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Asymptotic Dimension of Proper CAT(0)
Spaces that are Homeomorphic to the
Plane

Naotsugu Chinen and Tetsuya Hosaka

Abstract. In this paper, we investigate a proper CAT(0) space (X, d) that is homeomorphic to R
2 and

we show that the asymptotic dimension asdim(X, d) is equal to 2.

1 Introduction and Preliminaries

In this paper, we study the asymptotic dimension of proper CAT(0) spaces that are

homeomorphic to R
2.

A metric space (X, d) is proper if all closed bounded sets in (X, d) are compact.

We say that a metric space (X, d) is a geodesic space if for any x, y ∈ X, there exists

an isometric embedding ξ : [0, d(x, y)] → X such that ξ(0) = x and ξ(d(x, y)) = y

(such a ξ is called a geodesic).

Let (X, d) be a geodesic space and let T be a geodesic triangle in X. A comparison

triangle for T is a geodesic triangle T in the Euclidean plane R
2 with the same edge

lengths as T. Choose two points x and y in T. Let x̄ and ȳ denote the corresponding

points in T. Then the inequality d(x, y) ≤ dR2 (x̄, ȳ) is called the CAT(0)-inequality,

where dR2 is the usual metric on R
2. A geodesic space X is called a CAT(0) space if the

CAT(0)-inequality holds for all geodesic triangles T and for all choices of two points

x and y in T. Details of CAT(0) spaces are found in [1].

In Section 2, we first investigate proper CAT(0) spaces that are homeomorphic to

R
2 and we show the following.

Proposition 1.1 Let (X, d) be a proper CAT(0) space that is homeomorphic to R
2.

Then S(x, r) is homeomorphic to S
1 for all x ∈ X and all r > 0. Hence the boundary

∂X is homeomorphic to a circle S
1.

Let (X, d) be a metric space and let U be a family of subsets of (X, d). The family U

is said to be uniformly bounded if there exists a positive number K such that diam U ≤
K for all U ∈ U. The family U is said to be r-disjoint if d(U ,U ′) > r for any

U ,U ′ ∈ U with U 6= U ′.

The asymptotic dimension of a metric space (X, d) does not exceed n and we write

asdim(X, d) ≤ n, if for every r > 0 there exist uniformly bounded, r-disjoint families
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U0,U1, . . . ,Un of subsets of X such that
⋃n

k=0U
k covers X. The asymptotic dimension

of a metric space (X, d) is equal to n, and we write asdim(X, d) = n, if asdim(X, d) ≤
n and asdim(X, d) 6≤ n − 1.

The asymptotic dimension of a group relates to the Novikov conjecture, and there

is some interesting recent research on asymptotic dimensions [2, 5–7, 9, 15]. In [9],

Gromov remarks that word hyperbolic groups have finite asymptotic dimension, and

Roe gives details of the proof in [12]. The asymptotic dimension of CAT(0) groups

and CAT(0) spaces is unknown in general.

The purpose of this paper is to prove the following theorem.

Theorem 1.2 If (X, d) is a proper CAT(0) space that is homeomorphic to R
2, then

asdim(X, d) = 2.

We note that the proper CAT(0) space (X, d) in this theorem need not have an

action of some group. We give an example in Section 4.

2 Proper CAT(0) Spaces that are Homeomorphic to R
2

We first give notation used in this paper.

Notation 2.1 Let the set of all natural numbers, real numbers, and [0,∞) be de-

noted by N, R, and R+, respectively. Set R
n
+ = R

n−1 × R+, B
n

= {x ∈ R
n :∑n

i=1 x2
i ≤ 1}, and S

n
= {x ∈ R

n+1 :
∑n+1

i=1 x2
i = 1}. Let Y be a subspace of

a metric space (X, d). The interior and the closure of Y in a space X will be de-

noted by IntX Y and ClX Y , respectively. Also set B(x, r) = {y ∈ X : d(x, y) ≤ r}
and S(x, r) = {y ∈ X : d(x, y) = r}. We denote the geodesic from x to y in a

CAT(0) space (X, d) by [x, y] (cf. [1, Proposition II 1.4]). Set [x, y) = [x, y] \ {y},

(x, y] = [x, y] \ {x} and (x, y) = [x, y] \ {x, y}.

