Asymptotic Dimension of Proper CAT(0) Spaces that are Homeomorphic to the Plane

Naotsugu Chinen and Tetsuya Hosaka

Abstract. In this paper, we investigate a proper CAT(0) space (X, d) that is homeomorphic to \mathbb{R}^{2} and we show that the asymptotic dimension $\operatorname{asdim}(X, d)$ is equal to 2 .

1 Introduction and Preliminaries

In this paper, we study the asymptotic dimension of proper CAT(0) spaces that are homeomorphic to \mathbb{R}^{2}.

A metric space (X, d) is proper if all closed bounded sets in (X, d) are compact. We say that a metric space (X, d) is a geodesic space if for any $x, y \in X$, there exists an isometric embedding $\xi:[0, d(x, y)] \rightarrow X$ such that $\xi(0)=x$ and $\xi(d(x, y))=y$ (such a ξ is called a geodesic).

Let (X, d) be a geodesic space and let T be a geodesic triangle in X. A comparison triangle for T is a geodesic triangle \bar{T} in the Euclidean plane \mathbb{R}^{2} with the same edge lengths as T. Choose two points x and y in T. Let \bar{x} and \bar{y} denote the corresponding points in \bar{T}. Then the inequality $d(x, y) \leq d_{\mathbb{R}^{2}}(\bar{x}, \bar{y})$ is called the $\operatorname{CAT}(0)$-inequality, where $d_{\mathbb{R}^{2}}$ is the usual metric on \mathbb{R}^{2}. A geodesic space X is called a CAT(0) space if the CAT(0)-inequality holds for all geodesic triangles T and for all choices of two points x and y in T. Details of $\operatorname{CAT}(0)$ spaces are found in [1].

In Section 2, we first investigate proper CAT(0) spaces that are homeomorphic to \mathbb{R}^{2} and we show the following.

Proposition 1.1 Let (X, d) be a proper $\mathrm{CAT}(0)$ space that is homeomorphic to \mathbb{R}^{2}. Then $S(x, r)$ is homeomorphic to \mathbb{S}^{1} for all $x \in X$ and all $r>0$. Hence the boundary ∂X is homeomorphic to a circle \mathbb{S}^{1}.

Let (X, d) be a metric space and let \mathcal{U} be a family of subsets of (X, d). The family \mathcal{U} is said to be uniformly bounded if there exists a positive number K such that diam $U \leq$ K for all $U \in \mathcal{U}$. The family \mathcal{U} is said to be r-disjoint if $d\left(U, U^{\prime}\right)>r$ for any $U, U^{\prime} \in \mathcal{U}$ with $U \neq U^{\prime}$.

The asymptotic dimension of a metric space (X, d) does not exceed n and we write $\operatorname{asdim}(X, d) \leq n$, if for every $r>0$ there exist uniformly bounded, r-disjoint families

[^0]$\mathcal{U}^{0}, \mathfrak{U}^{1}, \ldots, \mathcal{U}^{n}$ of subsets of X such that $\bigcup_{k=0}^{n} \mathcal{U}^{k}$ covers X. The asymptotic dimension of a metric space (X, d) is equal to n, and we write $\operatorname{asdim}(X, d)=n$, if $\operatorname{asdim}(X, d) \leq$ n and $\operatorname{asdim}(X, d) \not \leq n-1$.

The asymptotic dimension of a group relates to the Novikov conjecture, and there is some interesting recent research on asymptotic dimensions [2, 5-7, 9, 15]. In [9], Gromov remarks that word hyperbolic groups have finite asymptotic dimension, and Roe gives details of the proof in [12]. The asymptotic dimension of CAT(0) groups and $\operatorname{CAT}(0)$ spaces is unknown in general.

The purpose of this paper is to prove the following theorem.
Theorem 1.2 If (X, d) is a proper $\operatorname{CAT}(0)$ space that is homeomorphic to \mathbb{R}^{2}, then $\operatorname{asdim}(X, d)=2$.

We note that the proper $\operatorname{CAT}(0)$ space (X, d) in this theorem need not have an action of some group. We give an example in Section 4.

2 Proper CAT(0) Spaces that are Homeomorphic to \mathbb{R}^{2}

We first give notation used in this paper.
Notation 2.1 Let the set of all natural numbers, real numbers, and $[0, \infty)$ be denoted by \mathbb{N}, \mathbb{R}, and \mathbb{R}_{+}, respectively. Set $\mathbb{R}_{+}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}_{+}, \mathbb{B}^{n}=\left\{x \in \mathbb{R}^{n}\right.$: $\left.\sum_{i=1}^{n} x_{i}^{2} \leq 1\right\}$, and $\mathbb{S}^{n}=\left\{x \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x_{i}^{2}=1\right\}$. Let Y be a subspace of a metric space (X, d). The interior and the closure of Y in a space X will be denoted by $\operatorname{Int}_{X} Y$ and $\mathrm{Cl}_{X} Y$, respectively. Also set $B(x, r)=\{y \in X: d(x, y) \leq r\}$ and $S(x, r)=\{y \in X: d(x, y)=r\}$. We denote the geodesic from x to y in a CAT(0) space (X, d) by $[x, y]$ (cf. [1, Proposition II 1.4]). Set $[x, y)=[x, y] \backslash\{y\}$, $(x, y]=[x, y] \backslash\{x\}$ and $(x, y)=[x, y] \backslash\{x, y\}$.

The following lemma is known.
Lemma 2.2 Let (X, d) be a proper $\mathrm{CAT}(0)$ space, $r>0$ and $x_{0} \in X$. Then, the following are satisfied:
(i) $B\left(x_{0}, r\right)$ is a convex set;
(ii) $x_{0} \notin[x, y] \subset B\left(x_{0}, r\right)$ and $(x, y) \subset B\left(x_{0}, r\right) \backslash S\left(x_{0}, r\right)$ for any $x, y \in S\left(x_{0}, r\right)$ with $d(x, y)<2 r$
(iii) (cf.[1, Lemma II 5.8 and Proposition II 5.12]) If X is a manifold, for each $x \in X \backslash\left\{x_{0}\right\}$, there exists a geodesic line $\xi: \mathbb{R} \rightarrow X$ such that $\xi(0)=x_{0}$ and $\xi\left(d\left(x_{0}, x\right)\right)=x$.

