y \in D\left(S^{2}\right)$. Then for all $z \in \mathcal{H},(x \otimes y) z=(z, x) y \in D(S)$. Also, $\delta_{S}(x \otimes y)=i\{S(x \otimes y)-(x \otimes y) S\}=i\left\{x \otimes S y-S^{*} x \otimes y\right\}$. Further,

$$
\begin{aligned}
\delta_{S}\left(\delta_{S}(x \otimes y)\right) & =i\left\{\delta_{S}(x \otimes S y)-\delta_{S}\left(S^{*} x \otimes y\right)\right\} \\
& =-\left\{S(x \otimes S y)-(x \otimes S y) S-S\left(S^{*} x \otimes y\right)+\left(S^{*} x \otimes y\right) S\right\} \\
& =-\left\{x \otimes S^{2} y-S^{*} x \otimes S y-S^{*} x \otimes S y+S^{* 2} x \otimes y\right\}
\end{aligned}
$$

In fact, $S \subset S^{*}$ and $S x \in D(S), S y \in D(S)$. Hence $\delta_{S}^{2}(x \otimes y)=-\left(x \otimes S^{2} y-\right.$ $\left.2 S x \otimes S y+S^{2} x \otimes y\right)$. As $y \in D(S),(x \otimes y) D(S) \subset D(S)$, and as $x \in D(S),(x \otimes y)^{*} D(S)=$ $(y \otimes x) D(S) \subset D(S)$. Also, $\delta_{S}(x \otimes y)=i\left\{x \otimes S y-S^{*} x \otimes y\right\}=i\{x \otimes S y-S x \otimes y\} \in$ $\mathcal{B}(\mathcal{H})$. Thus $x \otimes y \in \mathcal{A}_{S}^{1}$. Moreover, $\delta_{S}(x \otimes y) D(S) \subset D(S), \quad\left\{\delta_{S}(x \otimes y)\right\}^{*} D(S)=$
$\delta_{S}(y \otimes x) D(S) \subset D(S)$, and $\delta_{S}\left(\delta_{S}(x \otimes y)\right)=-\left\{x \otimes S^{2} y-2 S x \otimes S y+S^{2} x \otimes y\right\}$ is a bounded linear operator on \mathcal{H}. Hence $x \otimes y \in \mathcal{A}_{S}^{2}$.

Conversely, let x, y in \mathcal{H} be such that $x \otimes y \in \mathcal{A}_{S}^{2}$. We show that $x \in D\left(S^{2}\right), y \in D\left(S^{2}\right)$. Note that $x \otimes y \in \mathcal{A}_{S}^{1}$ and $\delta_{S}(x \otimes y) \in \mathcal{A}_{S}^{1}$. By [KS2, Lemma 3.1(ii)], $x \in D(S)$ and $y \in D(S)$. Also $\delta_{S}(x \otimes y) D(S) \subset D(S)$ and $\left\{\delta_{S}(x \otimes y)\right\}^{*} D(S) \subset D(S)$. Now, for any $z \in \mathcal{H}$,

$$
\delta_{S}(x \otimes y) z=i\left\{x \otimes S y-S^{*} x \otimes y\right\} z=i\left\{(z, x) S y-\left(z, S^{*} x\right) y\right\}
$$

Since $\delta_{S}(x \otimes y) D(S) \subset D(S)$ and $\left(S^{*} x \otimes y\right) D(S) \subset D(S)$ as $y \in D(S)$, it follows that $(x \otimes S y) D(S) \subset D(S)$, so that, for all $z \in D(S)$, we have $(x \otimes S y) z=(z, x) S y \in D(S)$. Choosing z such that (z, x) is nonzero, we get $S y \in D(S)$, so that $y \in D\left(S^{2}\right)$. Now $x \otimes S y \in \mathcal{A}_{S}^{1}$. Since $\delta_{S}(x \otimes y) \in \mathcal{A}_{S}^{1}$, we get $S^{*} x \otimes y \in \mathcal{A}_{S}^{1}$. Then, by above result stated in [KS2], $S x=S^{*} x \in D(S)$. Thus $x \in D\left(S^{2}\right)$.

Now let $F \in \mathcal{A}_{S}^{2}$ be a finite rank operator, say $F=\sum x_{i} \otimes y_{i}$, a finite sum. We can assume all x_{i} to be linearly independent, and also all y_{i} to be linearly independent. For any $z \in \mathcal{H}, F z=\sum\left(x_{i} \otimes y_{i}\right) z=\sum\left(z, x_{i}\right) y_{i}$. Since $F \in \mathcal{A}_{S}^{2}$, we have $F \in \mathcal{A}_{S}^{1}$ and $\delta_{S}(F) \in \mathcal{A}_{S}^{1}$. By [KS2, Lemma 3.1], all $x_{i} \in D(S)$ and all $y_{i} \in D(S)$. Also,

$$
\begin{aligned}
\delta_{S}(F) & =\sum \delta_{S}\left(x_{i} \otimes y_{i}\right)=i \sum\left\{S\left(x_{i} \otimes y_{i}\right)-\left(x_{i} \otimes y_{i}\right) S\right\} \\
& =i \sum\left\{x_{i} \otimes S y_{i}-S^{*} x_{i} \otimes y_{i}\right\}=i \sum\left\{x_{i} \otimes S y_{i}-S x_{i} \otimes y_{i}\right\}
\end{aligned}
$$

As $\delta_{S}(F) \in \mathcal{A}_{S}^{1}$, again [KS2, Lemma 3.1(ii)] implies that all $S y_{i} \in D(S)$ and all $S x_{i} \in D(S)$. Thus all $x_{i} \in D\left(S^{2}\right)$, and all $y_{i} \in D\left(S^{2}\right)$. This completes the proof.

By [KS2, Lemma 3.1(iii)], \mathcal{K}_{S}^{1} and \mathcal{J}_{S}^{1} are closed ${ }^{*}$-ideals of $\left(\mathcal{A}_{S}^{1},\|\cdot\|_{1}\right)$ and $\left(\mathcal{K}_{S}^{1}\right)^{2} \subset \mathcal{J}_{S}^{1}$. The following contains an analogue of this in the present case.
Proposition 1.5. \mathcal{K}_{S}^{2} and \mathcal{J}_{S}^{2} are closed ${ }^{*}$-ideals of $\left(\mathcal{A}_{S}^{2},\|\cdot\|_{2}\right)$, and $\left(\mathcal{K}_{S}^{2} \cap \mathcal{J}_{S}^{1}\right)^{2} \subset \mathcal{J}_{S}^{2}$.
Proof. Clearly, \mathcal{K}_{S}^{2} is a closed ${ }^{*}$-ideal of \mathcal{A}_{S}^{2}. Let $A \in \mathcal{J}_{S}^{2}$. Then $A \in \mathcal{K}_{S}^{2}, \delta_{S}(A) \in$ $\mathcal{K}(\mathcal{H}), \delta_{S}^{2}(A) \in \mathcal{K}(\mathcal{H})$. Let $B \in \mathcal{A}_{S}^{2}$. Then $\delta_{S}(B) \in \mathcal{A}_{S}^{1}, \delta_{S}^{2}(B) \in \mathcal{B}(\mathcal{H})$. Then $\delta_{S}(A B)=$ $\delta_{S}(A) B+A \delta_{S}(B) \in \mathcal{K}(\mathcal{H})$ and $\delta_{S}^{2}(A B)=A \delta_{S}^{2}(B)+2 \delta_{S}(A) \delta_{S}(B)+\delta_{S}^{2}(A) B \in \mathcal{K}(\mathcal{H})$. Similarly, $B A \in \mathcal{J}_{S}^{2}, A^{*} \in \mathcal{J}_{S}^{2}$ showing that \mathcal{J}_{S}^{2} is a *-ideal of \mathcal{A}_{S}^{2}. Clearly, \mathcal{J}_{S}^{2} is closed in $\left(\mathcal{A}_{S}^{2},\|\cdot\|_{2}\right)$. Now let $A, B \in \mathcal{K}_{S}^{2} \cap \mathcal{J}_{S}^{1}$. Since $B \in \mathcal{K}_{S}^{2}$, we have $B \in \mathcal{A}_{S}^{2}$ and so $\delta_{S}(B) \in \mathcal{A}_{S}^{1}$. Since $B \in \mathcal{J}_{S}^{1}, B$ is compact and $\delta_{S}(B) \in \mathcal{K}(\mathcal{H})$. Thus $\delta_{S}(B) \in \mathcal{K}_{S}^{1}$. Also, $A \in \mathcal{J}_{S}^{1} \subset \mathcal{K}_{S}^{1}$. Therefore $A \delta_{S}(B) \in \mathcal{J}_{S}^{1}$. Similarly, $\delta_{S}(A) B \in \mathcal{J}_{S}^{1}$. Thus $\delta_{S}(A B)=$ $A \delta_{S}(B)+\delta_{S}(A) B \in \mathcal{J}_{S}^{1}$. We already have $A B \in \mathcal{K}_{S}^{1}$. It follows that $A B \in \mathcal{J}_{S}^{2}$.
Proposition 1.6. The Banach algebras $\left.\left(\mathcal{F}_{S}^{2}\right),\|\cdot\|_{2}\right),\left(\mathcal{K}_{S}^{2},\|\cdot\|_{2}\right),\left(\mathcal{J}_{S}^{2},\|\cdot\|_{2}\right)$ and $\left(\mathcal{F}_{S}^{2}, \| \cdot\right.$ $\|_{2}$) are semisimple, \mathcal{F}_{S}^{2} has no closed two sided ideals, and $\mathcal{F}_{S}^{2} \subset I$ for any closed ${ }^{*}$ ideal I of $\left(\mathcal{A}_{S}^{2},\|\cdot\|_{2}\right)$.
Proof. Let I be a closed *-ideal of \mathcal{F}_{S}^{2}. Let $A \in I$. Let $x \in D(S)$ such that $A^{*} x$ is nonzero. Now $A^{*} x \otimes y=(x \otimes y) A \in \mathcal{I}$ for all $x, y \in D\left(S^{2}\right)$. Then, for all z in $D\left(S^{2}\right)$,

$$
\left(A^{*} x \otimes y\right) A^{*}(z \otimes x)=\left(A^{*} x \otimes y\right)\left(z \otimes A^{*} x\right)=\left\|A^{*} x\right\|^{2}(z \otimes y) .
$$

Hence $z \otimes y \in I$. Since \mathcal{I} contains all finite rank operators in \mathcal{A}_{S}^{2}, we get $\mathcal{F}_{S}^{2} \subset I$ and, since $\mathcal{I} \subset \mathcal{F}_{S}^{2}, \mathcal{F}_{S}^{2}=\mathcal{I}$. If \mathcal{I} is a closed ${ }^{*}$-ideal of \mathcal{A}_{S}^{2}, this argument implies that $\mathcal{F}_{S}^{2} \subset \mathcal{I}$. The Banach algebra \mathcal{A}_{S}^{2} is an A^{*}-algebra (that is, a Banach *-algebra with a C^{*}-norm). Hence it is *-semisimple, and so is semisimple.