The following lemma is known.

Lemma 2.2 Let (X, d) be a proper CAT(0) space, r > 0 and x0 ∈ X. Then, the

following are satisfied:

(i) B(x0, r) is a convex set;

(ii) x0 6∈ [x, y] ⊂ B(x0, r) and (x, y) ⊂ B(x0, r) \ S(x0, r) for any x, y ∈ S(x0, r) with

d(x, y) < 2r;

(iii) (cf.[1, Lemma II 5.8 and Proposition II 5.12]) If X is a manifold, for each

x ∈ X \ {x0}, there exists a geodesic line ξ : R → X such that ξ(0) = x0 and

ξ(d(x0, x)) = x.

We investigate a proper CAT(0) space that is homeomorphic to R
2.

Notation 2.3 Let (X, d), r, x0, x, and y be as in Lemma 2.2(ii). Suppose that X is

homeomorphic to R
2. By Lemma 2.2, there exist two geodesic rays ξx0,x, ξx0,y : R+ →

X such that ξx0,x(0) = ξx0,y(0) = x0, ξx0,x(r) = x and ξx0,y(r) = y. By Lemma 2.2,

ξx0,x([r,∞))∪[x, y]∪ξx0,y([r,∞)) is homeomorphic to R. Since X is homeomorphic

to R
2, by Schönflies Theorem there exists the component C of X \ ξx0,x([r,∞)) ∪

[x, y] ∪ ξx0,y([r,∞)) such that x0 6∈ C . Set ℓ(x, y) = S(x0, r) ∩ ClX C .
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We show some lemmas.

Lemma 2.4 Let (X, d) be a proper CAT(0) space that is homeomorphic to R
2. Then,

S(x, r) is a continuum for all x ∈ X and all r > 0.

Proof Let x0 ∈ X and r > 0. Since B(x0, r) is a convex set, by duality (cf. [13]),

H̄0(X \ B(x0, r)) ∼= Ȟ1(B(x0, r)) = 0,

thus, X \ IntX B(x0, r) = ClX(X \B(x0, r)) is connected. Since there exists a deforma-

tion retraction of X \ IntX B(x0, r) onto S(x0, r), S(x0, r) is connected.

Lemma 2.5 Let (X, d) be a proper CAT(0) space that is homeomorphic to R
2, r > 0,

x0 ∈ X, x, y ∈ S(x0, r) with 0 < d(x, y) < 2r and z ∈ ℓ(x, y). Then

(i) ℓ(x, y) is a continuum,

(ii) [x, y] ∩ [x0, z] 6= ∅, and

(iii) d(x, z) ≤ d(x, y).

Proof (i) By Notation 2.3, there exists the component D of X \ R such that C ⊂ D,

where R = ξx0,x(R+) ∪ ξx0,y(R+). Since X is homeomorphic to R
2, by Schönflies

Theorem, ClX D is homeomorphic to R
2
+. Let D ′ be a copy of D. Define an equivalent

relation: ∼ in D ∪ D ′ as follows: for a ∈ D and a ′ ∈ D ′, a ∼ a ′ if and only if

a = a ′, a ∈ R, and a ′ ∈ R ′. Set B = B(x0, r) ∩ ClX D, D̃ = (D ∪ D ′)/∼ and

B̃ = (B ∪ B ′)/∼. Then there exists a deformation retraction ClX(D \ B) onto ℓ(x, y),

D̃ is homeomorphic to R
2 and B̃ is a contractible compact set. By the same method

as in the proof of Lemma 2.4, we can show that ℓ(x, y) ∪ (ℓ(x, y)) ′/∼ is connected.

Since there exists the natural surjective map from ℓ(x, y)∪ (ℓ(x, y)) ′/∼ onto ℓ(x, y),

ℓ(x, y) is connected.

(ii) We may assume that z 6∈ {x, y}. By Notation 2.3, there exists the component

C of X \ ξx0,x([r,∞)) ∪ [x, y] ∪ ξx0,y([r,∞)) such that x0 6∈ C and z ∈ C . Thus,

ξx0,x([r,∞))∪ [x, y]∪ ξx0,y([r,∞)) separates x0 and z in X. Since [x0, z] ⊂ B(x0, r) is

an arc connecting x0 and z in X, [x, y] ∩ [x0, z] 6= ∅.