We investigate a proper CAT(0) space that is homeomorphic to \mathbb{R}^{2}.
Notation 2.3 Let $(X, d), r, x_{0}, x$, and y be as in Lemma 2.2 (ii). Suppose that X is homeomorphic to \mathbb{R}^{2}. By Lemma 2.2 , there exist two geodesic rays $\xi_{x_{0}, x}, \xi_{x_{0}, y}: \mathbb{R}_{+} \rightarrow$ X such that $\xi_{x_{0}, x}(0)=\xi_{x_{0}, y}(0)=x_{0}, \xi_{x_{0}, x}(r)=x$ and $\xi_{x_{0}, y}(r)=y$. By Lemma 2.2, $\xi_{x_{0}, x}([r, \infty)) \cup[x, y] \cup \xi_{x_{0}, y}([r, \infty))$ is homeomorphic to \mathbb{R}. Since X is homeomorphic to \mathbb{R}^{2}, by Schönflies Theorem there exists the component C of $X \backslash \xi_{x_{0}, x}([r, \infty)) \cup$ $[x, y] \cup \xi_{x_{0}, y}([r, \infty))$ such that $x_{0} \notin C$. Set $\ell(x, y)=S\left(x_{0}, r\right) \cap \mathrm{Cl}_{X} C$.

We show some lemmas.
Lemma 2.4 Let (X, d) be a proper $C A T(0)$ space that is homeomorphic to \mathbb{R}^{2}. Then, $S(x, r)$ is a continuum for all $x \in X$ and all $r>0$.

Proof Let $x_{0} \in X$ and $r>0$. Since $B\left(x_{0}, r\right)$ is a convex set, by duality (cf. [13]),

$$
\bar{H}_{0}\left(X \backslash B\left(x_{0}, r\right)\right) \cong \check{H}^{1}\left(B\left(x_{0}, r\right)\right)=0
$$

thus, $X \backslash \operatorname{Int}_{X} B\left(x_{0}, r\right)=\mathrm{Cl}_{X}\left(X \backslash B\left(x_{0}, r\right)\right)$ is connected. Since there exists a deformation retraction of $X \backslash \operatorname{Int}_{X} B\left(x_{0}, r\right)$ onto $S\left(x_{0}, r\right), S\left(x_{0}, r\right)$ is connected.

Lemma 2.5 Let (X, d) be a proper CAT(0) space that is homeomorphic to $\mathbb{R}^{2}, r>0$, $x_{0} \in X, x, y \in S\left(x_{0}, r\right)$ with $0<d(x, y)<2 r$ and $z \in \ell(x, y)$. Then
(i) $\ell(x, y)$ is a continuum,
(ii) $[x, y] \cap\left[x_{0}, z\right] \neq \varnothing$, and
(iii) $d(x, z) \leq d(x, y)$.

Proof (i) By Notation 2.3, there exists the component D of $X \backslash R$ such that $C \subset D$, where $R=\xi_{x_{0}, x}\left(\mathbb{R}_{+}\right) \cup \xi_{x_{0}, y}\left(\mathbb{R}_{+}\right)$. Since X is homeomorphic to \mathbb{R}^{2}, by Schönflies Theorem, $\mathrm{Cl}_{X} D$ is homeomorphic to \mathbb{R}_{+}^{2}. Let D^{\prime} be a copy of D. Define an equivalent relation: \sim in $D \cup D^{\prime}$ as follows: for $a \in D$ and $a^{\prime} \in D^{\prime}, a \sim a^{\prime}$ if and only if $a=a^{\prime}, a \in R$, and $a^{\prime} \in R^{\prime}$. Set $B=B\left(x_{0}, r\right) \cap \mathrm{Cl}_{X} D, \widetilde{D}=\left(D \cup D^{\prime}\right) / \sim$ and $\widetilde{\sim}=\left(B \cup B^{\prime}\right) / \sim$. Then there exists a deformation retraction $\mathrm{Cl}_{X}(D \backslash B)$ onto $\ell(x, y)$, \widetilde{D} is homeomorphic to \mathbb{R}^{2} and \widetilde{B} is a contractible compact set. By the same method as in the proof of Lemma.2.4, we can show that $\ell(x, y) \cup(\ell(x, y))^{\prime} / \sim$ is connected. Since there exists the natural surjective map from $\ell(x, y) \cup(\ell(x, y))^{\prime} / \sim$ onto $\ell(x, y)$, $\ell(x, y)$ is connected.
(ii) We may assume that $z \notin\{x, y\}$. By Notation 2.3, there exists the component C of $X \backslash \xi_{x_{0}, x}([r, \infty)) \cup[x, y] \cup \xi_{x_{0}, y}([r, \infty))$ such that $x_{0} \notin C$ and $z \in C$. Thus, $\xi_{x_{0}, x}([r, \infty)) \cup[x, y] \cup \xi_{x_{0}, y}([r, \infty))$ separates x_{0} and z in X. Since $\left[x_{0}, z\right] \subset B\left(x_{0}, r\right)$ is an arc connecting x_{0} and z in $X,[x, y] \cap\left[x_{0}, z\right] \neq \varnothing$.
(iii) On the contrary, suppose $d(x, z)>d(x, y)$. By (ii), there exists $z^{\prime} \in[x, y] \cap$ $\left[x_{0}, z\right]$. Since $z^{\prime} \in[x, y]$,

$$
d\left(x, z^{\prime}\right)+d\left(z^{\prime}, y\right)=d(x, y)<d(x, z) \leq d\left(x, z^{\prime}\right)+d\left(z^{\prime}, z\right)
$$

thus, $d\left(z^{\prime}, y\right)<d\left(z^{\prime}, z\right)$. Then,

$$
r=d\left(x_{0}, y\right) \leq d\left(x_{0}, z^{\prime}\right)+d\left(z^{\prime}, y\right)<d\left(x_{0}, z^{\prime}\right)+d\left(z^{\prime}, z\right)=d\left(x_{0}, z\right)=r
$$

a contradiction.
Lemma 2.6 Let (X, d) be a proper CAT(0) space that is homeomorphic to $\mathbb{R}^{2}, r, t>0$, $x_{0} \in X$ and $y_{0} \in S\left(x_{0}, r\right)$. Then $S\left(x_{0}, r\right) \cap B\left(y_{0}, t\right)$ is connected.

Proof Set $N=S\left(x_{0}, r\right) \cap B\left(y_{0}, t\right)$. If $t \geq 2 r, S\left(x_{0}, r\right) \subset B\left(y_{0}, t\right)$. By Lemma 2.4, N is connected. We may assume that $t<2 r$. Take $x \in N$. Since $d\left(y_{0}, x\right) \leq t<2 r$, by Lemma 2.5, we have

$$
\ell\left(y_{0}, x\right) \subset S\left(x_{0}, r\right) \cap B\left(y_{0}, d\left(y_{0}, x\right)\right) \subset S\left(x_{0}, r\right) \cap B\left(y_{0}, t\right)=N
$$

Therefore, by Lemma2.5, $N=\bigcup\left\{\ell\left(y_{0}, x\right): x \in N\right\}$ is connected, which proves the lemma.