We consider the regularity properties of these Banach algebras. Following [KS1, KS 2], a Banach $\left(D_{1}^{*}\right)$-subalgebra of a C^{*}-algebra $(\mathcal{U},\|\cdot\|)$ is a dense ${ }^{*}$-subalgebra \mathcal{A} of \mathcal{U} such that \mathcal{A} is a Banach ${ }^{*}$-algebra with some norm $\|\cdot\|_{1}$ satisfying $\|x y\|_{1} \leq$ $\|x\|\|y\|_{1}+\|x\|_{1}\|y\|$, for all $x, y \in \mathcal{A}$. This models a noncommutative differential structure of order one, and the algebra \mathcal{A}_{S}^{1} is a Banach $\left(D_{1}\right)^{*}$-subalgebra of the C^{*} algebra \mathcal{U}_{S}. A Banach $\left(D_{2}^{*}\right)$-subalgebra of $\mathcal{U}[\mathrm{KS} 1]$ is a dense $*$-subalgebra \mathcal{A} with seminorms $\|\cdot\|_{1},\|\cdot\|_{2}$ such that:
(1) for each $i=1,2$ and for each $x, y \in \mathcal{A}$, there exist $D_{i}>0$ satisfying $\|x\|_{i}=$ $\left\|x^{*}\right\|_{i},\|x y\|_{i} \leq\|x\|_{i}\|y\|_{i},\|x y\|_{i} \leq D_{i}\left(\|x\|_{i}\|y\|_{i-1}+\|x\|_{i-1}\|y\|_{i}\right)$; and
(2) $\|\cdot\|_{2}$ is a norm and $\left(\mathcal{A},\|\cdot\|_{2}\right)$ is a Banach *-algebra.

This is a noncommutative analogue of the Banach algebra of C^{2}-functions. The following theorem, which exhibits regularity properties of noncommutative C^{2} structures defined by S, contains analogues in the present set-up of several wellknown results on the Banach algebra of C^{2}-functions. For terminology, we refer to [BC, BIO, KS1]. A Q-normed algebra is a normed algebra in which the set of quasiregular elements is an open set.

Theorem 1.7. For $\mathcal{B}=\mathcal{A}_{S}^{2}, \mathcal{K}_{S}^{2}, \mathcal{J}_{S}^{2}, \mathcal{F}_{S}^{2}$, let \mathcal{A} stand for their respective C^{*}-algebra completions. The following hold.
(1) \mathcal{B} is a differential Banach algebra of order two and total order less than or equal to two, \mathcal{B} is a Banach $\left(D_{2}^{*}\right)$-algebra and \mathcal{B} is a smooth subalgebra of a C^{*}-algebra.
(2) \mathcal{B} is a Q-normed algebra in the C^{*}-norm on \mathcal{A}, and the algebras \mathcal{B} and \mathcal{A} have the same K-theory.
(3) \mathcal{B} is closed under the holomorphic functional calculus of \mathcal{A}, and is also closed under the C^{3}-functional calculus of self-adjoint elements of \mathcal{A}.
(4) The algebra \mathcal{B} is hermitian and spectrally invariant in \mathcal{A}.
(5) The map $\mathcal{I} \rightarrow \mathcal{I} \cap \mathcal{B}$ is a one-to-one correspondence between the closed ideals of \mathcal{A} and the C^{*}-norm closed ideals of \mathcal{B}. The inverse of this correspondence is given by $\mathcal{I} \rightarrow \mathcal{I}^{-}$, the closure of the ideal \mathcal{I} of \mathcal{B} in the C^{*}-norm $\|\cdot\|$ on \mathcal{A}. Not every ideal in \mathcal{B} closed in $\|\cdot\|_{2}$ is of this form.
(6) Let $\pi: \mathcal{B} \rightarrow \mathcal{B}(\mathcal{K})$ be a^{*}-representation of \mathcal{B} into bounded operators on a Hilbert space \mathcal{K}. Then π is continuous in the C^{*}-norm on \mathcal{B}, and it extends uniquely to a representation of \mathcal{A} into $\mathcal{B}(\mathcal{K})$.
(7) Let \mathcal{U}_{S} be unital. Every completely positive map $\phi: \mathcal{A}_{S}^{2} \rightarrow \mathcal{B}(\mathcal{K})$ extends uniquely as a completely positive map $\phi: \mathcal{U}_{S} \rightarrow \mathcal{B}(\mathcal{K})$.

Proof. (1) Consider \mathcal{A}_{S}^{2}. Let $T=\left(T_{0}, T_{1}, T_{2}\right)$ on \mathcal{A}_{S}^{2} be $T_{0}(A)=\|A\|, T_{1}(A)=$ $\left\|\delta_{S}(A)\right\|, T_{2}(A)=(1 / 2)\left\|\delta_{S}^{2}(A)\right\|$. Clearly, T is a differential norm of order two. Further, $T_{1}(A B) \leq T_{0}(A) T_{1}(B)+T_{1}(A) T_{0}(B)$ and $T_{2}(A B) \leq\|A\| T_{2}(B)+T_{1}(A) T_{1}(B)+$ $T_{2}(A)\|B\|$ showing that T is of logarithmic order $p=\log _{2} 1+1=1[\mathrm{BC}]$. By [BC, Proposition 3.10], T is of total order less than or equal to two. Also, the total norm of T is $T_{\text {tot }}:=T_{0}+T_{1}+T_{2}=\|\cdot\|_{2}$. The same arguments apply to other algebras. Thus \mathcal{B} is a differential Banach algebra of order two and total order less than or equal to two. By $[\mathrm{BC}], \mathcal{A}_{S}^{2}$ is a smooth subalgebra of its C^{*}-completion in operator norm.
(2) That \mathcal{B} is a Q-normed algebra with the C^{*}-norm from \mathcal{A} follows from [BC, Proposition 3.12] or [KS1, Theorem 5], and hence closure under holomorphic functional calculus and K-theory isomorphism follows by [C].
(3) The closure under C^{3}-functional calculus follows from [BC, Proposition 6.4] or [KS1, Theorem 12].
(4) The fact that \mathcal{B} is a Q-subalgebra of \mathcal{A} gives hermiticity and spectral invariance (see also [KS1, Theorem 5]). Notice that the C^{*}-norm from \mathcal{A} is the greatest C^{*}-norm on \mathcal{B}.
(5) As \mathcal{B} is a Banach D_{2}^{*}-subalgebra of \mathcal{U}, the assertion follows from [KS1, Theorem 13]. Let I be a closed ideal of the C^{*}-algebra \mathcal{U}_{S}. Then the set $\mathcal{I}_{S}^{2}:=$ $\left\{A \in \mathcal{A}_{S}^{2} \cap \mathcal{I}: \delta_{S}(A) \in \mathcal{I}, \delta_{S}^{2}(A) \in \mathcal{I}\right\}$ is a $\|\cdot\|_{2}$-closed ideal of $\mathcal{A}_{S}^{(2)}$.
(6) This follows from the fact that every ${ }^{*}$-representation of a Q-normed algebra into a C^{*}-algebra is norm continuous.
(7) The completely positive map ϕ on the unital Banach *-algebra \mathcal{A}_{S}^{2} is Stinespring representable [B1] in the sense that it is of form $\phi(T)=V^{*} \pi(T) V$ where $\pi: \mathcal{A}_{S}^{2} \rightarrow$ $\mathcal{B}(\mathcal{K})\left(\mathcal{K}\right.$ a Hilbert space) is a ${ }^{*}$-homomorphism and $V: \mathcal{K} \rightarrow \mathcal{H}$ is a projection. Now π, and hence ϕ, extends to the C^{*}-completion of \mathcal{A}_{S}^{2}, and Arveson's famous completely positive extension theorem applies.

2. Noncommutative Lipschitz structure

We consider the Lipschitz structure defined by S following the ideas in [W1, W2]. Let $\mathcal{M} \subset \mathcal{N}$ be von Neumann algebras with same unit. A W^{*}-derivation $\delta: \mathcal{M} \rightarrow \mathcal{N}$ is an unbounded linear map whose domain $\operatorname{dom}(\delta)$ is a unital ${ }^{*}$-subalgebra of \mathcal{M} such that (i) $\operatorname{dom}(\delta)$ is ultra weakly dense in \mathcal{M} (ii) the graph of δ is ultra weakly closed in $\mathcal{M} \oplus \mathcal{N}$ and (iii) δ is a *-derivation. Then $\operatorname{dom}(\delta)$ is called $a W^{*}$-domain algebra. It is a Banach ${ }^{*}$-algebra with norm $\|x\|_{1}:=\|x\|+\|\delta(x)\|$. A W^{*}-domain algebra is envisaged as a noncommutative Lipschitz algebra; equivalently, as a noncommutative metric space. The following brings out an essential difference between the Banach *-algebras $\mathcal{A}_{S}^{(1)}$ and \mathcal{A}_{S}^{1}, illuminating the difference between a noncommutative C^{1} structure and a noncommutative Lipschitz structure. Let $\mathcal{M}_{S}:=W^{*}\left(\mathcal{U}_{S}\right)$ be the von Neumann algebra generated by the C^{*}-algebra \mathcal{U}_{S}. Notice that $\mathcal{M}_{S}=W^{*}\left(\mathcal{A}_{S}^{1}\right)$ and $\mathcal{U}_{S}=C^{*}\left(\mathcal{A}_{S}^{1}\right)$.