(iii) On the contrary, suppose d(x, z) > d(x, y). By (ii), there exists z ′ ∈ [x, y] ∩
[x0, z]. Since z ′ ∈ [x, y],

d(x, z ′) + d(z ′, y) = d(x, y) < d(x, z) ≤ d(x, z ′) + d(z ′, z),

thus, d(z ′, y) < d(z ′, z). Then,

r = d(x0, y) ≤ d(x0, z ′) + d(z ′, y) < d(x0, z ′) + d(z ′, z) = d(x0, z) = r,

a contradiction.

Lemma 2.6 Let (X, d) be a proper CAT(0) space that is homeomorphic to R
2, r, t > 0,

x0 ∈ X and y0 ∈ S(x0, r). Then S(x0, r) ∩ B(y0, t) is connected.
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Proof Set N = S(x0, r) ∩ B(y0, t). If t ≥ 2r, S(x0, r) ⊂ B(y0, t). By Lemma 2.4, N

is connected. We may assume that t < 2r. Take x ∈ N. Since d(y0, x) ≤ t < 2r, by

Lemma 2.5, we have

ℓ(y0, x) ⊂ S(x0, r) ∩ B(y0, d(y0, x)) ⊂ S(x0, r) ∩ B(y0, t) = N.

Therefore, by Lemma 2.5, N =
⋃
{ℓ(y0, x) : x ∈ N} is connected, which proves the

lemma.

We obtain the following proposition from the lemmas above.

Proposition 2.7 Let (X, d) be a proper CAT(0) space that is homeomorphic to R
2.

Then, S(x, r) is homeomorphic to S
1 for all x ∈ X and all r > 0.

Proof By Lemma 2.4 and [14, Theorem 11.21], it suffices to show the following:

(i) S(x0, r) \ {y0, y1} is nonconnected for any y0, y1 ∈ S(x0, r) with y0 6= y1, and

(ii) S(x0, r) \ {y0} is connected for each y0 ∈ S(x0, r).

We take two points y0, y1 ∈ S(x0, r) with y0 6= y1. By Lemma 2.2, there exist

geodesic rays ξx0,y0
, ξx0,y1

: R+ → X such that ξx0,y0
(0) = ξx0,y1

(0) = x0, ξx0,y0
(r) = y0

and ξx0,y1
(r) = y1. By Schönflies Theorem, there exist closed sets Z0, Z1 of X such

that Zi is homeomorphic to R
2
+ for i = 0, 1, X = Z0 ∪Z1, and Z0 ∩Z1 ⊂ ξx0,y0

(R+)∪
ξx0,y1

(R+) is homeomorphic to R. Since S(x0, r) ∩ IntX Zi 6= ∅ for i = 0, 1, S(x0, r) \
{y0, y1} is nonconnected, which proves (i).

Let x, y ∈ S(x0, r) \ {y0} with x 6= y. By Lemma 2.2, there exist geodesic rays

ξx0,x, ξx0,y : R+ → X such that ξx0,x(0) = ξx0,y(0) = x0, ξx0,x(r) = x and ξx0,y(r) = y.

Set R = ξx0,x(R+)∪ξx0,y(R+). By [1, Proposition 1.4(1), p.160], there exists z ∈ [x0, x)

such that ξx0,x(R+) ∩ ξx0,y(R+) = [x0, z]. By Schönflies Theorem, there exists the

component C of X \ R such that y0 6∈ C and Ex,y = ClX C is homeomorphic to R
2
+.

Set Lx,y = Ex,y ∩ S(x0, r). We see

B(x0, d(x0, z)) ⊂ Ex,y or B(x0, d(x0, z)) ∩ Ex,y = {z}.