We obtain the following proposition from the lemmas above.
Proposition 2.7 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^{2}. Then, $S(x, r)$ is homeomorphic to \mathbb{S}^{1} for all $x \in X$ and all $r>0$.

Proof By Lemma 2.4 and [14, Theorem 11.21], it suffices to show the following:
(i) $S\left(x_{0}, r\right) \backslash\left\{y_{0}, y_{1}\right\}$ is nonconnected for any $y_{0}, y_{1} \in S\left(x_{0}, r\right)$ with $y_{0} \neq y_{1}$, and
(ii) $S\left(x_{0}, r\right) \backslash\left\{y_{0}\right\}$ is connected for each $y_{0} \in S\left(x_{0}, r\right)$.

We take two points $y_{0}, y_{1} \in S\left(x_{0}, r\right)$ with $y_{0} \neq y_{1}$. By Lemma 2.2, there exist geodesic rays $\xi_{x_{0}, y_{0}}, \xi_{x_{0}, y_{1}}: \mathbb{R}_{+} \rightarrow X$ such that $\xi_{x_{0}, y_{0}}(0)=\xi_{x_{0}, y_{1}}(0)=x_{0}, \xi_{x_{0}, y_{0}}(r)=y_{0}$ and $\xi_{x_{0}, y_{1}}(r)=y_{1}$. By Schönflies Theorem, there exist closed sets Z_{0}, Z_{1} of X such that Z_{i} is homeomorphic to \mathbb{R}_{+}^{2} for $i=0,1, X=Z_{0} \cup Z_{1}$, and $Z_{0} \cap Z_{1} \subset \xi_{x_{0}, y_{0}}\left(\mathbb{R}_{+}\right) \cup$ $\xi_{x_{0}, y_{1}}\left(\mathbb{R}_{+}\right)$is homeomorphic to \mathbb{R}. Since $S\left(x_{0}, r\right) \cap \operatorname{Int}_{X} Z_{i} \neq \varnothing$ for $i=0,1, S\left(x_{0}, r\right) \backslash$ $\left\{y_{0}, y_{1}\right\}$ is nonconnected, which proves (i).

Let $x, y \in S\left(x_{0}, r\right) \backslash\left\{y_{0}\right\}$ with $x \neq y$. By Lemma 2.2, there exist geodesic rays $\xi_{x_{0}, x}, \xi_{x_{0}, y}: \mathbb{R}_{+} \rightarrow X$ such that $\xi_{x_{0}, x}(0)=\xi_{x_{0}, y}(0)=x_{0}, \xi_{x_{0}, x}(r)=x$ and $\xi_{x_{0}, y}(r)=y$. Set $R=\xi_{x_{0}, x}\left(\mathbb{R}_{+}\right) \cup \xi_{x_{0}, y}\left(\mathbb{R}_{+}\right)$. By [1, Proposition 1.4(1), p.160], there exists $z \in\left[x_{0}, x\right)$ such that $\xi_{x_{0}, x}\left(\mathbb{R}_{+}\right) \cap \xi_{x_{0}, y}\left(\mathbb{R}_{+}\right)=\left[x_{0}, z\right]$. By Schönflies Theorem, there exists the component C of $X \backslash R$ such that $y_{0} \notin C$ and $E_{x, y}=\mathrm{Cl}_{X} C$ is homeomorphic to \mathbb{R}_{+}^{2}. Set $L_{x, y}=E_{x, y} \cap S\left(x_{0}, r\right)$. We see

$$
B\left(x_{0}, d\left(x_{0}, z\right)\right) \subset E_{x, y} \text { or } B\left(x_{0}, d\left(x_{0}, z\right)\right) \cap E_{x, y}=\{z\}
$$

Suppose that $B\left(x_{0}, d\left(x_{0}, z\right)\right) \subset E_{x, y}$. We note that $L_{x, y}, B\left(x_{0}, d\left(x_{0}, z\right)\right)$ and $\{z\}$ are deformation retracts of $\mathrm{Cl}_{X}\left(E_{x, y} \backslash B\left(x_{0}, r\right)\right), E_{x, y} \cap B\left(x_{0}, r\right)$ and $B\left(x_{0}, d\left(x_{0}, z\right)\right)$, respectively. Thus, $\{z\}$ is a deformation retract of $E_{x, y} \cap B\left(x_{0}, r\right)$. Using the same method as in the proof of Lemma 2.5(i), we can show that $L_{x, y} \cup\left(L_{x, y}\right)^{\prime} / \sim$ is a deformation retract of $\mathrm{Cl}_{X}\left(E_{x, y} \backslash B\left(x_{0}, r\right)\right) \cup\left(\mathrm{Cl}_{X}\left(E_{x, y} \backslash B\left(x_{0}, r\right)\right)\right)^{\prime} / \sim$ and $\{z\}$ is a deformation retract of $\left(E_{x, y} \cap B\left(x_{0}, r\right)\right) \cup\left(E_{x, y} \cap B\left(x_{0}, r\right)\right)^{\prime} / \sim$, thus, $L_{x, y}$ is connected. Suppose that $B\left(x_{0}, d\left(x_{0}, z\right)\right) \cap E_{x, y}=\{z\}$. Since $\{z\}$ is a deformation retract of $E_{x, y} \cap B\left(x_{0}, r\right)$, by the same method above, we can show that $L_{x, y}$ is connected.

Fix $y_{0}^{\prime} \in S\left(x_{0}, r\right) \backslash\left\{y_{0}\right\}$. Since $S\left(x_{0}, r\right) \backslash\left\{y_{0}\right\}=\bigcup\left\{L_{x, y_{0}^{\prime}}: x \in S\left(x_{0}, r\right) \backslash\left\{y_{0}, y_{0}^{\prime}\right\}\right\}$, it is connected, which proves (ii).

Corollary 2.8 If (X, d) is a proper $\operatorname{CAT}(0)$ space that is homeomorphic to \mathbb{R}^{2}, then the boundary ∂X of X is homeomorphic to \mathbb{S}^{1}.

We show the following lemma that is used in the proof of the main theorem.