Proposition 2.1. Let S be as above.

(1) The derivation $\delta_{S}: \mathcal{M}_{S} \rightarrow \mathcal{B}(\mathcal{H})$ with domain $\operatorname{dom}\left(\delta_{S}\right)=\mathcal{A}_{S}^{1}$ is a W^{*}-derivation.
(2) The Banach *-algebra \mathcal{A}_{S}^{1} is dual of a Banach space, and the weak*-topology σ^{1} on \mathcal{A}_{S}^{1} is described as $A_{\alpha} \rightarrow A$ in σ^{1} if and only if $A_{\alpha} \rightarrow A$ ultra weakly in \mathcal{M}_{S} and $\delta_{S}\left(A_{\alpha}\right) \rightarrow \delta_{S}(A)$ ultra weakly in $\mathcal{B}(\mathcal{H})$.

Proof. (1) Let \mathcal{M}_{*} be the predual of \mathcal{M}_{S}, consisting of all ultra weakly continuous linear functionals on \mathcal{M}_{S}, so that the ultra weak topology on \mathcal{M}_{S} is the weak *topology $\sigma\left(\mathcal{M}_{S}, \mathcal{M}_{*}\right)$. Clearly, \mathcal{A}_{S}^{1} is ultra weakly dense in \mathcal{M}_{S}. The graph of δ_{S} is $\left.G\left(\delta_{S}\right)=\left\{\left(A, \delta_{S}(A)\right): A \in \mathcal{A}_{S}^{1}\right)\right\}$, a subspace of $\mathcal{M}_{S} \oplus \mathcal{B}(\mathcal{H})$. We prove that $G\left(\delta_{S}\right)$ is closed in the ultra weak topology on the direct sum von Neumann algebra $\mathcal{M}_{S} \oplus \mathcal{B}(\mathcal{H})$. Let (A, B) be in the closure of the graph $G\left(\delta_{S}\right)$ in the ultra weak topology on $\mathcal{M}_{S} \oplus \mathcal{B}(\mathcal{H})$. Let $\left(A_{\alpha}\right)$ be a net in \mathcal{A}_{S}^{1} such that $A_{\alpha} \rightarrow A$ ultra weakly in \mathcal{M}_{S} and $\delta_{S}\left(A_{\alpha}\right) \rightarrow B$ ultra weakly in $\mathcal{B}(\mathcal{H})$. We show that $A D(S) \subset D(S), A^{*} D(S) \subset D(S)$, $\delta_{S}(A)$ is bounded and $B=\delta_{S}(A)$.

Notice that, since $A_{\alpha} \in \mathcal{A}_{S}^{1}, A_{\alpha} D(S) \subset D(S), A_{\alpha}^{*} D(S) \subset D(S)$ and $\delta_{S}\left(A_{\alpha}\right)$ are bounded operators. Now, since \mathcal{M}_{S} is ultra weakly closed, the operator $A \in \mathcal{M}_{S}$ is bounded; similarly B is bounded, and for all ψ, η in $\mathcal{H},\left(\left(A_{\alpha}-A\right) \psi, \eta\right) \rightarrow 0,\left(\left(\delta_{S}\left(A_{\alpha}\right)-\right.\right.$ $B) \psi, \eta) \rightarrow 0$. Now let $\psi \in D(S), \eta \in D\left(S^{*}\right)$. Then $(B \psi, \eta)=\lim _{\alpha}\left(\delta_{S}\left(A_{\alpha}\right) \psi, \eta\right)=$ $i \lim _{\alpha}\left(\left(S A_{\alpha}-A_{\alpha} S\right) \psi, \eta\right)=i \lim _{\alpha}\left(A_{\alpha} \psi, S^{*} \eta\right)-i(A S \psi, \eta)=i\left(A \psi, S^{*} \eta\right)-i(A S \psi, \eta)$. As $S^{* *}=S$ since S is closed, we have $A \psi \in D\left(S^{* *}\right)=D(S)$ and $B \psi=i(S A-A S) \psi$. Thus $A D(S) \subset D(S)$ and $(S A-A S)$ extends to a bounded operator. Next we show that $A^{*} D(S) \subset D(S)$. Let ψ and η be as above. Then $\left(\eta,\left(A_{\alpha}-A\right)^{*} \psi\right) \rightarrow$ $0,\left(\eta,\left(\delta_{S}\left(A_{\alpha}\right)-B\right)^{*}\right) \rightarrow 0$. Now $\left(\eta, B^{*} \psi\right)=\lim _{\alpha}\left(\eta, \delta_{S}\left(A_{\alpha}\right)^{*} \psi\right)=\lim _{\alpha}\left(\eta, \delta_{S}\left(A_{\alpha}^{*}\right) \psi\right)=$ $\lim _{\alpha} i\left(\eta,\left(S A_{\alpha}^{*}-A_{\alpha}^{*} S\right) \psi\right)=\lim _{\alpha} i\left(\eta, S A_{\alpha}^{*} \psi\right)-\lim _{\alpha} i\left(\eta, A_{\alpha}^{*} S \psi\right)=\lim _{\alpha} i\left(\eta, S A_{\alpha}^{*} \psi\right)-$ $i\left(\eta, A^{*} S \psi\right)$. Thus $\left(\eta, S A_{\alpha}^{*} \psi\right)$ converges and $\lim _{\alpha}\left(\eta, S A_{\alpha}^{*} \psi\right)=-i\left(\eta, B^{*} \psi\right)+\left(\eta, A^{*} S \psi\right)$. Also, $\lim _{\alpha}\left(\eta, S A_{\alpha}^{*} \psi\right)=\lim _{\alpha}\left(S^{*} \eta, A_{\alpha}^{*} \psi\right)=\left(S^{*} \eta, A^{*} \psi\right)$. Thus $\left(A^{*} \psi, S^{*} \eta\right)=i\left(B^{*} \psi, \eta\right)+$ $\left(A^{*} S \psi, \eta\right)$. Hence $A^{*} \psi \in D\left(S^{* *}\right)=D(S)$. Thus $A^{*} D(S) \subset D(S)$. It follows that $G\left(\delta_{S}\right)$ is ultra weakly closed in $\mathcal{M}_{S} \oplus \mathcal{B}(\mathcal{H})$.
(2) This follows from (1) above as in [W1, Proposition 2]. Indeed, the Banach space \mathcal{A}_{S}^{1} is isometrically isomorphic to the graph of δ_{S} by the map $A \rightarrow\left\{A, \delta_{S}(A)\right\}$, and the graph of δ_{S} is an ultra weakly closed (and hence norm closed) subspace of $\mathcal{M}_{S} \oplus \mathcal{B}(\mathcal{H})$. Now $\mathcal{M} \oplus \mathcal{B}(\mathcal{K})$ is the dual of the direct sum Banach space $\mathcal{M}_{*} \oplus C^{1}(\mathcal{H})$, where \mathcal{M}_{*} is the predual of \mathcal{M}_{S} and $C^{1}(\mathcal{H})$ is the Banach space of trace class operators on \mathcal{H} whose dual is $\mathcal{B}(\mathcal{H})$. Hence it follows that \mathcal{A}_{S}^{1} is a dual space. In fact, it is the dual of $\left(\mathcal{M}_{*} \oplus C^{1}(\mathcal{H})\right) / \mathcal{L}$, where \mathcal{L} is the annihilator of graph of δ_{S} in $\mathcal{M}_{*} \oplus \mathcal{C}^{1}(\mathcal{H})$.

The following continues from the above in view of [W1, Corollaries 4 and 5]. For a metric space (X, d), the Lipschitz algebra $\operatorname{Lip}(X)$ consists of all bounded complex valued Lipschitz functions f on X, where the Lipshitz number $L(f)$ of f is $L(f)=\sup \{|f(x)-f(y)| / d(x, y): x, y \in X, x \neq y\}<\infty$. It is a Banach *-algebra with norm $\|f\|_{\infty}+L(f)$, and is a subalgebra of the abelian von Neumann algebra $L^{\infty}(X)$ of essentially bounded Borel measurable functions on X. For an operator $T, S p(T)$ denotes the spectrum of T.

Corollary 2.2. Let S be as above.
(1) Let $X=X^{*} \in \mathcal{A}_{S}^{1}$. Let $f \in \operatorname{Lip}(\operatorname{Sp}(X))$. Let $\delta_{S}(X)$ commute with X. Then $f(X) \in \mathcal{A}_{S}^{1}$ and $\left\|\delta_{S}(f(X))\right\| \leq L(f)\left\|\delta_{S}(X)\right\|$.
(2) Let \mathcal{J} be a σ^{1}-closed ${ }^{*}$-ideal of \mathcal{A}_{S}^{1}. Then \mathcal{J} is the σ^{1}-closure of $(\mathcal{J})^{2}$, where $(\mathcal{J})^{2}$ is the linear span of $\{A B: A \in \mathcal{J}, B \in \mathcal{J}\}$.
(3) Let \mathcal{J} be a^{*}-ideal of \mathcal{A}_{S}^{1}. Then $\delta_{S}(\mathcal{J})$ is contained in the ultra weak closure of $\mathcal{J} \mathcal{B}(\mathcal{H})+\mathcal{B}(\mathcal{H}) \mathcal{J}$.
(4) Let \mathcal{I} and \mathcal{J} be *-ideals of \mathcal{A}_{S}^{1}. Then $\mathcal{I} \cap \mathcal{J}$ is contained in the σ^{1}-closure of $\mathcal{I} \mathcal{J}$ and, if \mathcal{I} and \mathcal{J} are σ^{1}-closed, then $\mathcal{I} \cap \mathcal{J}$ is the σ^{1}-closure of $\mathcal{I} \mathcal{J}$.

