

Asymptotic Dimension of Proper CAT(0) Spaces that are Homeomorphic to the Plane

Naotsugu Chinen and Tetsuya Hosaka

Abstract. In this paper, we investigate a proper CAT(0) space (X, d) that is homeomorphic to \mathbb{R}^2 and we show that the asymptotic dimension $\operatorname{asdim}(X, d)$ is equal to 2.

1 Introduction and Preliminaries

In this paper, we study the asymptotic dimension of proper CAT(0) spaces that are homeomorphic to \mathbb{R}^2 .

A metric space (X, d) is *proper* if all closed bounded sets in (X, d) are compact. We say that a metric space (X, d) is a *geodesic space* if for any $x, y \in X$, there exists an isometric embedding ξ : $[0, d(x, y)] \rightarrow X$ such that $\xi(0) = x$ and $\xi(d(x, y)) = y$ (such a ξ is called a *geodesic*).

Let (X, d) be a geodesic space and let T be a geodesic triangle in X. A *comparison triangle* for T is a geodesic triangle \overline{T} in the Euclidean plane \mathbb{R}^2 with the same edge lengths as T. Choose two points x and y in T. Let \overline{x} and \overline{y} denote the corresponding points in \overline{T} . Then the inequality $d(x, y) \leq d_{\mathbb{R}^2}(\overline{x}, \overline{y})$ is called the CAT(0)-*inequality*, where $d_{\mathbb{R}^2}$ is the usual metric on \mathbb{R}^2 . A geodesic space X is called a CAT(0) *space* if the CAT(0)-*inequality* holds for all geodesic triangles T and for all choices of two points x and y in T. Details of CAT(0) spaces are found in [1].

In Section 2, we first investigate proper CAT(0) spaces that are homeomorphic to \mathbb{R}^2 and we show the following.

Proposition 1.1 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 . Then S(x, r) is homeomorphic to \mathbb{S}^1 for all $x \in X$ and all r > 0. Hence the boundary ∂X is homeomorphic to a circle \mathbb{S}^1 .

Let (X, d) be a metric space and let \mathcal{U} be a family of subsets of (X, d). The family \mathcal{U} is said to be *uniformly bounded* if there exists a positive number K such that diam $U \leq K$ for all $U \in \mathcal{U}$. The family \mathcal{U} is said to be *r*-disjoint if d(U, U') > r for any $U, U' \in \mathcal{U}$ with $U \neq U'$.

The *asymptotic dimension* of a metric space (X, d) does not exceed *n* and we write $\operatorname{asdim}(X, d) \le n$, if for every r > 0 there exist uniformly bounded, *r*-disjoint families

Received by the editors September 7, 2007.

Published electronically July 26, 2010.

The first author's research was partly supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science, No. 19540108.

AMS subject classification: 20F69, 54F45, 20F65.

Keywords: asymptotic dimension, CAT(0) space, plane.

 $\mathcal{U}^0, \mathcal{U}^1, \ldots, \mathcal{U}^n$ of subsets of *X* such that $\bigcup_{k=0}^n \mathcal{U}^k$ covers *X*. The *asymptotic dimension* of a metric space (X, d) is equal to *n*, and we write $\operatorname{asdim}(X, d) = n$, if $\operatorname{asdim}(X, d) \leq n$ and $\operatorname{asdim}(X, d) \neq n - 1$.

The asymptotic dimension of a group relates to the Novikov conjecture, and there is some interesting recent research on asymptotic dimensions [2, 5–7, 9, 15]. In [9], Gromov remarks that word hyperbolic groups have finite asymptotic dimension, and Roe gives details of the proof in [12]. The asymptotic dimension of CAT(0) groups and CAT(0) spaces is unknown in general.

The purpose of this paper is to prove the following theorem.

Theorem 1.2 If (X, d) is a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 , then $\operatorname{asdim}(X, d) = 2$.

We note that the proper CAT(0) space (X, d) in this theorem need not have an action of some group. We give an example in Section 4.

2 Proper CAT(0) Spaces that are Homeomorphic to \mathbb{R}^2

We first give notation used in this paper.