Lemma 2.9 Let (X, d) be a proper $\mathrm{CAT}(0)$ space that is homeomorphic to $\mathbb{R}^{2}, x_{0} \in X$, $r, t>0$ with $2 t<r$ and $x, x^{\prime} \in S\left(x_{0}, r\right)$ with $3 t \leq d\left(x, x^{\prime}\right)<2 r$. Then there exist $y_{0}, \ldots, y_{3 n-1} \in S\left(x_{0}, r\right)$, and $m \in \mathbb{N}$ with $0<3 m<3 n-1$ such that $y_{0}=x$, $y_{3 m}=x^{\prime}, t \leq \operatorname{diam} \ell\left(y_{i}, y_{i+1}\right) \leq 2 t,\left\{y_{0}, \ldots, y_{3 n-1}\right\} \cap \ell\left(y_{i}, y_{i+1}\right)=\left\{y_{i}, y_{i+1}\right\}$ for each $i=0, \ldots, 3 n-1, S\left(x_{0}, r\right)=\ell\left(y_{0}, y_{1}\right) \cup \cdots \cup \ell\left(y_{3 n-1}, y_{3 n}\right)$, and $\ell\left(x, x^{\prime}\right)=$ $\ell\left(y_{0}, y_{1}\right) \cup \cdots \cup \ell\left(y_{3 m-1}, y_{3 m}\right)$, where $y_{3 n}=y_{0}$.
Proof Set $z_{0}=y_{0}=x$. By Proposition 2.7, $S\left(x_{0}, r\right)$ is homeomorphic to \mathbb{S}^{1}. Since $S\left(x_{0}, r\right) \not \subset B\left(z_{0}, t\right)$, by Lemma2.6, $S\left(x_{0}, r\right) \cap B\left(z_{0}, t\right), \ell\left(x, x^{\prime}\right)$, and $\ell\left(x, x^{\prime}\right) \cap B\left(z_{0}, t\right)$ are arcs. Let z_{1} be the end point of $\ell\left(x, x^{\prime}\right) \cap B\left(z_{0}, t\right)$ with $z_{0} \neq z_{1}$. By Lemma 2.6, we have $\ell\left(z_{0}, z_{1}\right)=\ell\left(x, x^{\prime}\right) \cap B\left(z_{0}, t\right)$. By Lemma 2.6, $S\left(x_{0}, r\right) \cap B\left(z_{1}, t\right)$ is an arc. Since z_{0} and z_{1} are the end points of $\ell\left(z_{0}, z_{1}\right)$ with $d\left(z_{0}, z_{1}\right)=t$, there exists the end point z_{2} of $S\left(x_{0}, r\right) \cap B\left(z_{1}, t\right)$ such that $\operatorname{diam} \ell\left(z_{1}, z_{2}\right)=t, \ell\left(z_{0}, z_{1}\right) \cap \ell\left(z_{1}, z_{2}\right)=\left\{z_{1}\right\}$ and $\ell\left(z_{0}, z_{1}\right) \cup \ell\left(z_{1}, z_{2}\right)=\ell\left(x, x^{\prime}\right) \cap B\left(z_{1}, t\right)$. Thus, by induction, we can take $z_{2}, \ldots, z_{p+1} \in$ $S\left(x_{0}, r\right)$ and an $\operatorname{arc} \ell\left(z_{i-1}, z_{i}\right)$ in $\ell\left(x, x^{\prime}\right)$ with the end points $\left\{z_{i-1}, z_{i}\right\}$ such that $z_{p+1}=$ $x^{\prime}, \ell\left(z_{i-1}, z_{i}\right) \cap \ell\left(z_{i}, z_{i+1}\right)=\left\{z_{i}\right\}$ for each $i=1, \ldots, p, \ell\left(z_{i-1}, z_{i}\right) \cup \ell\left(z_{i}, z_{i+1}\right)=$ $\ell\left(x, x^{\prime}\right) \cap B\left(z_{i}, t\right)$, for each $i=1, \ldots, p, \ell\left(x, x^{\prime}\right)=\bigcup_{i=1}^{p+1} \ell\left(z_{i-1}, z_{i}\right)$, $\operatorname{diam} \ell\left(z_{i-1}, z_{i}\right)=$ t for any $i=1, \ldots, p$ and $\operatorname{diam} \ell\left(z_{p}, z_{p+1}\right) \leq t$. Let $k \in \mathbb{N}$ and $\delta=0,1,2$ such that $p=3 k+\delta$. Set $m=k$ and $y_{3 m}=z_{p+1}$. If $\delta=0$, set $y_{i}=z_{i}$ for each $i=1, \ldots, 3 m-1$. If $\delta=1$, set $y_{i}=z_{i}$ for each $i=1, \ldots, 3 m-2$ and $y_{3 m-1}=z_{p-1}$. If $\delta=2$, set $y_{i}=z_{i}$ for each $i=1, \ldots, 3(m-1), y_{3 m-2}=z_{p-3}$ and $y_{3 m-1}=z_{p-1}$. Similarly, we have $y_{3 m+1}, \ldots, y_{3 n-1} \in \mathrm{Cl}_{X}\left(S\left(x_{0}, r\right) \backslash \ell\left(x, x^{\prime}\right)\right)$, which proves the lemma.

3 Asymptotic Dimension of Proper CAT(0) Spaces that are Homeomorphic to \mathbb{R}^{2}

First we show the following.
Lemma 3.1 Let (X, d) be a proper $\operatorname{CAT}(0)$ space that is homeomorphic to \mathbb{R}^{2}. Then, $\operatorname{asdim}(X, d) \geq 2$.

Proof On the contrary, suppose that $\operatorname{asdim}(X, d) \leq 1$. Let $r>0$. There exist uniformly bounded, $3 r$-disjoint families $\mathcal{U}^{0}, \mathcal{U}^{1}$ of subsets of X such that $\mathcal{U}^{0} \cup \mathcal{U}^{1}$ covers X. Since X is homeomorphic to \mathbb{R}^{2}, there exist uniformly bounded, r-disjoint families $\mathcal{V}^{0}, \mathcal{V}^{1}$ of subsets of X satisfying the following:
(i) $\mathcal{V}^{0} \cup \mathcal{V}^{1}$ covers X;
(ii) every $V \in \mathcal{V}^{0} \cup \mathcal{V}^{1}$ is a compact topological 2-manifold with boundary.