We consider the second-order Lipschitz structure. Let $\operatorname{Lip}^{2}[a, b]:=\{f \in \operatorname{Lip}[a, b]$: $\left.f^{\prime} \in \operatorname{Lip}[a, b]\right\}=\left\{f \in C^{1}[a, b]: f^{\prime} \in \operatorname{Lip}[a, b]\right\}$ a Banach ${ }^{*}$-algebra with norm $\|f\|_{\operatorname{Lip}^{2}}=$ $\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}+(1 / 2) \max \left\{\left\|f^{\prime \prime}\right\|_{\infty}, L\left(f^{\prime}\right)\right\}$. Let ϕ be the linear operator $\phi: \mathcal{A}_{S}^{2} \rightarrow \mathcal{M}_{S} \oplus$ $\mathcal{M}_{S} \oplus \mathcal{B}(\mathcal{H}), \phi(A)=\left(A, \delta_{S}(A), \delta_{S}^{2}(A)\right)$. The operator $\delta_{S}^{2}: \mathcal{A}_{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$ is $\delta_{S}^{2}(A)=$ $\delta_{S}\left(\delta_{S}(A)\right)$ with domain $\operatorname{dom}\left(\delta_{S}^{2}\right)=\mathcal{A}_{S}^{2}$. The following theorem gives the Lip^{2} functional calculus in \mathcal{A}_{S}^{2}.
Theorem 2.3.
(1) The graph of the operator $\delta_{S}^{2}: \mathcal{A}_{S}^{1} \rightarrow \mathcal{B}(\mathcal{H})$, dom $\delta_{S}^{2}=\mathcal{A}_{S}^{2}$, given by $G\left(\delta_{S}^{2}\right)=$ $\left\{\left(A, \delta_{S}^{2}(A)\right): A \in \mathcal{A}_{S}^{2}\right\}$ is closed in $\mathcal{A}_{S}^{1} \oplus \mathcal{B}(\mathcal{H})$, where \mathcal{A}_{S}^{1} carries the σ^{1}-topology and $\mathcal{B}(\mathcal{H})$ carries the ultra weak topology. The range of the map ϕ is an ultra weakly closed subspace of $\mathcal{M}_{S} \oplus \mathcal{M}_{S} \oplus \mathcal{B}(\mathcal{H})$ with the product ultra weak topology.
(2) The algebra \mathcal{A}_{S}^{2} is dual of a Banach space. The weak ${ }^{*}$-topology on \mathcal{F}_{S}^{2}, denoted by σ^{2}, is given as $A_{\alpha} \rightarrow A$ in σ^{2} if and only if $A_{\alpha} \rightarrow A$ ultra weakly, $\delta_{S}\left(A_{\alpha}\right) \rightarrow \delta_{S}(A)$ ultra weakly and $\delta_{S}^{2}\left(A_{\alpha}\right) \rightarrow \delta_{S}^{2}(A)$ ultra weakly.
(3) Let $X=X^{*} \in \mathcal{H}_{S}^{2}$. Let $f \in \operatorname{Lip}^{2}(s p(X))$. Let X commute with $\delta_{S}(X)$. Then $f(X) \in \mathcal{A}_{S}^{2}$ and

$$
\left\|\delta_{S}^{2} f((X))\right\| \leq L(f)\left\|\delta_{S}^{2}(X)\right\|+L\left(f^{\prime}\right)\left\|\left(\delta_{S}(X)\right)^{2}\right\|
$$

Proof. (1) Follows by application of Proposition 2.1(1) from which (2) follows as in Proposition 2.1(2). Indeed, \mathcal{A}_{S}^{2} is isometrically isomorphic to a closed subspace of $\mathcal{A}_{S}^{1} \oplus \mathcal{B}(\mathcal{H})$, and the latter is a dual space.
(3) The proof is a second-order analogue of that of [W1, Theorem 1]. The function f can be extended as a Lipschitz function without changing the Lipschitz constant $L(f)$ to the interval $[-\|X\|,\|X\|]$. Now let f be a polynomial $f(t)=\sum a_{n} t^{n}$. Then $f(X) \in \operatorname{dom}\left(\delta_{S}^{2}\right)$ and, since X and $\delta_{S}(X)$ commute, we get $\delta_{S}(f(X))=\sum n a_{n} X^{n-1} \delta_{S}(X)$ as well as

$$
\begin{aligned}
\delta_{S}^{2}(f(X)) & =\sum n a_{n} \delta_{S}\left(X^{n-1} \delta_{S}(X)\right) \\
& =\sum n a_{n}\left\{X^{n-1} \delta_{S}^{2}(X)+\delta_{S}\left(X^{n-1}\right) \delta_{S}(X)\right\} \\
& =\sum n a_{n}\left\{X^{n-1} \delta_{S}^{2}(X)+(n-1) X^{n-2}\left(\delta_{S}(X)\right)^{2}\right\} \\
& =\sum n a_{n} X^{n-1} \delta_{S}^{2}(X)+\sum n(n-1) a_{n} X^{n-2}\left(\delta_{S}(X)\right)^{2} \\
& =f^{\prime}(X) \delta_{S}^{2}(X)+f^{\prime \prime}(X)\left(\delta_{S}(X)\right)^{2} .
\end{aligned}
$$

Hence

$$
\left\|\delta_{S}^{2}(f(X))\right\| \leq L(f)\left\|\delta_{S}^{2}(X)\right\|+L\left(f^{\prime}\right)\left\|\left(\delta_{S}(X)\right)^{2}\right\|
$$

Now let $I=[-\|X\|,\|X\|]$. Let $f \in \operatorname{Lip}^{2}(I)$. Then $f^{\prime \prime} \in L^{\infty}(I)$. Choose a sequence of polynomials g_{n} such that $g_{n} \rightarrow f^{\prime \prime}$ in $L^{1}(I)$ and $\left\|\left.g_{n}\right|_{I}\right\|_{\infty} \leq\left\|f^{\prime \prime}\right\|_{\infty}=L\left(f^{\prime}\right)$. Let $f_{n}(t)=f^{\prime}(0)+\int_{0}^{t} g_{n}(t) d t$. Then f_{n} are polynomials and $\left\|f_{n}-f^{\prime}\right\|_{\infty} \rightarrow 0$. Hence the $L^{1}-$ norm $\left\|f_{n}-f^{\prime}\right\|_{1} \rightarrow 0$ and $\left\|\left.f_{n}^{\prime}\right|_{I}\right\|_{\infty} \leq L\left(f^{\prime}\right)$. Let $h_{n}(t)=f(0)+\int_{0}^{t} f_{n}(t) d t$. Again h_{n} are polynomials, $\left\|\left.h_{n}\right|_{I}-f\right\|_{\infty} \rightarrow 0,\left\|h_{n}^{\prime} \mid I\right\|_{\infty} \leq\left\|f^{\prime}\right\|_{\infty}=L(f)$. Then, by the above estimates,

$$
\begin{aligned}
\left\|\delta_{S}^{2}\left(h_{n}(X)\right)\right\| & \leq\left\|h_{n}^{\prime}\right\|_{\infty}\left\|\delta_{S}^{2}(X)\right\|+\left\|h_{n}^{\prime \prime}\right\|_{\infty}\left\|\left(\delta_{S}(X)\right)^{2}\right\| \\
& \leq L(f)\left\|\delta_{S}^{2}(X)\right\|+L\left(f^{\prime}\right)\left\|\left(\delta_{S}(X)\right)^{2}\right\| .
\end{aligned}
$$

Therefore there is a subnet $\left(h_{\alpha}\right)$ of the sequence $\left(h_{n}\right)$ such that $\delta_{S}^{2}\left(h_{\alpha}(X)\right) \rightarrow Y$ for some Y in the ultra weak topology. Now $h_{n}(X) \rightarrow f(X)$ uniformly, $h_{n}^{\prime}(X) \rightarrow f^{\prime}(X)$ uniformly and $\delta_{S}\left(h_{n}(X)\right) \rightarrow \delta_{S}(f(X))$ uniformly. Since the graph of δ_{S}^{2} is σ^{2}-closed, $f(X) \in \operatorname{dom}\left(\delta_{S}^{2}\right)$ and $\left\|\delta_{S}^{2}(f(X))\right\| \leq L(f)\left\|\delta_{S}^{2}(X)\right\|+L\left(f^{\prime}\right)\left\|\left(\delta_{S}(X)\right)^{2}\right\|$.

3. (~)-convergence

Let X be a linear subspace of a normed linear space $(\mathcal{Y},\|\cdot\|)$. Let $\|\cdot\|_{1}$ be a norm on \mathcal{X} such that $\|x\| \leq\|x\|_{1}$ for all $x \in \mathcal{X}$. Following [KS2], we say that a sequence $\left(x_{n}\right)$ in $\mathcal{X}(\sim)$-converges to $y \in \mathcal{Y}$ if $\sup \left\|x_{n}\right\|_{1}<\infty$ and $\left\|x_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$. For a subset M of \mathcal{X}, its (\sim)-closure in \mathcal{Y} (respectively, in \mathcal{X}) is the set of all elements in \mathcal{Y} (respectively, in \mathcal{X}) which are (\sim)-limits of elements from M. Then M is (\sim)-closed in \mathcal{Y} (respectively, in \mathcal{X}) if it coincides with its (\sim)-closure in Y (respectively, in X). This auxiliary mode of convergence has been found useful in understanding the first-order structure in [KS2]. By [KS2, Theorem 3.3], the Banach algebra \mathcal{A}_{S}^{1} is (\sim)-closed in $\mathcal{B}(\mathcal{H})$, and every closed subspace of $\left(\mathcal{T}_{S}^{1},\|\cdot\|_{1}\right)$ is (\sim)-closed in \mathcal{J}_{S}^{1}. The following gives an analogue of this in the present set-up. We say that a sequence $\left(A_{n}\right)$ in \mathcal{A}_{S}^{2} (\sim)-converges to $A \in \mathcal{B}(\mathcal{H})$ if $\left\|A_{n}\right\|_{2}<\infty,\left\|A_{n}-A\right\| \rightarrow 0$ in operator norm. Thus (\sim)convergence in \mathcal{A}_{S}^{2} is an analogue of a sequence of C^{2}-functions bounded in C^{2}-norm and converges uniformly to a continuous function. In the following, we shall use a technical result [KS2, Corollary 2.7, page 7] that states that if ϕ is a closed linear map from a Banach space $\left(X,\|\cdot\|_{X}\right)$ to a Banach space $\left(Z,\|\cdot\|_{Z}\right)$ with domain dom ϕ such that the set W_{ϕ} consisting of bounded linear functionals f on Z (with $f o \phi$ extendable as bounded linear functionals on X) is norm dense in the dual Z^{*} of Z, then any closed subspace of the Banach space $\left(\operatorname{dom} \phi,\|\cdot\|_{1}\right),\|x\|_{1}:=\|x\|_{X}+\|\phi(x)\|_{Z}$, is (\sim)-closed in \mathcal{X}.