Notation 2.1 Let the set of all natural numbers, real numbers, and $[0, \infty)$ be denoted by N, R, and R₊, respectively. Set $\mathbb{R}_{+}^{n} = \mathbb{R}^{n-1} \times \mathbb{R}_{+}$, $\mathbb{B}^{n} = \{x \in \mathbb{R}^{n} : \sum_{i=1}^{n} x_{i}^{2} \leq 1\}$, and $\mathbb{S}^{n} = \{x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_{i}^{2} = 1\}$. Let *Y* be a subspace of a metric space (*X*, *d*). The interior and the closure of *Y* in a space *X* will be denoted by Int_{*X*} *Y* and Cl_{*X*} *Y*, respectively. Also set $B(x, r) = \{y \in X : d(x, y) \leq r\}$ and $S(x, r) = \{y \in X : d(x, y) = r\}$. We denote the geodesic from *x* to *y* in a CAT(0) space (*X*, *d*) by [x, y] (cf. [1, Proposition II 1.4]). Set $[x, y] \setminus \{y\}$, $(x, y] = [x, y] \setminus \{x\}$ and $(x, y) = [x, y] \setminus \{x, y\}$.

The following lemma is known.

Lemma 2.2 Let (X, d) be a proper CAT(0) space, r > 0 and $x_0 \in X$. Then, the following are satisfied:

- (i) $B(x_0, r)$ is a convex set;
- (ii) $x_0 \notin [x, y] \subset B(x_0, r)$ and $(x, y) \subset B(x_0, r) \setminus S(x_0, r)$ for any $x, y \in S(x_0, r)$ with d(x, y) < 2r;
- (iii) (cf.[1, Lemma II 5.8 and Proposition II 5.12]) If X is a manifold, for each $x \in X \setminus \{x_0\}$, there exists a geodesic line $\xi \colon \mathbb{R} \to X$ such that $\xi(0) = x_0$ and $\xi(d(x_0, x)) = x$.

We investigate a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 .

Notation 2.3 Let $(X, d), r, x_0, x$, and y be as in Lemma 2.2(ii). Suppose that X is homeomorphic to \mathbb{R}^2 . By Lemma 2.2, there exist two geodesic rays $\xi_{x_0,x}, \xi_{x_0,y} \colon \mathbb{R}_+ \to X$ such that $\xi_{x_0,x}(0) = \xi_{x_0,y}(0) = x_0, \xi_{x_0,x}(r) = x$ and $\xi_{x_0,y}(r) = y$. By Lemma 2.2, $\xi_{x_0,x}([r,\infty)) \cup [x, y] \cup \xi_{x_0,y}([r,\infty))$ is homeomorphic to \mathbb{R} . Since X is homeomorphic to \mathbb{R}^2 , by Schönflies Theorem there exists the component C of $X \setminus \xi_{x_0,x}([r,\infty)) \cup [x, y] \cup \xi_{x_0,y}([r,\infty))$ such that $x_0 \notin C$. Set $\ell(x, y) = S(x_0, r) \cap \text{Cl}_X C$.

630

We show some lemmas.

Lemma 2.4 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 . Then, S(x, r) is a continuum for all $x \in X$ and all r > 0.

Proof Let $x_0 \in X$ and r > 0. Since $B(x_0, r)$ is a convex set, by duality (cf. [13]),

$$\bar{H}_0(X \setminus B(x_0, r)) \cong \check{H}^1(B(x_0, r)) = 0,$$

thus, $X \setminus \text{Int}_X B(x_0, r) = \text{Cl}_X(X \setminus B(x_0, r))$ is connected. Since there exists a deformation retraction of $X \setminus \text{Int}_X B(x_0, r)$ onto $S(x_0, r)$, $S(x_0, r)$ is connected.

Lemma 2.5 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 , r > 0, $x_0 \in X$, $x, y \in S(x_0, r)$ with 0 < d(x, y) < 2r and $z \in \ell(x, y)$. Then

- (i) $\ell(x, y)$ is a continuum,
- (ii) $[x, y] \cap [x_0, z] \neq \emptyset$, and
- (iii) $d(x,z) \leq d(x,y)$.