Let $\varepsilon>0$ with $\varepsilon<r / 2$, let $V \in \mathcal{V}^{i}$ and let M and M^{\prime} be two components of V with $d\left(M, M^{\prime}\right)=d(M, V \backslash M)<\varepsilon$. Then there exists a disk A in X such that $M \cup A \cup M^{\prime}$ is connected, $V \cup A$ is a compact topological 2-manifold with boundary and $d\left(V \cup A, V^{\prime}\right)>r-\varepsilon$ whenever $V^{\prime} \in V^{i}$ with $V \neq V^{\prime}$. Thus, we may assume that
(iii) $d\left(M, M^{\prime}\right) \geq \varepsilon$ for each $V \in \mathcal{V}^{0} \cup \mathcal{V}^{1}$ and each two components M, M^{\prime} of V.

Since $\mathcal{V}^{0} \cup \mathcal{V}^{1}$ is uniformly bounded, there exists $r \leq s=\sup \{\operatorname{diam} C: C$ is a component of $\left.V \in \mathcal{V}^{0} \cup \mathcal{V}^{1}\right\}<\infty$. Thus, we may assume that there exists a component C_{0} of $V_{0} \in \mathcal{V}^{0}$ such that $s-\varepsilon<\operatorname{diam} C_{0} \leq s$. We have $c_{0}, c_{1} \in C_{0}$ such
that $d\left(c_{0}, c_{1}\right)=\operatorname{diam} C_{0}$. By Lemma 2.2 there exists a geodesic line $\xi: \mathbb{R} \rightarrow X$ such that $\xi(0)=c_{0}$ and $\xi\left(\operatorname{diam} C_{0}\right)=c_{1}$. Since $C_{0} \cap \xi(\mathbb{R}) \subset \xi\left(\left[0, \operatorname{diam} C_{0}\right]\right)$, there exists the component N of ∂C_{0} containing c_{0}, c_{1} that is contained in the closure of the unbounded component of $X \backslash C_{0}$.

We note that $N \subset \bigcup\left\{V_{1}: V_{1} \in \mathcal{V}^{1}\right\}$ is homeomorphic to \mathbb{S}^{1}. Since \mathcal{V}^{1} is r-disjoint, there exists a component C_{1} of $V_{1} \in \mathcal{V}^{1}$ such that $N \subset C_{1}$. Then, there exist $t_{0}, t_{1} \in \mathbb{R}$ with $t_{0}<0<\operatorname{diam} C_{0}<t_{1}$ such that $\xi\left(t_{0}\right), \xi\left(t_{1}\right) \in C_{1} \cap \xi(\mathbb{R}) \subset$ $\xi\left(\left[t_{0}, t_{1}\right]\right)$. Using a similar argument as above, we can show there exist a component N^{\prime} of ∂C_{1} containing $\xi\left(t_{0}\right), \xi\left(t_{1}\right)$ and $V_{2} \in \mathcal{V}^{0}$ containing N^{\prime}. If $V_{0}=V_{2}$, by (iii), $d\left(c_{0}, \xi\left(t_{0}\right)\right) \geq \varepsilon$ and $d\left(c_{1}, \xi\left(t_{1}\right)\right) \geq \varepsilon$, i.e., $d\left(\xi\left(t_{0}\right), \xi\left(t_{1}\right)\right)>\operatorname{diam} C_{0}+2 \varepsilon>s$, which contradicts the definition of s. If $V_{0} \neq V_{2}, d\left(V_{0}, V_{2}\right)>r$. Thus, $d\left(c_{0}, \xi\left(t_{0}\right)\right)>r$ and $d\left(c_{1}, \xi\left(t_{1}\right)\right)>r$, i.e., $d\left(\xi\left(t_{0}\right), \xi\left(t_{1}\right)\right)>\operatorname{diam} C_{0}+2 r>s$, which contradicts the definition of s.

We prove the main theorem.
Theorem 3.2 Let (X, d) be a proper $\operatorname{CAT}(0)$ space that is homeomorphic to \mathbb{R}^{2}. Then, $\operatorname{asdim}(X, d)=2$.

Proof By Lemma3.1 it suffices to show that asdim $(X, d) \leq 2$.
Let $r>0$. Fix $x_{0} \in X$ and $k \in \mathbb{N}$ with $k \geq 6$. By Lemma 2.9 there exist $y_{0,0}, \ldots, y_{0,3 n(0)-1} \in S\left(x_{0}, k r\right)$ such that
$2 r \leq \operatorname{diam} \ell\left(y_{0, i}, y_{0, i+1}\right) \leq 16 r,\left\{y_{0,0}, \ldots, y_{0,3 n(0)-1}\right\} \cap \ell\left(y_{0, i}, y_{0, i+1}\right)=\left\{y_{0, i}, y_{0, i+1}\right\}$
for each $i=0, \ldots, 3 n(0)-1$ and

$$
S\left(x_{0}, k r\right)=\ell\left(y_{0,0}, y_{0,1}\right) \cup \cdots \cup \ell\left(y_{0,3 n(0)-1}, y_{0,3 n(0)}\right)
$$

where $y_{0,3 n(0)}=y_{0,0}$. See Figure 3.2, 1. Set

$$
\mathcal{V}_{0, \delta}=\left\{\ell\left(y_{0,3 i+\delta}, y_{0,3 i+1+\delta}\right): i=0, \ldots, n(0)-1\right\}
$$

for each $\delta=0,1,2$.

Figure 3.2.1

For every $i=0, \ldots, 3 n(0)-1$, there exists a geodesic ray $\xi_{0, i}: \mathbb{R}_{+} \rightarrow X$ such that $\xi_{0, i}(0)=x_{0}$ and $\xi_{0, i}(k r)=y_{0, i}$. Set $y_{0, i}^{\prime}=\xi_{0, i}((k+1) r)$ for each $i=0, \ldots, 3 n(0)-1$. We note that $2 r \leq d\left(y_{0, i}, y_{0, i+1}\right)<d\left(y_{0, i}^{\prime}, y_{0, i+1}^{\prime}\right) \leq 18 r$ for each $i=0, \ldots, 3 n(0)-1$.

Let $i \in\{0, \ldots, 3 n(0)-1\}$.
Suppose that $d\left(y_{0, i}^{\prime}, y_{0, i+1}^{\prime}\right)<12 r$. We can take $y_{0, i, 0} \in \ell\left(y_{0, i}, y_{0, i+1}\right)$ and $y_{0, i, 0}^{\prime} \in$ $\ell\left(y_{0, i}^{\prime}, y_{0, i+1}^{\prime}\right)$ such that $r \leq d\left(y_{0, i}, y_{0, i, 0}\right)=d\left(y_{0, i+1}, y_{0, i, 0}\right)=d\left(y_{0, i}, y_{0, i+1}\right) / 2<6 r$ and $\left\{y_{0, i, 0}\right\}=\left[x_{0}, y_{0, i, 0}^{\prime}\right] \cap S\left(x_{0}, k r\right)$. We note that $r<d\left(y_{0, i}^{\prime}, y_{0, i, 0}^{\prime}\right), d\left(y_{0, i+1}^{\prime}, y_{0, i, 0}^{\prime}\right)<$ $8 r$.