Theorem 3.1.
(1) The Banach algebra \mathcal{A}_{S}^{2} is (\sim)-closed in $\mathcal{B}(\mathcal{H})$.
(2) Every closed subspace of $\left(\mathcal{J}_{S}^{2},\|\cdot\|_{2}\right)$ is (\sim)-closed in $\left(\mathcal{J}_{S}^{2}\right)$. In particular, the ideal \mathcal{F}_{S}^{2} is (\sim)-closed in $\left(\mathcal{J}_{S}^{2}\right)$.

Proof. (1) Let $A_{n} \in \mathcal{A}_{S}^{2}, A \in \mathcal{B}(\mathcal{H})$ be such that $\left\|A_{n}-A\right\| \rightarrow 0$, sup $\left\|A_{n}\right\|_{2}<\infty$. Then $\sup \left\|\delta_{S}^{2}\left(A_{n}\right)\right\|=r<\infty$. Now the ball B_{r} of radius r in $\mathcal{B}(\mathcal{H})$ is weak *-compact. Hence there exists $R \in B_{r}$ such that each neighbourhood of R contains an infinite number of elements from $\left\{\delta_{S}^{2}\left(A_{n}\right)\right\}$. Let $x \in D\left(S^{2}\right), y \in D\left(S^{* 2}\right)$. Then there exists a sequence $\left(A_{n_{k}}\right)$ from $\left\{A_{n}\right\}$ such that $\left(\delta_{S}^{2}\left(A_{n_{k}}\right) x, y\right) \rightarrow(R x, y)$. Then

$$
\begin{aligned}
(R x, y) & =\lim \left(\delta_{S}^{2}\left(A_{n_{k}}\right) x, y\right) \\
& =-\lim \left(\left\{S^{2} A_{n_{k}}-2 S A_{n_{k}} S+A S^{2}\right\} x, y\right) \\
& =-\left\{\lim \left(S^{2} A_{n_{k}} x, y\right)-2(S A S x, y)+\left(A S^{2} x, y\right)\right\} .
\end{aligned}
$$

Notice that the (\sim)-convergence with $\|\cdot\|_{2}$-implies (\sim)-convergence with norm $\|\cdot\|_{1}$. Since \mathcal{A}_{S}^{1} is (\sim)-closed by $[\mathrm{KS} 1], A \in \mathcal{A}_{S}^{1}$ and $A D(S) \subset D(S)$. Thus

$$
\begin{aligned}
(R x, y) & =-\lim \left(A_{n_{k}} x, S^{2 *} y\right)+2(S A S x, y)-\left(A S^{2} x, y\right) \\
& =-\left(A x, S^{2 *} y\right)+2(S A S x, y)-\left(A S^{2} x, y\right) .
\end{aligned}
$$

Thus $A x \in D\left(S^{2 * *}\right)=D\left(S^{2}\right)$ and $\left(A x, S^{2 *} y\right)=\left(S^{2-} A x, y\right)$. Then

$$
(R x, y)=-\left\{\left(S^{2-} A x, y\right)+2(S A S x, y)-\left(A S^{2} x, y\right)\right\}
$$

for all y in a dense subspace of \mathcal{H}. Thus $R x=-\left(S^{2-} A x+2 S A S x-A S^{2} x\right)=\delta_{S}^{2} A x$, $A \in \mathcal{A}_{S}^{2}$ and \mathcal{A}_{S}^{2} is (\sim)-closed in $\mathcal{B}(\mathcal{H})$.
(2) We shall apply [KS2, Corollary 2.4, page 7] stated above. Let $\phi:=\left.\delta_{S}^{2}\right|_{\mathcal{J}_{S}^{2}}$: $D(\phi)=\mathcal{J}_{S}^{2} \subset \mathcal{A}_{S}^{1} \rightarrow \mathcal{K}(\mathcal{H})$. By Proposition 1.3, it is a closed linear map in the $\|\cdot\|_{1}-\|\cdot\|$ topologies. For x, y in \mathcal{H}, let $F_{x, y}(A)=(A x, y)$, which is a bounded linear functional on $\mathcal{K}(\mathcal{H})$. Now take $x \in D\left(S^{2}\right), y \in D\left(S^{2}\right)$. Then, for any A in \mathcal{J}_{S}^{2},

$$
\begin{aligned}
F_{x, y}(\phi(A)) & =\left(\delta_{S}^{2}(A) x, y\right)=-\left(\left\{S^{2-} A-2 S A S+A S^{2}\right\} x, y\right) \\
& =-\left\{\left(S^{2-} A x, y\right)-2(S A S x, y)+\left(A S^{2} x, y\right)\right\} \\
& =-\left\{F_{x, S^{2} y}(A)-2 F_{S x, S y}(A)+F_{S^{2} x, y}(A)\right\} .
\end{aligned}
$$

Thus $F_{x, y} o \phi$ extends as a bounded linear functional on $\mathcal{K}(\mathcal{H})$. Since $D\left(S^{2}\right)$ is dense in \mathcal{H}, the set span $\left\{F_{x, y}: x \in D\left(S^{2}\right), y \in D\left(S^{2}\right)\right\}$ is dense in the dual of $\mathcal{K}(\mathcal{H})$, identified with trace class operators. By [KS2, Corollary 2.4], any closed subspace of $\left(\mathcal{J}_{S}^{2},\|\cdot\|_{2}\right)$ is \sim-closed in \mathcal{J}_{S}^{2}. In particular, \mathcal{F}_{S}^{2} is (\sim)-closed in \mathcal{J}_{S}^{2}.

An estimate for the first-order functional calculus in \mathcal{A}_{S}^{1} is given in[KS2, Lemma 2.6]. The following gives an estimate for the second-order functional calculus in \mathcal{A}_{S}^{2}. Our proof is different: it uses differential algebras as discussed in [BC, BIO].

Proposition 3.2. Let $X=X^{*} \in \mathcal{A}_{S}^{2}$. Let $d=\|X\|$ the operator norm. Let h be a C^{3} function on $[-d, d]$. Let $\|h\|_{(3)}:=\|h\|_{\infty}+\left\|h^{\prime}\right\|_{\infty}+\left\|h^{\prime \prime}\right\|_{\infty}+\left\|h^{\prime \prime \prime}\right\|_{\infty}$. Then $\|h(X)\|_{2} \leq$ $C\|h\|_{(3)}$.

Proof. Notice that $h(X) \in \mathcal{A}_{S}^{2}$ by Theorem 1.7(3). The Banach algebra norm $\|\cdot\|_{2}$ is the total norm of the differential norm T considered in the proof of Theorem 1.7(1) above. The differential norm T is of total order less than or equal to two. Thus, by the definition of the derived norm $[B C],\|\cdot\|_{2}$ is a derived norm of order less than or equal to two. By [BC, Proposition 6.4, page 270], $\|h(X)\|_{2} \leq C\|h\|_{(3)}$, with the constant C depending only on X.

It is shown in [KS2, Theorem 2.8] that, given $X=X^{*}$ in \mathcal{A}_{S}^{1}, there exists a sequence ϕ_{n} of functions in $C^{\infty}(R)$, each vanishing on a neighbourhood of zero, such that $\left\|X^{2}-\phi_{n}(X)\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$. The following theorem gives a partial analogue of this. The proof follows that given in [KS2] as much as possible.

Theorem 3.3. Let X consists of all smooth functions f on the real line R, vanishing on a neighbourhood of zero. Let $X=X^{*} \in \mathcal{A}_{S}^{2}$.
(1) There exists a sequence ϕ_{n} in \mathcal{X} such that $\left\|X^{4}-\phi_{n}(X)\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$.
(2) $\quad X^{4}$ lies in the $\|\cdot\|_{2}$-closed ideal of the $\|\cdot\|_{2}$-closed subalgebra $\mathcal{A}_{S}^{2}(X)$ of \mathcal{A}_{S}^{2} generated by X.

Proof. The following constructions are as in [KS2, proof of Theorem 2.8]. Let $n \geq 3$. Let $u_{n}=u_{n}(t)$ be the segment of the straight line $u=n t /(n-2)-2 d /(n-2)$ on the plane joining the points $(2 d / n, 0)$ and (d, d). Let T_{n} be the circle that touches the t axis at $(d / n, 0)$ and also touches the graph of $u_{n}(t)$ at point $P_{n}=P\left(t_{n}, u_{n}\right)$. Let $v_{n}(t)$ be the arc of T_{n} between the points $(d / n, 0)$ and P_{n}. Now define the following functions $\alpha(\cdot), \beta(\cdot), \gamma(\cdot)$ and $\delta(\cdot)$ to be even as $\alpha_{n}(t)=0$ if $0 \leq t \leq d / n, \alpha_{n}(t)=v_{n}(t)$ if $d / n \leq t \leq t_{n}$ and $\alpha_{n}(t)=u_{n}(t)$ if $t_{n} \leq t \leq d$.

$$
\begin{array}{ll}
\beta_{n}(t)=2 \int_{0}^{t} \alpha_{n}(s) d s & \text { if } 0 \leq t \leq d, \beta_{n}(-t)=\beta_{n}(t) \\
\gamma_{n}(t)=3 \int_{0}^{t} \beta_{n}(s) d s & \text { if } 0 \leq t \leq d, \gamma_{n}(-t)=\gamma_{n}(t) \\
\delta_{n}(t)=4 \int_{0}^{t} \gamma_{n}(s) d s & \text { if } 0 \leq t \leq d, \delta_{n}(-t)=\delta_{n}(t) .
\end{array}
$$

Then $\alpha_{n}(t)=\beta_{n}(t)=\gamma_{n}(t)=\delta_{n}(t)=0$ in $[-d / n, d / n]$. Also, $\alpha_{n} \in C^{1}[-d, d], \beta_{n} \in$ $C^{2}[-d, d], \gamma_{n} \in C^{3}[-d, d], \delta_{n} \in C^{4}[-d, d]$. These functions satisfy the following conditions.
(i) $\left\|t-\alpha_{n}(t)\right\| \leq 2 d / n,\left\|\alpha_{n}^{\prime}\right\|=\left\|u_{n}^{\prime}\right\|=n /(n-2) \leq 3$.
(ii) $\lim _{n \rightarrow \infty}\left\|t^{2}-\beta(t)\right\|=0, \sup \left\{\left\|\beta_{n}\right\|,\left\|\beta_{n}^{\prime}\right\|,\left\|\beta_{n}^{\prime \prime}\right\|\right\}<\infty$.
(iii) $\lim _{n \rightarrow \infty}\left\|t^{3}-\gamma(t)\right\|=0, \sup \left\{\left\|\gamma_{n}\right\|,\left\|\gamma_{n}^{\prime}\right\|,\left\|\gamma_{n}^{\prime \prime}\right\|,\left\|\gamma_{n}^{\prime \prime \prime}\right\|\right\}<\infty$.
(iv) $\lim _{n \rightarrow \infty}\left\|t^{4}-\delta_{n}(t)\right\|=0$.