Proof (i) By Notation 2.3, there exists the component D of $X \setminus R$ such that $C \subset D$, where $R = \xi_{x_0,x}(\mathbb{R}_+) \cup \xi_{x_0,y}(\mathbb{R}_+)$. Since X is homeomorphic to \mathbb{R}^2 , by Schönflies Theorem, $\operatorname{Cl}_X D$ is homeomorphic to \mathbb{R}^2_+ . Let D' be a copy of D. Define an equivalent relation: \sim in $D \cup D'$ as follows: for $a \in D$ and $a' \in D'$, $a \sim a'$ if and only if $a = a', a \in R$, and $a' \in R'$. Set $B = B(x_0, r) \cap \operatorname{Cl}_X D$, $\widetilde{D} = (D \cup D')/\sim$ and $\widetilde{B} = (B \cup B')/\sim$. Then there exists a deformation retraction $\operatorname{Cl}_X(D \setminus B)$ onto $\ell(x, y)$, \widetilde{D} is homeomorphic to \mathbb{R}^2 and \widetilde{B} is a contractible compact set. By the same method as in the proof of Lemma 2.4, we can show that $\ell(x, y) \cup (\ell(x, y))'/\sim$ is connected. Since there exists the natural surjective map from $\ell(x, y) \cup (\ell(x, y))'/\sim$ onto $\ell(x, y)$, $\ell(x, y)$ is connected.

(ii) We may assume that $z \notin \{x, y\}$. By Notation 2.3, there exists the component C of $X \setminus \xi_{x_0,x}([r, \infty)) \cup [x, y] \cup \xi_{x_0,y}([r, \infty))$ such that $x_0 \notin C$ and $z \in C$. Thus, $\xi_{x_0,x}([r, \infty)) \cup [x, y] \cup \xi_{x_0,y}([r, \infty))$ separates x_0 and z in X. Since $[x_0, z] \subset B(x_0, r)$ is an arc connecting x_0 and z in X, $[x, y] \cap [x_0, z] \neq \emptyset$.

(iii) On the contrary, suppose d(x, z) > d(x, y). By (ii), there exists $z' \in [x, y] \cap [x_0, z]$. Since $z' \in [x, y]$,

$$d(x, z') + d(z', y) = d(x, y) < d(x, z) \le d(x, z') + d(z', z),$$

thus, d(z', y) < d(z', z). Then,

$$r = d(x_0, y) \le d(x_0, z') + d(z', y) < d(x_0, z') + d(z', z) = d(x_0, z) = r$$

a contradiction.

Lemma 2.6 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 , r, t > 0, $x_0 \in X$ and $y_0 \in S(x_0, r)$. Then $S(x_0, r) \cap B(y_0, t)$ is connected.

Proof Set $N = S(x_0, r) \cap B(y_0, t)$. If $t \ge 2r$, $S(x_0, r) \subset B(y_0, t)$. By Lemma 2.4, N is connected. We may assume that t < 2r. Take $x \in N$. Since $d(y_0, x) \le t < 2r$, by Lemma 2.5, we have

$$\ell(y_0, x) \subset S(x_0, r) \cap B(y_0, d(y_0, x)) \subset S(x_0, r) \cap B(y_0, t) = N.$$

Therefore, by Lemma 2.5, $N = \bigcup \{ \ell(y_0, x) : x \in N \}$ is connected, which proves the lemma.

We obtain the following proposition from the lemmas above.

Proposition 2.7 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 . Then, S(x, r) is homeomorphic to \mathbb{S}^1 for all $x \in X$ and all r > 0.

Proof By Lemma 2.4 and [14, Theorem 11.21], it suffices to show the following:

(i) $S(x_0, r) \setminus \{y_0, y_1\}$ is nonconnected for any $y_0, y_1 \in S(x_0, r)$ with $y_0 \neq y_1$, and (ii) $S(x_0, r) \setminus \{y_0\}$ is connected for each $y_0 \in S(x_0, r)$.

We take two points $y_0, y_1 \in S(x_0, r)$ with $y_0 \neq y_1$. By Lemma 2.2, there exist geodesic rays $\xi_{x_0,y_0}, \xi_{x_0,y_1} : \mathbb{R}_+ \to X$ such that $\xi_{x_0,y_0}(0) = \xi_{x_0,y_1}(0) = x_0, \xi_{x_0,y_0}(r) = y_0$ and $\xi_{x_0,y_1}(r) = y_1$. By Schönflies Theorem, there exist closed sets Z_0, Z_1 of X such that Z_i is homeomorphic to \mathbb{R}^2_+ for $i = 0, 1, X = Z_0 \cup Z_1$, and $Z_0 \cap Z_1 \subset \xi_{x_0,y_0}(\mathbb{R}_+) \cup$ $\xi_{x_0,y_1}(\mathbb{R}_+)$ is homeomorphic to \mathbb{R} . Since $S(x_0, r) \cap \operatorname{Int}_X Z_i \neq \emptyset$ for $i = 0, 1, S(x_0, r) \setminus$ $\{y_0, y_1\}$ is nonconnected, which proves (i).