Suppose that B(x0, d(x0, z)) ⊂ Ex,y . We note that Lx,y , B(x0, d(x0, z)) and {z} are

deformation retracts of ClX(Ex,y \B(x0, r)), Ex,y ∩B(x0, r) and B(x0, d(x0, z)), respec-

tively. Thus, {z} is a deformation retract of Ex,y ∩ B(x0, r). Using the same method

as in the proof of Lemma 2.5(i), we can show that Lx,y ∪ (Lx,y) ′/∼ is a deformation

retract of ClX(Ex,y \ B(x0, r)) ∪ (ClX(Ex,y \ B(x0, r))) ′/∼ and {z} is a deformation

retract of (Ex,y ∩B(x0, r))∪ (Ex,y ∩B(x0, r)) ′/∼, thus, Lx,y is connected. Suppose that

B(x0, d(x0, z)) ∩ Ex,y = {z}. Since {z} is a deformation retract of Ex,y ∩ B(x0, r), by

the same method above, we can show that Lx,y is connected.

Fix y ′
0 ∈ S(x0, r) \ {y0}. Since S(x0, r) \ {y0} =

⋃
{Lx,y ′

0
: x ∈ S(x0, r) \ {y0, y ′

0}},

it is connected, which proves (ii).

Corollary 2.8 If (X, d) is a proper CAT(0) space that is homeomorphic to R
2, then

the boundary ∂X of X is homeomorphic to S
1.

We show the following lemma that is used in the proof of the main theorem.
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Lemma 2.9 Let (X, d) be a proper CAT(0) space that is homeomorphic to R
2, x0 ∈ X,

r, t > 0 with 2t < r and x, x ′ ∈ S(x0, r) with 3t ≤ d(x, x ′) < 2r. Then there exist

y0, . . . , y3n−1 ∈ S(x0, r), and m ∈ N with 0 < 3m < 3n − 1 such that y0 = x,

y3m = x ′, t ≤ diam ℓ(yi , yi+1) ≤ 2t, {y0, . . . , y3n−1} ∩ ℓ(yi , yi+1) = {yi , yi+1} for

each i = 0, . . . , 3n − 1, S(x0, r) = ℓ(y0, y1) ∪ · · · ∪ ℓ(y3n−1, y3n), and ℓ(x, x ′) =

ℓ(y0, y1) ∪ · · · ∪ ℓ(y3m−1, y3m), where y3n = y0.

Proof Set z0 = y0 = x. By Proposition 2.7, S(x0, r) is homeomorphic to S
1. Since

S(x0, r) 6⊂ B(z0, t), by Lemma 2.6, S(x0, r) ∩ B(z0, t), ℓ(x, x ′), and ℓ(x, x ′) ∩ B(z0, t)

are arcs. Let z1 be the end point of ℓ(x, x ′) ∩ B(z0, t) with z0 6= z1. By Lemma 2.6, we

have ℓ(z0, z1) = ℓ(x, x ′) ∩ B(z0, t). By Lemma 2.6, S(x0, r) ∩ B(z1, t) is an arc. Since

z0 and z1 are the end points of ℓ(z0, z1) with d(z0, z1) = t , there exists the end point

z2 of S(x0, r) ∩ B(z1, t) such that diam ℓ(z1, z2) = t , ℓ(z0, z1) ∩ ℓ(z1, z2) = {z1} and

ℓ(z0, z1)∪ℓ(z1, z2) = ℓ(x, x ′)∩B(z1, t). Thus, by induction, we can take z2, . . . , zp+1 ∈
S(x0, r) and an arc ℓ(zi−1, zi) in ℓ(x, x ′) with the end points {zi−1, zi} such that zp+1 =

x ′, ℓ(zi−1, zi) ∩ ℓ(zi , zi+1) = {zi} for each i = 1, . . . , p, ℓ(zi−1, zi) ∪ ℓ(zi , zi+1) =

ℓ(x, x ′)∩B(zi , t), for each i = 1, . . . , p, ℓ(x, x ′) =
⋃p+1

i=1 ℓ(zi−1, zi), diam ℓ(zi−1, zi) =

t for any i = 1, . . . , p and diam ℓ(zp, zp+1) ≤ t . Let k ∈ N and δ = 0, 1, 2 such that

p = 3k+δ. Set m = k and y3m = zp+1. If δ = 0, set yi = zi for each i = 1, . . . , 3m−1.