Let $d=\|X\|$. By the functional calculus [KS1, Theorem 12], $\beta_{n}(X) \in \mathcal{A}_{S}^{2}, \gamma_{n}(X) \in$ \mathcal{A}_{S}^{2} and $\delta_{n}(X) \in \mathcal{A}_{S}^{2}$. It follows from above (i)-(iv) that $\left\|t^{4}-\delta_{n}(t)\right\|_{(3)} \rightarrow 0$ as $n \rightarrow \infty$. Hence, by Proposition 3.2, \| $X^{4}-\delta_{n}(X) \|_{2} \rightarrow 0$. Choose functions $\phi_{n} \in \mathcal{X}$ such that
$\left\|\delta_{n}-\phi_{n}\right\|_{(3)} \rightarrow 0$ in $C^{3}[-d, d]$. Then, by Proposition 3.2, $\left\|\delta_{n}(X)-\phi_{n}(X)\right\|_{2} \rightarrow 0$, and so $\left\|X^{4}-\phi_{n}(X)\right\|_{2} \rightarrow 0$. Let $\mathcal{A}_{S}^{2}(X)$ be the closed subalgebra of \mathcal{A}_{S}^{2} generated by X. Let $\mathcal{I}_{0}=\{\phi(X): \phi \in \mathcal{X}\}, \mathcal{I}=\|\cdot\|_{2}$-closure of \mathcal{I}_{0} in \mathcal{A}_{S}^{2}. As $X I_{0} \subset \mathcal{I}_{0}, \mathcal{I}$ is a $\|\cdot\|_{2}$-closed ideal of $\mathcal{A}_{S}^{2}(X)$ and, by the above, $X^{4} \in I$.

In the above, we do not know whether $X^{3} \in \mathcal{I}$. Let $\left(\mathcal{A},\|\cdot\|_{2}\right)$ be a dense Banach *-subalgebra of a C^{*}-algebra $(\mathcal{U},\|\cdot\|)$. Let \mathcal{A}_{+}be the set of all self-adjoint elements $h=h^{*}$ of \mathcal{A} such that its spectrum $\operatorname{Sp}(h)$ is nonnegative. Let $\mathcal{A}_{+}^{\text {square }}=\left\{x^{2}: x \in \mathcal{A}_{+}\right\}$. It is shown in [KS2, Theorem 2.5] that if \mathcal{A} is a Banach $\left(D_{1}^{*}\right)$-subalgebra of \mathcal{U}, then $\mathcal{A}_{+}=(\sim)$-closure of $\mathcal{A}_{+}^{\text {square }}$. The following gives a D_{2}-analogue of this. It applies to the Banach algebra \mathcal{A}_{S}^{2}. Notice that, in view of [KS1], \mathcal{A}_{S}^{2} is spectrally invariant in its C^{*}-completion in the operator norm, and hence in \mathcal{U}_{S}.

Theorem 3.4. Let \mathcal{A} be a unital Banach (D_{2}^{*})-subalgebra of a C^{*}-algebra \mathcal{U}. Then $\mathcal{A}_{+}=(\sim)$-closure of $\mathcal{A}_{+}^{\text {square }}$.

Proof. We have $\mathcal{A}_{+}^{\text {square }} \subset \mathcal{A}_{+}$. Also \mathcal{A}_{+}is (\sim)-closed. Hence (\sim)-closure $\left(\mathcal{A}_{+}^{\text {square }}\right) \subset$ \mathcal{A}_{+}. To prove the reverse inclusion, let $a \in \mathcal{A}_{+}$. Then $0 \leq a \leq\|a\| 1$, and $\operatorname{sp}(a) \subset[0,\|a\|]$. For any $\epsilon>0$, the function $k_{\epsilon}(t)=(t+\epsilon)^{1 / 2}$ is analytic on $\operatorname{sp}(a)$. For sufficiently small $\epsilon, k_{\epsilon}(t) \in C^{\infty}[0,\|a\|+1]$. By the functional calculus in the C^{*}-algebra $\mathcal{U}, b_{\epsilon}:=k_{\epsilon}(a)=$ $(a+\epsilon 1)^{1 / 2} \in \mathcal{U}$, and by the C^{∞}-functional calculus in D_{2}-algebra (Theorem 1.7), $b_{\epsilon} \in \mathcal{A}$. Then $b_{\epsilon}^{2}=a+\epsilon 1$ and $\left\|a-b_{\epsilon}^{2}\right\|=\epsilon \rightarrow 0$. Also, $\left\|b_{\epsilon}^{2}\right\|_{2} \leq\|a\|_{2}+1$ showing that $b_{\epsilon}^{2}(\sim)$-converges to a.

4. One sided ideals in $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$

Since S is closed, its domain $D(S)$ is a Hilbert space with inner product $\langle x, y\rangle_{1}=$ $(x, y)+(S x, S y)$. Also, S^{2} is a densely defined closable operator, and its domain $D\left(S^{2}\right)$ is an inner product space with the inner product $\langle x, y\rangle_{2}:=(x, y)+(S x, S y)+$ ($S^{2} x, S^{2} y$). We show that $D\left(S^{2}\right)$ is a Hilbert space. Let $|x|_{2}:=\|x\|+\|S x\|+\left\|S^{2} x\right\|$ be the norm on $D\left(S^{2}\right)$ defined by the inner product \langle,\rangle_{2}. First, notice that $|\cdot|_{2}$ is closable with respect to the Hilbert space norm $\|\cdot\|$ on \mathcal{H}. Indeed, let $\left(x_{n}\right)$ be a Cauchy sequence in $|\cdot|_{2}$ and $\left\|x_{n}\right\| \rightarrow 0$. Then $\left\|S x_{n}-S x_{m}\right\| \rightarrow 0$. Since S is closed, $\left\|S x_{n}\right\| \rightarrow 0$. Similarly, since S^{2} is closable, $\left\|S^{2} x_{n}\right\| \rightarrow 0$. Thus $\left|x_{n}\right|_{2} \rightarrow 0$, showing that $|\cdot|_{2}$ is closable. This implies that the completion \mathcal{L} of $D\left(S^{2}\right)$ in $|\cdot|_{2}$ is contained in \mathcal{H}. Now let $x \in \mathcal{L}$. Choose a sequence x_{n} in $D\left(S^{2}\right)$ such that $\left|x_{n}-x\right|_{2} \rightarrow 0$. Then $\left\|x_{n}-x\right\| \rightarrow 0$ and $S x_{n}$ is $\|\cdot\|$-Cauchy. By the closure of the operator $S, x \in D(S)$ and $S x_{n} \rightarrow S x$ in $\|\cdot\|$. Further, since $S x_{n} \in D(S)$ and $S^{2} x_{n}$ is $\|\cdot\|$-Cauchy, again, by the closure of S, it follows that $S x \in D(S)$ and $S^{2} x_{n} \rightarrow S^{2} x$ in $\|\cdot\|$. Thus $x \in D\left(S^{2}\right)$. It follows that $\mathcal{L}=D\left(S^{2}\right)$ and thus $\left.D\left(S^{2}\right),|\cdot|_{2}\right)$ is a Hilbert space.

For any $K \subset D\left(S^{2}\right)$, let $I_{l}(K)$ be the closure, in the norm $\|\cdot\|_{2}$ of the Banach *algebra \mathcal{A}_{S}^{2}, of the linear span of $\left\{x \otimes y: x \in K, y \in D\left(S^{2}\right)\right\}$, and $I_{r}(K)$ be the closure in $\|\cdot\|_{2}$ of the linear span of $\left\{x \otimes y: x \in D\left(S^{2}\right), y \in K\right\}$. Since, for any operator T, $T(x \otimes y)=x \otimes T y,(x \otimes y) T=T^{*} x \otimes y$, and since $(x \otimes y)^{*}=y \otimes x$, it follows that $I_{l}(K)$ is a closed left ideal of $\mathcal{F}_{S}^{2}, I_{r}(K)$ is a closed right ideal of \mathcal{F}_{S}^{2} and $I_{l}(K)=I_{r}(K)^{*}$. Further,
let I be a nontrivial left ideal of \mathcal{F}_{S}^{2}. Let $L(I)=\left\{x \in D\left(S^{2}\right): x \otimes y \in I\right.$ for all $\left.y \in D\left(S^{2}\right)\right\}$. Since $D\left(S^{2}\right)$ is dense in \mathcal{H}, for any nonzero A in I, there exists $x \in D\left(S^{2}\right)$ such that $A^{*} x$ is nonzero. Now $A^{*} x \in D\left(S^{2}\right)$ and, for all $y \in D\left(S^{2}\right),\left(A^{*} x\right) \otimes y=(x \otimes y) A \in I$. Hence $A^{*} x \in L(I)$ and $L(I)$ is nonzero. Similarly, if I is a right ideal of \mathcal{F}_{S}^{2}, then $R(I)=\left\{x \in D\left(S^{2}\right): y \otimes x \in I\right.$ for all $\left.y \in D\left(S^{2}\right)\right\}$ is nonzero. Recall that a closed ideal I in $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$ is essential if $I=\left(\mathcal{F}_{S}^{2} I\right)^{-\|\cdot\|_{2}}$, which is the $\|\cdot\|_{2}$-closure of the linear span of the set $\mathcal{F}_{S}^{2} I=\left\{T_{1} T_{2}: T_{1} \in \mathcal{F}_{S}^{2}, T_{2} \in I\right\}$. The following provides a second-order analogue of [KS2, Theorem 4.1, page 24] that determines the essential left ideals of the algebra \mathcal{F}_{S}^{1}.