Let $x, y \in S(x_0, r) \setminus \{y_0\}$ with $x \neq y$. By Lemma 2.2, there exist geodesic rays $\xi_{x_0,x}, \xi_{x_0,y}: \mathbb{R}_+ \to X$ such that $\xi_{x_0,x}(0) = \xi_{x_0,y}(0) = x_0, \xi_{x_0,x}(r) = x$ and $\xi_{x_0,y}(r) = y$. Set $R = \xi_{x_0,x}(\mathbb{R}_+) \cup \xi_{x_0,y}(\mathbb{R}_+)$. By [1, Proposition 1.4(1), p.160], there exists $z \in [x_0, x)$ such that $\xi_{x_0,x}(\mathbb{R}_+) \cap \xi_{x_0,y}(\mathbb{R}_+) = [x_0, z]$. By Schönflies Theorem, there exists the component *C* of $X \setminus R$ such that $y_0 \notin C$ and $E_{x,y} = Cl_X C$ is homeomorphic to \mathbb{R}^2_+ . Set $L_{x,y} = E_{x,y} \cap S(x_0, r)$. We see

$$B(x_0, d(x_0, z)) \subset E_{x,y}$$
 or $B(x_0, d(x_0, z)) \cap E_{x,y} = \{z\}.$

Suppose that $B(x_0, d(x_0, z)) \subset E_{x,y}$. We note that $L_{x,y}$, $B(x_0, d(x_0, z))$ and $\{z\}$ are deformation retracts of $\operatorname{Cl}_X(E_{x,y} \setminus B(x_0, r))$, $E_{x,y} \cap B(x_0, r)$ and $B(x_0, d(x_0, z))$, respectively. Thus, $\{z\}$ is a deformation retract of $E_{x,y} \cap B(x_0, r)$. Using the same method as in the proof of Lemma 2.5(i), we can show that $L_{x,y} \cup (L_{x,y})'/\sim$ is a deformation retract of $\operatorname{Cl}_X(E_{x,y} \setminus B(x_0, r)) \cup (\operatorname{Cl}_X(E_{x,y} \setminus B(x_0, r)))'/\sim$ and $\{z\}$ is a deformation retract of $(E_{x,y} \cap B(x_0, r)) \cup (E_{x,y} \cap B(x_0, r))'/\sim$, thus, $L_{x,y}$ is connected. Suppose that $B(x_0, d(x_0, z)) \cap E_{x,y} = \{z\}$. Since $\{z\}$ is a deformation retract of $E_{x,y} \cap B(x_0, r)$, by the same method above, we can show that $L_{x,y}$ is connected.

Fix $y'_0 \in S(x_0, r) \setminus \{y_0\}$. Since $S(x_0, r) \setminus \{y_0\} = \bigcup \{L_{x, y'_0} : x \in S(x_0, r) \setminus \{y_0, y'_0\}\}$, it is connected, which proves (ii).

Corollary 2.8 If (X, d) is a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 , then the boundary ∂X of X is homeomorphic to \mathbb{S}^1 .

We show the following lemma that is used in the proof of the main theorem.

Lemma 2.9 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 , $x_0 \in X$, r, t > 0 with 2t < r and $x, x' \in S(x_0, r)$ with $3t \le d(x, x') < 2r$. Then there exist $y_0, \ldots, y_{3n-1} \in S(x_0, r)$, and $m \in \mathbb{N}$ with 0 < 3m < 3n - 1 such that $y_0 = x$, $y_{3m} = x', t \le \text{diam } \ell(y_i, y_{i+1}) \le 2t, \{y_0, \ldots, y_{3n-1}\} \cap \ell(y_i, y_{i+1}) = \{y_i, y_{i+1}\}$ for each $i = 0, \ldots, 3n - 1$, $S(x_0, r) = \ell(y_0, y_1) \cup \cdots \cup \ell(y_{3n-1}, y_{3n})$, and $\ell(x, x') = \ell(y_0, y_1) \cup \cdots \cup \ell(y_{3m-1}, y_{3m})$, where $y_{3n} = y_0$.