If δ = 1, set yi = zi for each i = 1, . . . , 3m − 2 and y3m−1 = zp−1. If δ = 2, set

yi = zi for each i = 1, . . . , 3(m − 1), y3m−2 = zp−3 and y3m−1 = zp−1. Similarly, we

have y3m+1, . . . , y3n−1 ∈ ClX(S(x0, r) \ ℓ(x, x ′)), which proves the lemma.

3 Asymptotic Dimension of Proper CAT(0) Spaces that are
Homeomorphic to R

2

First we show the following.

Lemma 3.1 Let (X, d) be a proper CAT(0) space that is homeomorphic to R
2. Then,

asdim(X, d) ≥ 2.

Proof On the contrary, suppose that asdim(X, d) ≤ 1. Let r > 0. There exist

uniformly bounded, 3r-disjoint families U0,U1 of subsets of X such that U0 ∪ U1

covers X. Since X is homeomorphic to R
2, there exist uniformly bounded, r-disjoint

families V
0,V1 of subsets of X satisfying the following:

(i) V0 ∪ V1 covers X;

(ii) every V ∈ V
0 ∪ V

1 is a compact topological 2-manifold with boundary.

Let ε > 0 with ε < r/2, let V ∈ V
i and let M and M ′ be two components of V

with d(M, M ′) = d(M,V \ M) < ε. Then there exists a disk A in X such that

M ∪A∪M ′ is connected, V ∪A is a compact topological 2-manifold with boundary

and d(V ∪ A,V ′) > r − ε whenever V ′ ∈ Vi with V 6= V ′. Thus, we may assume

that

(iii) d(M, M ′) ≥ ε for each V ∈ V
0 ∪ V

1 and each two components M, M ′ of V .

Since V0 ∪ V1 is uniformly bounded, there exists r ≤ s = sup{diam C : C is a

component of V ∈ V
0 ∪ V

1} < ∞. Thus, we may assume that there exists a com-

ponent C0 of V0 ∈ V
0 such that s − ε < diam C0 ≤ s. We have c0, c1 ∈ C0 such
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that d(c0, c1) = diam C0. By Lemma 2.2, there exists a geodesic line ξ : R → X such

that ξ(0) = c0 and ξ(diam C0) = c1. Since C0 ∩ ξ(R) ⊂ ξ([0, diam C0]), there ex-

ists the component N of ∂C0 containing c0, c1 that is contained in the closure of the

unbounded component of X \C0.

We note that N ⊂
⋃
{V1 : V1 ∈ V

1} is homeomorphic to S
1. Since V

1 is

r-disjoint, there exists a component C1 of V1 ∈ V
1 such that N ⊂ C1. Then, there

exist t0, t1 ∈ R with t0 < 0 < diam C0 < t1 such that ξ(t0), ξ(t1) ∈ C1 ∩ ξ(R) ⊂
ξ([t0, t1]). Using a similar argument as above, we can show there exist a component

N ′ of ∂C1 containing ξ(t0), ξ(t1) and V2 ∈ V
0 containing N ′. If V0 = V2, by (iii),

d(c0, ξ(t0)) ≥ ε and d(c1, ξ(t1)) ≥ ε, i.e., d(ξ(t0), ξ(t1)) > diam C0 + 2ε > s, which

contradicts the definition of s. If V0 6= V2, d(V0,V2) > r. Thus, d(c0, ξ(t0)) > r

and d(c1, ξ(t1)) > r, i.e., d(ξ(t0), ξ(t1)) > diam C0 + 2r > s, which contradicts the

definition of s.

We prove the main theorem.

Theorem 3.2 Let (X, d) be a proper CAT(0) space that is homeomorphic to R
2. Then,

asdim(X, d) = 2.

Proof By Lemma 3.1 it suffices to show that asdim(X, d) ≤ 2.