Theorem 4.1.

(i) Let K be a linear subspace of $D\left(S^{2}\right)$. The following hold:
(1) $I_{l}(K)$ is an essential left ideal of $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$; and
(2) $K \subset L\left(I_{l}(K)\right) ; L\left(I_{l}(K)\right)$ equals the closure of K in $\left(D\left(S^{2}\right),|\cdot|_{2}\right)$, and $L\left(I_{l}(K)\right)=R\left(I_{r}(K)\right)$.
(ii) Let I be a closed nontrivial left ideal of $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$. The following hold:
(1) $L(I)$ is a nontrivial closed subspace of $\left(D\left(S^{2}\right),|\cdot|_{2}\right)$; and
(2) $I_{l}(L(I))$ is the $\|\cdot\|_{2}$-closure of span $\mathcal{F}_{S}^{2} I$, it is the largest essential ideal contained in I, and it contains all finite rank operators in I.

Proof. (i)(1) The $\|\cdot\|_{2}$-closure $\left(\mathcal{F}_{S}^{2} I_{l}(K)\right)^{-\|\cdot\|_{2}}$ is in $I_{l}(K)$, as $I_{l}(K)$ is a closed left ideal of \mathcal{F}_{S}^{2}. For any $x \in K, y \in D\left(S^{2}\right),(y \otimes y)(x \otimes x)=\|y\|^{2}(x \otimes y) \in \mathcal{F}_{S}^{2} I_{l}(K)$. Hence $x \otimes y \in \mathcal{F}_{S}^{2} I_{l}(K)$ and, by the definition of $I_{l}(K), I_{l}(K) \subset\left(\mathcal{F}_{S}^{2} I_{l}(K)\right)^{-\|\cdot\|_{2}}$. Thus $I_{l}(K)=$ $\left(\mathcal{F}_{S}^{2} I_{l}(K)\right)^{-\|\cdot\|_{2}}$ and $I_{l}(K)$ is essential.
(2) Notice that, for $x, y \in D\left(S^{2}\right)$,

$$
\begin{aligned}
|x|_{2} & =\left\{\|x\|^{2}+\|S x\|^{2}+\left\|S^{2} x\right\|^{2}\right\}^{1 / 2} \\
& \leq\|x\|+\|S x\|+\left\|S^{2} x\right\| .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
|x|_{2}^{2} \leq & \left\{\|x\|+\|S x\|+\left\|S^{2} x\right\|\right\}^{2} \\
& \leq\left\{\|x\|^{2}+\|S x\|^{2}+\left\|S^{2} x\right\|^{2}+2\|x\|\|S x\|+2\|S x\|\left\|S^{2} x\right\|+2\left\|S^{2} x\right\|\|x\|\right\} \\
\leq & 3\left\{\|x\|^{2}+\|S x\|^{2}+\left\|S^{2} x\right\|^{2}\right\} \\
= & 3|x|_{2}^{2} \\
|x|_{2}\|y\| \leq & \left(\|x\|+\|S x\|+\left\|S^{2} x\right\|\right)\|y\| \\
= & \|x \otimes y\|+\|S x \otimes y\|+\left\|S^{2} x \otimes y\right\| \\
\leq & \|x \otimes y\|+\|S x \otimes y-x \otimes S y\|+\|x \otimes S y\| \\
& +\left\|S^{2} x \otimes y-2 S x \otimes S y+x \otimes S^{2} y\right\|+2\|S x \otimes S y\|+\left\|x \otimes S^{2} y\right\| \\
\leq & \|x \otimes y\|_{2}+\|x\|\|S y\|+2\|S x\|\|S y\|+\|x\|\left\|S^{2} y\right\| .
\end{aligned}
$$

Also

$$
\begin{aligned}
\|x \otimes y\|_{2} & \leq\|x \otimes y\|+\left\|\delta_{S}(x \otimes y)\right\|+\left\|\delta_{S}^{2}(x \otimes y)\right\| \\
& =\|x \otimes y\|+\|x \otimes S y-S x \otimes y\|+\left\|\delta_{S}(x \otimes S y-S x \otimes y)\right\| \\
& =\|x \otimes y\|+\|x \otimes S y-S x \otimes y\|+\left\|x \otimes S^{2} y-2 S x \otimes S y+S^{2} x \otimes y\right\| \\
& \leq\|x\|\|y\|+\|x\|\|S y\|+\|S x\|\|y\|+\|x\|\left\|S^{2} y\right\|+2\|S x\|\|S y\|+\left\|S^{2} x\right\|\|y\| \\
& \leq\|x\|\left(\|y\|+\|S y\|+\left\|S^{2} y\right\|\right)+\|y\|\left(\|x\|+\|S x\|+\left\|S^{2} x\right\|\right)+2\|S x\|\|S y\| \\
& \leq 3^{1 / 2}\left(\left.\|x\|| | y\right|_{2}+|x|_{2}\|y\|\right)+2\|S x\|\|y\| .
\end{aligned}
$$

Clearly, $K \subset L\left(I_{l}(K)\right)$. We show that $L\left(I_{l}(K)\right) \subset K^{-|\cdot| 2}$. Let $y \in D\left(S^{2}\right),\|y\|=1$, and let $z \in L\left(I_{l}(K)\right), z \notin K$. Then $z \otimes y \in I_{l}(K)$, and there exists a sequence $A_{n}=\sum_{i=1}^{m_{n}} x_{n}^{i} \otimes y_{n}^{i} \in$ $I_{l}(K), x_{n}^{i} \in K, y_{n}^{i} \in D\left(S^{2}\right)$ such that $\left\|z \otimes y-A_{n}\right\|_{2} \rightarrow 0$. Then

$$
\left\|(y \otimes y)(z \otimes y)-(y \otimes y) A_{n}\right\|_{2}=\left\|z \otimes y-A_{n}^{*} y \otimes y\right\|_{2}=\left\|\left(z-z_{n}\right) \otimes y\right\|_{2} \rightarrow 0
$$

where $z_{n}:=A_{n}^{*} y$. Thus $\left\|\left(z-z_{n}\right) \otimes y\right\| \rightarrow 0$ and $\left\|\left(z-z_{n}\right) \otimes y\right\|_{1} \rightarrow 0$. Hence $\left\|z-z_{n}\right\| \rightarrow 0$. This also implies that $\left\|S\left(z-z_{n}\right)\right\| \rightarrow 0$. Indeed,

$$
\begin{aligned}
\left\|\left(z-z_{n}\right) \otimes y\right\|_{1} & =\left\|\left(z-z_{n}\right) \otimes y\right\|+\left\|S\left\{\left(z-z_{n}\right) \otimes y\right\}-\left\{\left(z-z_{n}\right) \otimes y\right\} S\right\| \\
& =\left\|\left(z-z_{n}\right) \otimes y\right\|+\left\|\left(z-z_{n}\right) \otimes S y-\left\{S\left(z-z_{n}\right)\right\} \otimes y\right\| \\
& \geq\left\|z-z_{n}\right\|\|y\|+\left\|\left(z-z_{n}\right) \otimes S y\right\|-\left\|\left\{S\left(z-z_{n}\right)\right\} \otimes y\right\| \| \\
& =\left\|z-z_{n}\right\|+\left\|z-z_{n}\right\|-\left\|S\left(z-z_{n}\right)\right\| .
\end{aligned}
$$

Thus $\left\|S\left(z-z_{n}\right)\right\| \rightarrow 0$. Then, by the above norm relations,

$$
\begin{aligned}
\left|z-z_{n}\right|_{2} & =\left|z-z_{n}\right|_{2}\|y\| \\
& \leq\left\|\left(z-z_{n}\right) \otimes y\right\|_{2}+\left\|z-z_{n}\right\|\|S y\|+\left\|z-z_{n}\right\|\left\|S^{2} y\right\|+2\left\|S\left(z-z_{n}\right)\right\|\|S y\| \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Therefore $z \in K^{-|\cdot|_{2}}$ and $L\left(I_{l}(K)\right) \subset K^{-|\cdot|_{2}}$. On the other hand, let $z \in K^{-|\cdot|_{2}}$. Then there exists a sequence $\left(z_{n}\right) \subset K$ such that $\left|z-z_{n}\right|_{2} \rightarrow 0$, so that $\left\|S\left(z-z_{n}\right)\right\| \rightarrow 0$. Then, again by the norm relations discussed above,

$$
\left\|z \otimes y-z_{n} \otimes y\right\|_{2} \leq 3^{1 / 2}\left(\left.\left\|z-z_{n}\right\| y\right|_{2}+\left.\left|z-z_{n}\right|\right|_{2}\|y\|\right)+2\left\|S\left(z-z_{n}\right)\right\|\|S y\| \rightarrow 0 .
$$