Suppose that $12 r \leq d\left(y_{0, i}^{\prime}, y_{0, i+1}^{\prime}\right)$. We note that $10 r \leq d\left(y_{0, i}, y_{0, i+1}\right)$. There exist $z_{0, i, 0}, z_{0, i, 1} \in \ell\left(y_{0, i}, y_{0, i+1}\right)$ and $z_{0, i, 0}^{\prime}, z_{0, i, 1}^{\prime} \in \ell\left(y_{0, i}^{\prime}, y_{0, i+1}^{\prime}\right)$ such that $d\left(y_{0, i}, z_{0, i, 0}\right)=$ $d\left(y_{0, i+1}, z_{0, i, 1}\right)=r$ and $\left\{z_{0, i, j}\right\}=\left[x_{0}, z_{0, i, j}^{\prime}\right] \cap S\left(x_{0}, k r\right)$ for $j=0,1$. We note that $d\left(y_{0, i}^{\prime}, z_{0, i, 0}^{\prime}\right), d\left(y_{0, i+1}^{\prime}, z_{0, i, 1}^{\prime}\right) \leq 3 r$ and $6 r \leq d\left(z_{0, i, 0}^{\prime}, z_{0, i, 1}^{\prime}\right)$. By Lemma 2.9, there exist $y_{0, i, 1}^{\prime}, \ldots, y_{0, i, 3 k_{0, i}-1}^{\prime} \in \ell\left(y_{0, i, 0}^{\prime}, y_{0, i, 3 k_{0, i}}^{\prime}\right)$ such that $2 r \leq d\left(y_{0, i, j}^{\prime}, y_{0, i, j+1}^{\prime}\right) \leq 4 r$ and $\ell\left(y_{0, i, j}^{\prime}, y_{0, i, j+1}^{\prime}\right) \cap\left\{y_{0, i, 0}^{\prime}, \ldots, y_{0, i, k_{0, i}}^{\prime}\right\}=\left\{y_{0, i, j}^{\prime}, y_{0, i, j+1}^{\prime}\right\}$ for each $j=0, \ldots, 3 k_{0, i}-1$, where $y_{0, i, 0}^{\prime}=z_{0, i, 0}^{\prime}$ and $y_{0, i, 3 k_{0, i}}^{\prime}=z_{0, i, 1}^{\prime}$. See Figure[3.2,2.

Figure 3.2,2

Set $Y_{1}=\left\{y_{0, i, j}^{\prime}: 0 \leq i \leq 3 n(0)-1\right.$ and $\left.j=0, \ldots, 3 k_{0, i}\right\}$ and $n(1) \in \mathbb{N}$ with $3 n(1)-1=\left|Y_{1}\right|$. We can renumber $Y_{1}=\left\{y_{1, i}: i=0, \ldots, 3 n(1)-1\right\}$ such that

$$
\begin{aligned}
& \left\{y^{\prime} \in S\left(x_{0},(k+1) r\right): y \in \bigcup \mathcal{V}_{0,1} \cap \bigcup \mathcal{V}_{0,2}\right\} \subset \bigcup \mathcal{V}_{1,0}, \\
& \left\{y^{\prime} \in S\left(x_{0},(k+1) r\right): y \in \bigcup \mathcal{V}_{0,0} \cap \bigcup \mathcal{V}_{0,2}\right\} \subset \bigcup \mathcal{V}_{1,1}, \\
& \left\{y^{\prime} \in S\left(x_{0},(k+1) r\right): y \in \bigcup \mathcal{V}_{0,0} \cap \bigcup \mathcal{V}_{0,1}\right\} \subset \bigcup \mathcal{V}_{1,2},
\end{aligned}
$$

and $\ell\left(y_{1, i}, y_{1, i+1}\right) \cap Y_{1}=\left\{y_{1, i}, y_{1, i+1}\right\}$ for each $i=0, \ldots, 3 n(1)-1$, where we let $y_{1,3 n(1)}=y_{1,0}$ and $\mathcal{V}_{1, \delta}=\left\{\ell\left(y_{1,3 i+\delta}, y_{1,3 i+1+\delta}\right): i=0, \ldots, n(1)-1\right\}$ for each $\delta=0,1,2$. We note that $2 r \leq \operatorname{diam} V \leq 16 r$ for all $\delta=0,1,2$ and all $V \in \mathcal{V}_{1, \delta}$.

By induction, for every $m \in \mathbb{N}$ with $m \geq 2$, there exists

$$
Y_{m}=\left\{y_{m, i}: i=0, \ldots, 3 n(m)-1\right\} \subset S\left(x_{0},(k+m) r\right)
$$

such that

$$
\begin{aligned}
& \left\{y^{\prime} \in S\left(x_{0},(k+m) r\right): y \in \bigcup \mathcal{V}_{m-1,1} \cap \bigcup \mathcal{V}_{m-1,2}\right\} \subset \bigcup \mathcal{V}_{m, 0} \\
& \left\{y^{\prime} \in S\left(x_{0},(k+m) r\right): y \in \bigcup \mathcal{V}_{m-1,0} \cap \bigcup \mathcal{V}_{m-1,2}\right\} \subset \bigcup \mathcal{V}_{m, 1} \\
& \left\{y^{\prime} \in S\left(x_{0},(k+m) r\right): y \in \bigcup \mathcal{V}_{m-1,0} \cap \bigcup \mathcal{V}_{m-1,1}\right\} \subset \bigcup \mathcal{V}_{m, 2}
\end{aligned}
$$

$\ell\left(y_{m, i}, y_{m, i+1}\right) \cap Y_{m}=\left\{y_{m, i}, y_{m, i+1}\right\}$ for each $i=0, \ldots, 3 n(m)-1$ and $2 r \leq$ diam $V \leq 16 r$ for all $\delta=0,1,2$ and all $V \in \mathcal{V}_{m, \delta}$, where we let

$$
\mathcal{V}_{m, \delta}=\left\{\ell\left(y_{m, 3 i+\delta}, y_{m, 3 i+1+\delta}\right): i=0, \ldots, n(m)-1\right\}
$$

for each $\delta=0,1,2$.
For each $V \in \mathcal{V}_{m, \delta}$ and each $\delta=0,1,2$, set

$$
\bar{V}=\left\{x \in B\left(x_{0},(k+m+1) r\right) \backslash \operatorname{Int}_{X} B\left(x_{0},(k+m) r\right):\left[x_{0}, x\right] \cap V \neq \varnothing\right\}
$$