Let r > 0. Fix x0 ∈ X and k ∈ N with k ≥ 6. By Lemma 2.9, there exist

y0,0, . . . , y0,3n(0)−1 ∈ S(x0, kr) such that

2r ≤ diam ℓ(y0,i, y0,i+1) ≤ 16r, {y0,0, . . . , y0,3n(0)−1} ∩ ℓ(y0,i , y0,i+1) = {y0,i , y0,i+1}

for each i = 0, . . . , 3n(0) − 1 and

S(x0, kr) = ℓ(y0,0, y0,1) ∪ · · · ∪ ℓ(y0,3n(0)−1, y0,3n(0)),

where y0,3n(0) = y0,0. See Figure 3.2.1. Set

V0,δ = {ℓ(y0,3i+δ, y0,3i+1+δ) : i = 0, . . . , n(0) − 1}

for each δ = 0, 1, 2.

r

x0

Im ξ0,i

r

y ′

0,i

r

y0,i

Im ξ0,i+1

r

y ′

0,i+1

r
y0,i+1

S(x0, kr)

S(x0, (k + 1)r)

r

y ′
0,i,0

r

y0,i,0

[x0, y ′

0,i,0]

Figure 3.2.1
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For every i = 0, . . . , 3n(0) − 1, there exists a geodesic ray ξ0,i : R+ → X such that

ξ0,i(0) = x0 and ξ0,i(kr) = y0,i . Set y ′
0,i = ξ0,i((k + 1)r) for each i = 0, . . . , 3n(0)− 1.

We note that 2r ≤ d(y0,i , y0,i+1) < d(y ′
0,i , y ′

0,i+1) ≤ 18r for each i = 0, . . . , 3n(0)−1.

Let i ∈ {0, . . . , 3n(0) − 1}.

Suppose that d(y ′
0,i , y ′

0,i+1) < 12r. We can take y0,i,0 ∈ ℓ(y0,i , y0,i+1) and y ′
0,i,0 ∈

ℓ(y ′
0,i , y ′

0,i+1) such that r ≤ d(y0,i , y0,i,0) = d(y0,i+1, y0,i,0) = d(y0,i , y0,i+1)/2 < 6r

and {y0,i,0} = [x0, y ′
0,i,0]∩S(x0, kr). We note that r < d(y ′

0,i , y ′
0,i,0), d(y ′

0,i+1, y ′
0,i,0) <

8r.

Suppose that 12r ≤ d(y ′
0,i , y ′

0,i+1). We note that 10r ≤ d(y0,i , y0,i+1). There exist

z0,i,0, z0,i,1 ∈ ℓ(y0,i , y0,i+1) and z ′0,i,0, z ′0,i,1 ∈ ℓ(y ′
0,i , y ′

0,i+1) such that d(y0,i , z0,i,0) =

d(y0,i+1, z0,i,1) = r and {z0,i, j} = [x0, z ′0,i, j] ∩ S(x0, kr) for j = 0, 1. We note that

d(y ′
0,i , z ′0,i,0), d(y ′

0,i+1, z ′0,i,1) ≤ 3r and 6r ≤ d(z ′0,i,0, z ′0,i,1). By Lemma 2.9, there exist

y ′
0,i,1, . . . , y ′

0,i,3k0,i−1 ∈ ℓ(y ′
0,i,0, y ′

0,i,3k0,i
) such that 2r ≤ d(y ′

0,i, j , y ′
0,i, j+1) ≤ 4r and

ℓ(y ′
0,i, j , y ′

0,i, j+1) ∩ {y ′
0,i,0, . . . , y ′

0,i,k0,i
} = {y ′

0,i, j , y ′
0,i, j+1} for each j = 0, . . . , 3k0,i − 1,

where y ′
0,i,0 = z ′0,i,0 and y ′

0,i,3k0,i
= z ′0,i,1. See Figure 3.2.2.

r

x0

Im ξ0,i

r

y ′

0,i

r

y0,i

Im ξ0,i+1

r
y ′

0,i+1

r
y0,i+1

S(x0, kr)

S(x0, (k + 1)r)

[x0, y ′

0,i,0]

¡¡µ

r

y ′

0,i,0

r

z0,i,0

[x0, y ′

0,i,3k0,i
]

@@I

r

y ′

0,i,3k0,i

r

z0,i,1

r

y ′

0,i,1
r

y ′

0,i,2 · · ·
r

y ′

0,i,3k0,i−1

Figure 3.2.2

Set Y1 = {y ′
0,i, j : 0 ≤ i ≤ 3n(0) − 1 and j = 0, . . . , 3k0,i} and n(1) ∈ N with