Hence $z \otimes y \in I_{l}(K)$ and $z \in L\left(I_{l}(K)\right)$. Thus $L\left(I_{l}(K)\right)=K^{-|\cdot|_{2}}$. Similarly, we can prove that $R\left(I_{r}(K)\right)=K^{-1 \cdot l_{2}}$.
(ii) (1) Let I be a closed nontrivial left ideal of $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$. Then $L(I)$ is nonzero, where $L(I)=\left\{x \in D\left(S^{2}\right): x \otimes y \in I\right.$ for all $\left.y \in D\left(S^{2}\right)\right\}$. If $L(I)=D\left(S^{2}\right)$ then, by Proposition 1.4, $I=\mathcal{F}_{S}^{2}$, which contradicts the nontriviality of I. Thus $L(I)$ is a nontrivial subspace of $D\left(S^{2}\right)$. We show that $L(I)$ is closed. Let $x \in D\left(S^{2}\right)$, and let $\left(x_{n}\right)$ in $L(I)$ be such that $\left|x_{n}-x\right|_{2} \rightarrow 0$. Then $x_{n} \rightarrow x$ in \mathcal{H}. By the norm relations discussed above,

$$
\left\|x \otimes y-x_{n} \otimes y\right\|_{2} \leq 3^{1 / 2}\left(\left.\left\|x_{n}-x\right\| y\right|_{2}+\left|x_{n}-x\right|_{2}\|x\|\right)+2\left\|S\left(x_{n}-x\right)\right\|\|S y\| \rightarrow 0
$$

as $n \rightarrow \infty$ for all $y \in D\left(S^{2}\right)$. Since I is closed and $x_{n} \otimes y \in I$, we get $x \otimes y \in I$. Then $x \in L(I)$ and $L(I)$ is closed.
(2) We show that $I_{l}(L(I))$ contains all finite rank operators from I. Let $F \in I$ be a finite rank operator. By Proposition 1.4, $F=\sum x_{i} \otimes y_{i}$, which is a finite sum, where $x_{i} \in D\left(S^{2}\right)$ and $y_{i} \in D\left(S^{2}\right)$ with $\left(y_{i}\right)$ assumed to be linearly independent. For u, v in $D\left(S^{2}\right),(u \otimes v) F=F^{*} u \otimes v \in I$. Therefore $F^{*} u=\sum_{i=1}^{n}\left(y_{i}, u\right) x_{i} \in L(I)$ for all $u \in D\left(S^{2}\right)$. For a fixed i, choose $\left(u_{i}\right)_{i=1}^{n}$ in $D\left(S^{2}\right)$ such that $\left(y_{i}, u_{i}\right)=1,\left(y_{i}, u_{j}\right)=0$ for all $j \neq i$. It follows that all $x_{i} \in L(I)$ and $F \in I_{l}(L(I))$.

We show that $\left(\mathcal{F}_{S}^{2} I\right)^{-\|\cdot\|_{2}} \subset I_{l}(L(I))$. Let $A \in \mathcal{F}_{S}^{2}$ and $B \in I$. Then there exist finite rank operators A_{n} in \mathcal{F}_{S}^{2} such that $\left\|A-A_{n}\right\|_{2} \rightarrow 0$. Now all $A_{n} B$ are finite rank operators in I and, by above arguments, $A_{n} B \in I_{l}(L(I))$. As $\left\|A B-A_{n} B\right\| \rightarrow 0$ and as $I_{l}(L(I))$ is closed in $\|\cdot\|_{2}$, we get $A B \in I_{l}(L(I))$. Hence $\left(\mathcal{F}_{S}^{2} I\right)^{-\|\cdot\|_{2}} \subset I_{l}(L(I))$.

Next, we show that $I_{l}(L(I)) \subset\left(\mathcal{F}_{S}^{2} I\right)^{-\|\cdot\|_{2}}$. Let $x \in L(I)$ and $y \in D\left(S^{2}\right)$. Then $x \otimes y \in$ $I_{l}(L(I))$ and $x \otimes y \in I$. Now $(y \otimes y)(x \otimes y)=\|y\|^{2}(x \otimes y) \in \mathcal{F}_{S}^{2} I$. Thus $x \otimes y \in \mathcal{F}_{S}^{2} I$. Since $I_{l}(L(I))$ is the closed linear span of all $x \otimes y, x \in L(I), y \in D\left(S^{2}\right), I_{l}(L(I)) \subset\left(\mathcal{F}_{S}^{2} I\right)^{-1 \cdot \|_{2}}$. It follows that $I_{l}(L(I))=\left(\mathcal{F}_{S}^{2} I\right)^{-\|\cdot\|_{2}}$.

Further, $I_{l}(L(I))$ is essential and, by construction, $I_{l}(L(I)) \subset I$. Let J be an essential left ideal in I. Then $L(J) \subset L(I)$ and $I_{l}(L(J)) \subset I_{l}(L(I))$. As J is essential, $J=$ $\left(\mathcal{F}_{S}^{2} J\right)^{-\|\cdot\|_{2}}=I_{l}(L(J)) \subset I_{l}(L(I))$, showing that $I_{l}(L(I))$ is the largest essential ideal in I.

Theorem 4.2. The map ψ defined as $\psi(I)=L(I)$ gives a one-to-one correspondence between the set of nontrivial closed essential left ideals of $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$ and the set of nontrivial closed subspaces of $\left(D\left(S^{2}\right),|\cdot|_{2}\right)$.
Proof. Given a closed nontrivial essential left ideal I of $\mathcal{F}_{S}^{2}, L(I)$ is a nontrivial closed subspace of $D\left(S^{2}\right)$, and then $I_{l}(L(I))=\left(\mathcal{F}_{S}^{2} I\right)^{-\|\cdot\|_{2}}=I$. Thus ψ is one-to-one. If $I \subset J$, then $L(I) \subset L(J)$, and, by the injectivity of $\psi, L(I) \neq \mathrm{Ł}(J)$ if $I \neq J$. Let $K \subset D\left(S^{2}\right)$ be a nontrivial $|\cdot|_{2}$-closed subspace. Then $I_{l}(K)$ is essential and $\psi\left(I_{l}(K)\right)=L\left(I_{l}(K)\right)$. Hence $I_{l}(K) \neq \mathcal{F}_{S}^{2}$ and ψ is surjective. Also, if $K \subset K_{1}$, then $I_{l}(K) \subset I_{l}\left(K_{1}\right)$. If $I_{l}(K)=I_{l}\left(K_{1}\right)$, then $L\left(I_{l}(K)\right)=K^{-}=K=L\left(I_{l}\left(K_{1}\right)\right)=K_{1}^{-}=K_{1}$. Since $K \neq K_{1}, I_{l}(K) \neq I_{l}\left(K_{1}\right)$. Thus ψ is a one-to-one partial order-preserving map and $\psi(I) \subset \psi(J)$ if and only if $I \subset J$.

Thus a closed left ideal I of $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$ is essential if and only if $I=I_{l}(K)$ for a $K \subset D\left(S^{2}\right)$. In this case, $I=I_{l}(L(I))$. Further, it is maximal essential if and only if the closure of K in $\left(D\left(S^{2}\right),|\cdot|_{2}\right)$ is of codimension one in $D\left(S^{2}\right)$. The following can be proved exactly, as in [KS2, Theorems 4.2(iv) and 4.3]. An operator A is essential for \mathcal{F}_{S}^{2} if $A \in\left(\mathcal{F}_{S}^{2} A\right)^{-\|\cdot\|_{2}}$, the closure in $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$.

Theorem 4.3.
(i) Let I be a closed left ideal of $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$ and let J be the intersection of all maximal essential left ideals containing I. Then $I_{l}(L(I))=I_{l}(L(J))$. If I is essential, then $I=I_{l}(L(J))$. If all closed left ideals of $\left(\mathcal{F}_{S}^{2},\|\cdot\|_{2}\right)$ are essential, then every closed left ideal is the intersection of all maximal closed left ideals containing I.
(ii) All left ideals $\left(\mathcal{F}_{S}^{2} A,\|\cdot\|_{2}\right)$ are essential.
(iii) All finite rank operators in \mathcal{F}_{S}^{2} are essential.

Acknowledgement

The authors sincerely thank the referee for a very careful reading of the manuscript and for several corrections leading to removal of certain errors and a thorough revision of the paper. Thank you very much.

References

[B1] S. J. Bhatt, 'Stinespring representability and Kadison Schwarz inequality in non unital Banach *-algebras and applications', Proc. Math. Sci. Indian Acad. Sci. 108 (1998), 283-303.
[BIO] S. J. Bhatt, A. Inoue and H. Ogi, 'Differential structure in C^{*}-algebras', J. Operator Theory 66(2) (2011), 301-334.
[BKS] S. J. Bhatt, D. J. Karia and M. M. Shah, 'On a class of smooth Frechet sub algebras of C^{*} algebras', Proc. Math. Sci. Indian Acad. Sci. 123(3) (2013), 393-414.
[BC] B. A. Blackadar and J. Cuntz, 'Differential Banach algebras norms and smooth sub algebras of C^{*}-algebras’, J. Operator Theory 26 (1991), 255-282.
[C] A. Connes, Non Commutative Geometry (Academic Press, London and San Diego, 1994).
[KS1] E. Kissin and V. Shulman, 'Differential properties of some dense subalgebras of C^{*}-algebras', Proc. Edinb. Math. Soc. (2) 37(3) (1994), 399-422.
[KS2] E. Kissin and V. Shulman, 'Differential Banach *-algebras of compact operators associated with symmetric operators', J. Funct. Anal. 156 (1998), 1-29.
[KS3] E. Kissin and V. Shulman, 'Dual spaces and isomorphisms of some differential Banach algebras of operators', Pacific J. Math. 90 (1999), 329-359.
[KS4] E. Kissin and V. Shulman, 'Differential Schatten *-algebras, approximation properties and approximate identities’, J. Operator Theory 45 (2001), 303-334.
[R] W. Rudin, Functional Analysis (McGraw-Hill Inc., New York, 1973).
[S1] S. Sakai, Operator Algebras in Dynamical Systems (Cambridge University Press, CambridgeNew York-Melbourne, 1991).
[W1] N. Weaver, 'Lipschitz algebras and derivations of von Neumann algebras', J. Funct. Anal. 139 (1996), 261-300.
[W2] N. Weaver, 'Lipschitz algebras and derivations II. Exterior differentiation', J. Funct. Anal. 178 (2000), 64-112.

S. J. BHATT, Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
e-mail: subhashbhaib@gmail.com
MEETAL M. SHAH, Department of Mathematics, Sardar Patel University,
Vallabh Vidyanagar, Gujarat 388120, India
e-mail: meetal.shah@gmail.com

[^0]: The work was carried out under UGC-SAP-DRS programme to the Department of Mathematics, SPU. S. J. Bhatt is thankful to NBHM, DAE for a Visiting Professorship.
 (C) 2015 Australian Mathematical Publishing Association Inc. 1446-7887/2015 \$16.00