$\overline{\mathcal{V}_{m, \delta}}=\left\{\bar{V}: V \in \mathcal{V}_{m, \delta}\right\}$, and $\mathcal{W}_{\delta}=\left\{W: W\right.$ is a component of $\left.\bigcup_{m=0}^{\infty} \overline{\mathcal{V}_{m, \delta}}\right\}$.
By construction, we have the following:
(i) for $V \in \mathcal{V}_{m, \delta}, \operatorname{diam} \bar{V} \cap S\left(x_{0},(k+m+1) r\right)<12 r$ if and only if $\bar{V} \cap \bigcup \overline{\mathcal{V}_{m+1, \delta}}=\varnothing$;
(ii) let $\mathcal{V}_{m+1}(V)=\left\{U \in \mathcal{V}_{m+1, \delta}: \bar{V} \cap U \neq \varnothing\right\}$ for each $V \in \mathcal{V}_{m, \delta}$, then $U \subset \bar{V}$ for $U \in \mathcal{V}_{m+1}(V)$;
(iii) we have $\mathcal{V}_{m+2}(U)=\varnothing$ for each $V \in \mathcal{V}_{m, \delta}$ and each $U \in \mathcal{V}_{m+1}(V)$, because $\operatorname{diam} U<12 r$ by construction.
For every $\delta=0,1,2$ and every $W \in \mathcal{W}_{\delta}$, we have

$$
\begin{aligned}
\operatorname{diam} W & \leq \sup \left\{\operatorname{diam} V: V \in \mathcal{V}_{m, \delta} \text { for } m \geq 0 \text { and } \delta=0,1,2\right\}+4 r \\
& \leq 16 r+4 r=20 r
\end{aligned}
$$

Let $V_{i}, V_{j} \in V_{m, \delta}$ with $V_{i} \neq V_{j}$. We show that $d\left(V_{i}, V_{j}\right) \geq r$. On the contrary, suppose that $d(x, y)<r$ for some $x \in V_{i}$ and some $y \in V_{j}$. By Lemma 2.6, let $\ell(x, y)$ denote the arc in $S\left(x_{0},(k+m) r\right) \cap B(x, d(x, y))$ with the end points $\{x, y\}$. By construction, we have $i=0, \ldots, n(m)-1$ such that $\ell\left(y_{m, i}, y_{m, i+1}\right) \subsetneq \ell(x, y)$. However, $r \leq \operatorname{diam} \ell\left(y_{m, i}, y_{m, i+1}\right) \leq \operatorname{diam} \ell(x, y)=d(x, y)<r$, a contradiction.

Let $\overline{V_{i}}, \overline{V_{j}} \in \overline{V_{m, \delta}}$ with $\overline{V_{i}} \neq \overline{\overline{V_{j}}}$. We show that $d\left(\overline{V_{i}}, \overline{V_{j}}\right) \geq r$. Let $x^{\prime} \in \overline{V_{i}}$ and $y^{\prime} \in \overline{V_{j}}$. Set $\{x\}=\left[x_{0}, x^{\prime}\right] \cap V_{i}$ and $\{y\}=\left[x_{0}, y^{\prime}\right] \cap V_{j}$. By the above, $r \leq d\left(V_{i}, V_{j}\right) \leq d(x, y)$. Let T be the geodesic triangle consisting of three points $x_{0}, x^{\prime}, y^{\prime}$, let \bar{T} be a comparison triangle for T in \mathbb{R}^{2}, and let $\overline{x_{0}}, \bar{x}, \bar{y}, \overline{x^{\prime}}$, and $\overline{y^{\prime}}$ denote the corresponding points in \bar{T}. Since X is a $\operatorname{CAT}(0)$ space, we have

$$
r \leq d(x, y) \leq d_{\mathbb{R}^{2}}(\bar{x}, \bar{y}) \leq d_{\mathbb{R}^{2}}\left(\overline{x^{\prime}}, \overline{y^{\prime}}\right)=d\left(x^{\prime}, y^{\prime}\right)
$$

thus, $d\left(\overline{V_{i}}, \overline{V_{j}}\right) \geq r$.
Let $\overline{V_{i}} \in \overline{\mathcal{V}_{m, \delta}}$ and $\overline{V_{j}} \in \overline{\mathcal{V}_{m+1, \delta}}$ with $\overline{V_{i}} \cap \overline{V_{j}}=\varnothing$. Set $W_{j}=\left\{\left[x_{0}, x\right] \cap S\left(x_{0},(k+\right.\right.$ $\left.m)): x \in \overline{V_{j}}\right\}$. By the definition of $y_{m, i, j}^{\prime}$'s, similarly, we can show $d\left(V_{i}, W_{j}\right) \geq r$. Since X is a CAT(0) space, we can obtain that $d\left(\overline{V_{i}}, \overline{V_{j}}\right) \geq r$ by the same method. By (i), (ii), and (iii), we have $d\left(W, W^{\prime}\right) \geq r$ for any $W, W^{\prime} \in \mathcal{W}_{\delta}$ with $W \neq W^{\prime}$.

Let $\mathcal{U}_{0}=\left\{U: U\right.$ is a component of $\left.B\left(x_{0}, k r\right) \cup \bigcup \mathcal{W}_{0}\right\}$ and $\mathcal{U}_{\delta}=\mathcal{W}_{\delta}$ for $\delta=1,2$. By the above, $\mathcal{U}_{0} \cup \mathcal{U}_{1} \cup \mathcal{U}_{2}$ is a uniformly bounded cover of (X, d) and $d\left(U, U^{\prime}\right) \geq r$ for any $U, U^{\prime} \in \mathcal{U}_{\delta}$ with $U \neq U^{\prime}$, which proves the theorem.

4 Application

As an application of Theorem 3.2, we obtain the following corollary.
Corollary 4.1 Let (W, S) be a Coxeter system. If the boundary $\partial \Sigma(W, S)$ of $\Sigma(W, S)$ is homeomorphic to \mathbb{S}^{1}, then asdim $W=2$.