3n(1) − 1 = |Y1|. We can renumber Y1 = {y1,i : i = 0, . . . , 3n(1) − 1} such that

{y ′ ∈ S(x0, (k + 1)r) : y ∈
⋃

V0,1 ∩
⋃

V0,2} ⊂
⋃

V1,0,

{y ′ ∈ S(x0, (k + 1)r) : y ∈
⋃

V0,0 ∩
⋃

V0,2} ⊂
⋃

V1,1,

{y ′ ∈ S(x0, (k + 1)r) : y ∈
⋃

V0,0 ∩
⋃

V0,1} ⊂
⋃

V1,2,

and ℓ(y1,i , y1,i+1) ∩ Y1 = {y1,i , y1,i+1} for each i = 0, . . . , 3n(1) − 1, where we

let y1,3n(1) = y1,0 and V1,δ = {ℓ(y1,3i+δ, y1,3i+1+δ) : i = 0, . . . , n(1) − 1} for each

δ = 0, 1, 2. We note that 2r ≤ diam V ≤ 16r for all δ = 0, 1, 2 and all V ∈ V1,δ .

By induction, for every m ∈ N with m ≥ 2, there exists

Ym = {ym,i : i = 0, . . . , 3n(m) − 1} ⊂ S(x0, (k + m)r)
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such that

{y ′ ∈ S(x0, (k + m)r) : y ∈
⋃

Vm−1,1 ∩
⋃

Vm−1,2} ⊂
⋃

Vm,0,

{y ′ ∈ S(x0, (k + m)r) : y ∈
⋃

Vm−1,0 ∩
⋃

Vm−1,2} ⊂
⋃

Vm,1,

{y ′ ∈ S(x0, (k + m)r) : y ∈
⋃

Vm−1,0 ∩
⋃

Vm−1,1} ⊂
⋃

Vm,2,

ℓ(ym,i , ym,i+1) ∩ Ym = {ym,i , ym,i+1} for each i = 0, . . . , 3n(m) − 1 and 2r ≤
diam V ≤ 16r for all δ = 0, 1, 2 and all V ∈ Vm,δ , where we let

Vm,δ = {ℓ(ym,3i+δ, ym,3i+1+δ) : i = 0, . . . , n(m) − 1}

for each δ = 0, 1, 2.

For each V ∈ Vm,δ and each δ = 0, 1, 2, set

V = {x ∈ B(x0, (k + m + 1)r) \ IntX B(x0, (k + m)r) : [x0, x] ∩V 6= ∅},

Vm,δ = {V : V ∈ Vm,δ}, and Wδ = {W : W is a component of
⋃∞

m=0 Vm,δ}.

By construction, we have the following:

(i) for V ∈ Vm,δ , diam V ∩S(x0, (k+m+1)r) < 12r if and only if V ∩
⋃

Vm+1,δ = ∅;

(ii) let Vm+1(V ) = {U ∈ Vm+1,δ : V ∩U 6= ∅} for each V ∈ Vm,δ , then U ⊂ V for

U ∈ Vm+1(V );

(iii) we have Vm+2(U ) = ∅ for each V ∈ Vm,δ and each U ∈ Vm+1(V ), because

diam U < 12r by construction.

For every δ = 0, 1, 2 and every W ∈ Wδ , we have

diam W ≤ sup{diam V : V ∈ Vm,δ for m ≥ 0 and δ = 0, 1, 2} + 4r

≤ 16r + 4r = 20r.

Let Vi ,V j ∈ Vm,δ with Vi 6= V j . We show that d(Vi ,V j) ≥ r. On the contrary,

suppose that d(x, y) < r for some x ∈ Vi and some y ∈ V j . By Lemma 2.6, let

ℓ(x, y) denote the arc in S(x0, (k + m)r) ∩ B(x, d(x, y)) with the end points {x, y}.

By construction, we have i = 0, . . . , n(m) − 1 such that ℓ(ym,i , ym,i+1) ( ℓ(x, y).

However, r ≤ diam ℓ(ym,i , ym,i+1) ≤ diam ℓ(x, y) = d(x, y) < r, a contradiction.