Proof Let (W, S) be a Coxeter system whose boundary $\partial \Sigma(W, S)$ is homeomorphic to \mathbb{S}^{1}. Then the Coxeter group W is a virtual Poincaré duality group, and $W=$ $W_{\tilde{S}} \times W_{S \backslash \tilde{S}}$, for some $\tilde{S} \subset S$, where the nerve $N\left(W_{\tilde{S}}, \tilde{S}\right)$ is homeomorphic to \mathbb{S}^{1} and $W_{S \backslash \tilde{S}}$ is finite ([4], cf. [10]). Then the Davis complex $\Sigma(W, S)$ splits as

$$
\Sigma(W, S)=\Sigma\left(W_{\tilde{S}}, \tilde{S}\right) \times \Sigma\left(W_{S \backslash \tilde{S}}, S \backslash \tilde{S}\right)
$$

Here $\Sigma\left(W_{\tilde{S}}, \tilde{S}\right)$ is homeomorphic to \mathbb{R}^{2} and $\Sigma\left(W_{S \backslash \tilde{S}}, S \backslash \tilde{S}\right)$ is bounded. By Theorem 3.2, we obtain that asdim $\Sigma(W, S)=2$. Hence asdim $W=2$.

In general, it is known that every Coxeter group has finite asymptotic dimension ([6], cf. [8]).

Example 4.2 Let $m \in \mathbb{N}$ and let $D_{m} \subset \mathbb{R}^{2}$ be a regular m-polygon with a metric $d_{m}=\left.d_{\mathbb{R}^{2}}\right|_{D_{m}}$ and edges e_{1}, \ldots, e_{m} such that diam $e_{i}=1$ for each $i=1, \ldots, n$. We consider a noncompact cell 2-complex (Σ, d) with a triangulation \mathcal{T} as follows:
(i) for every $\sigma \in \mathcal{T} \backslash \mathcal{T}^{(1)}$ there exist $m(\sigma) \in \mathbb{N}$ and a simplicial isometry f_{σ} from $\left(D_{m(\sigma)}, d_{m(\sigma)}\right)$ onto $\left(|\sigma|,\left.d\right|_{|\sigma|}\right)$;
(ii) $\left|\left\{\sigma \in \mathcal{T} \backslash \mathcal{T}^{(1)}: \tau<\sigma\right\}\right|=2$ for each $\tau \in \mathcal{T}^{(1)} \backslash \mathcal{T}^{(0)}$;
(iii) $r(v)=\sum\left\{\pi-2 \pi / m(\sigma): v<\sigma \in \mathcal{T} \backslash \mathcal{T}^{(1)}\right\} \geq 2 \pi$ for each $v \in \mathcal{T}^{(0)}$;
(iv) for any $x, y \in \Sigma$

$$
\begin{aligned}
& d(x, y)=\min \left\{\sum_{j=1}^{k} d_{m(\sigma)}\left(f_{\sigma_{j}}^{-1}\left(x_{j-1}\right), f_{\sigma_{j}}^{-1}\left(x_{j}\right)\right):\right. \\
& \left.\quad x=x_{0} \in\left|\sigma_{1}\right|, x_{j} \in\left|\sigma_{j}\right| \cap\left|\sigma_{j+1}\right|(1 \leq j<k), y=x_{k} \in\left|\sigma_{k}\right|\right\} .
\end{aligned}
$$

By [3] or [11], every (Σ, d) above is a CAT(0) space that is homeomorphic to \mathbb{R}^{2}, hence we obtain that $\operatorname{asdim}(\Sigma, d)=2$ from Theorem 3.2. Here we note that (Σ, d) need not have an action of some group, and (Σ, d) is neither a Euclidean nor a hyperbolic plane in general.

References

[1] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Fundamental Principles of Mathematical Sciences, 319, Springer-Verlag, Berlin, 1999.
[2] G. Bell and A. N. Dranishnikov, Asymptotic dimension. Topology Appl. 155(2008), no. 12, 1265-1296. doi:10.1016/j.topol.2008.02.011
[3] M. W. Davis, Nonpositive curvature and reflection groups. In: Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 373-422.
[4] M. W. Davis, The cohomology of a Coxeter group with group ring coefficients. Duke Math. J. 91(1998), no. 2, 297-314. doi:10.1215/S0012-7094-98-09113-X
[5] A. N. Dranishnikov, Asymptotic topology. Uspekhi Mat. Nauk 55(2000), no. 6, 71-116; translation in Russian Math. Surveys 55(2000), no. 6, 1085-1129. doi:10.1070/rm2000v055n06ABEH000334
[6] A. N. Dranishnikov and T. Januszkiewicz, Every Coxeter group acts amenably on a compact space. In: Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT). Topology Proc. 24(1999), Spring, 135-141.
[7] A. N. Dranishnikov, J. Keesling, and V. V. Uspenskij, On the Higson corona of uniformly contractible spaces. Topology 37(1998), no. 4, 791-803. doi:10.1016/S0040-9383(97)00048-7
[8] A. N. Dranishnikov and V. Schroeder, Embedding of hyperbolic Coxeter groups into products of binary trees and aperiodic tilings. http://arxiv.org/abs/math/0504566.
[9] M. Gromov, Asymptotic invariants for infinite groups. In: Geometric group theory, vol. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge University Press, Cambridge, 1993, pp. 1-295.
[10] T. Hosaka, On the cohomology of Coxeter groups. J. Pure Appl. Algebra 162(2001), no. 2-3, 291-301. doi:10.1016/S0022-4049(00)00115-8
[11] G. Moussong, Hyperbolic Coxeter groups. Ph. D. thesis, Ohio State University, 1988.
[12] J. Roe, Hyperbolic groups have finite asymptotic dimension. Proc. Amer. Math. Soc. 133(2005), no. 9, 2489-2490. doi:10.1090/S0002-9939-05-08138-4
[13] E. H. Spanier, Algebraic topology. McGraw-Hill Book Co., New York-Toronto-London, 1966.
[14] R. L. Wilder, Topology of manifolds. American Mathematical Society Colloquium Publications, 32, American Mathematical Society, New York, NY, 1949.
[15] G. Yu, The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. 147(1998), no. 2, 325-355. doi:10.2307/121011

Hiroshima Institute of Technology, Hiroshima 731-5193, Japan
e-mail: naochin@cc.it-hiroshima.ac.jp
Department of Mathematics, Faculty of Education, Utsunomiya University, Utsunomiya, 321-8505, Japan e-mail: hosaka@cc.utsunomiya-u.ac.jp

[^0]: Received by the editors September 7, 2007.
 Published electronically July 26, 2010.
 The first author's research was partly supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science, No. 19540108.

 AMS subject classification: 20F69, 54F45, 20 F 65.
 Keywords: asymptotic dimension, CAT(0) space, plane.