Let Vi ,V j ∈ Vm,δ with Vi 6= V j . We show that d(Vi ,V j) ≥ r. Let x ′ ∈ Vi

and y ′ ∈ V j . Set {x} = [x0, x ′] ∩ Vi and {y} = [x0, y ′] ∩ V j . By the above,

r ≤ d(Vi ,V j) ≤ d(x, y). Let T be the geodesic triangle consisting of three points

x0, x ′, y ′, let T be a comparison triangle for T in R
2, and let x0, x, y, x ′, and y ′ denote

the corresponding points in T. Since X is a CAT(0) space, we have

r ≤ d(x, y) ≤ dR2 (x, y) ≤ dR2 (x ′, y ′) = d(x ′, y ′),

thus, d(Vi ,V j) ≥ r.

Let Vi ∈ Vm,δ and V j ∈ Vm+1,δ with Vi ∩V j = ∅. Set W j = {[x0, x] ∩ S(x0, (k +

m)) : x ∈ V j}. By the definition of y ′
m,i, j ’s, similarly, we can show d(Vi ,W j) ≥ r.

Since X is a CAT(0) space, we can obtain that d(Vi ,V j) ≥ r by the same method. By

(i), (ii), and (iii), we have d(W,W ′) ≥ r for any W,W ′ ∈ Wδ with W 6= W ′.

Let U0 = {U : U is a component of B(x0, kr)∪
⋃

W0} and Uδ = Wδ for δ = 1, 2.

By the above, U0 ∪U1 ∪U2 is a uniformly bounded cover of (X, d) and d(U ,U ′) ≥ r

for any U ,U ′ ∈ Uδ with U 6= U ′, which proves the theorem.
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4 Application

As an application of Theorem 3.2, we obtain the following corollary.

Corollary 4.1 Let (W, S) be a Coxeter system. If the boundary ∂Σ(W, S) of Σ(W, S)

is homeomorphic to S
1, then asdim W = 2.

Proof Let (W, S) be a Coxeter system whose boundary ∂Σ(W, S) is homeomorphic

to S
1. Then the Coxeter group W is a virtual Poincaré duality group, and W =

WS̃ × WS\S̃, for some S̃ ⊂ S, where the nerve N(WS̃, S̃) is homeomorphic to S
1 and

WS\S̃ is finite ([4], cf. [10]). Then the Davis complex Σ(W, S) splits as

Σ(W, S) = Σ(WS̃, S̃) × Σ(WS\S̃, S \ S̃).

Here Σ(WS̃, S̃) is homeomorphic to R
2 and Σ(WS\S̃, S \ S̃) is bounded. By Theo-

rem 3.2, we obtain that asdim Σ(W, S) = 2. Hence asdim W = 2.

In general, it is known that every Coxeter group has finite asymptotic dimension

([6], cf. [8]).

Example 4.2 Let m ∈ N and let Dm ⊂ R
2 be a regular m-polygon with a metric

dm = dR2 |Dm
and edges e1, . . . , em such that diam ei = 1 for each i = 1, . . . , n. We

consider a noncompact cell 2-complex (Σ, d) with a triangulation T as follows:

(i) for every σ ∈ T \ T(1) there exist m(σ) ∈ N and a simplicial isometry fσ from

(Dm(σ), dm(σ)) onto (|σ|, d||σ|);

(ii) |{σ ∈ T \ T
(1) : τ < σ}| = 2 for each τ ∈ T

(1) \ T
(0);

(iii) r(v) =
∑

{π − 2π/m(σ) : v < σ ∈ T \ T
(1)} ≥ 2π for each v ∈ T

(0);

(iv) for any x, y ∈ Σ

d(x, y) = min{
k∑

j=1

dm(σ)( f −1
σ j

(x j−1), f −1
σ j

(x j)) :

x = x0 ∈ |σ1|, x j ∈ |σ j | ∩ |σ j+1|(1 ≤ j < k), y = xk ∈ |σk|}.

By [3] or [11], every (Σ, d) above is a CAT(0) space that is homeomorphic to

R
2, hence we obtain that asdim(Σ, d) = 2 from Theorem 3.2. Here we note that

(Σ, d) need not have an action of some group, and (Σ, d) is neither a Euclidean nor

a hyperbolic plane in general.
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