Proof Set $z_0 = y_0 = x$. By Proposition 2.7, $S(x_0, r)$ is homeomorphic to \mathbb{S}^1 . Since $S(x_0, r) \not\subset B(z_0, t)$, by Lemma 2.6, $S(x_0, r) \cap B(z_0, t)$, $\ell(x, x')$, and $\ell(x, x') \cap B(z_0, t)$ are arcs. Let z_1 be the end point of $\ell(x, x') \cap B(z_0, t)$ with $z_0 \neq z_1$. By Lemma 2.6, we have $\ell(z_0, z_1) = \ell(x, x') \cap B(z_0, t)$. By Lemma 2.6, $S(x_0, r) \cap B(z_1, t)$ is an arc. Since z_0 and z_1 are the end points of $\ell(z_0, z_1)$ with $d(z_0, z_1) = t$, there exists the end point z_2 of $S(x_0, r) \cap B(z_1, t)$ such that diam $\ell(z_1, z_2) = t$, $\ell(z_0, z_1) \cap \ell(z_1, z_2) = \{z_1\}$ and $\ell(z_0, z_1) \cup \ell(z_1, z_2) = \ell(x, x') \cap B(z_1, t)$. Thus, by induction, we can take $z_2, \ldots, z_{p+1} \in S(x_0, r)$ and an arc $\ell(z_{i-1}, z_i)$ in $\ell(x, x')$ with the end points $\{z_{i-1}, z_i\}$ such that $z_{p+1} = x'$, $\ell(z_{i-1}, z_i) \cap \ell(z_i, z_{i+1}) = \{z_i\}$ for each $i = 1, \ldots, p$, $\ell(z_{i-1}, z_i) \cup \ell(z_i, z_{i+1}) = \ell(x, x') \cap B(z_i, t)$, for each $i = 1, \ldots, p, \ell(x, x') = \bigcup_{i=1}^{p+1} \ell(z_{i-1}, z_i)$, diam $\ell(z_{i-1}, z_i) = t$ for any $i = 1, \ldots, p$ and diam $\ell(z_p, z_{p+1}) \leq t$. Let $k \in \mathbb{N}$ and $\delta = 0, 1, 2$ such that $p = 3k+\delta$. Set m = k and $y_{3m} = z_{p+1}$. If $\delta = 0$, set $y_i = z_i$ for each $i = 1, \ldots, 3m-1$. If $\delta = 1$, set $y_i = z_i$ for each $i = 1, \ldots, 3m-2$ and $y_{3m-1} = z_{p-1}$. Similarly, we have $y_{3m+1}, \ldots, y_{3n-1} \in Cl_X(S(x_0, r) \setminus \ell(x, x'))$, which proves the lemma.

3 Asymptotic Dimension of Proper CAT(0) Spaces that are Homeomorphic to \mathbb{R}^2

First we show the following.

Lemma 3.1 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 . Then, asdim $(X, d) \ge 2$.

Proof On the contrary, suppose that $\operatorname{asdim}(X, d) \leq 1$. Let r > 0. There exist uniformly bounded, 3r-disjoint families $\mathcal{U}^0, \mathcal{U}^1$ of subsets of X such that $\mathcal{U}^0 \cup \mathcal{U}^1$ covers X. Since X is homeomorphic to \mathbb{R}^2 , there exist uniformly bounded, r-disjoint families $\mathcal{V}^0, \mathcal{V}^1$ of subsets of X satisfying the following:

(i) $\mathcal{V}^0 \cup \mathcal{V}^1$ covers *X*;

(ii) every $V \in \mathcal{V}^0 \cup \mathcal{V}^1$ is a compact topological 2-manifold with boundary.

Let $\varepsilon > 0$ with $\varepsilon < r/2$, let $V \in \mathcal{V}^i$ and let M and M' be two components of V with $d(M, M') = d(M, V \setminus M) < \varepsilon$. Then there exists a disk A in X such that $M \cup A \cup M'$ is connected, $V \cup A$ is a compact topological 2-manifold with boundary and $d(V \cup A, V') > r - \varepsilon$ whenever $V' \in \mathcal{V}^i$ with $V \neq V'$. Thus, we may assume that

(iii) $d(M, M') \ge \varepsilon$ for each $V \in \mathcal{V}^0 \cup \mathcal{V}^1$ and each two components M, M' of V.

Since $\mathcal{V}^0 \cup \mathcal{V}^1$ is uniformly bounded, there exists $r \leq s = \sup\{\operatorname{diam} C : C \text{ is a component of } V \in \mathcal{V}^0 \cup \mathcal{V}^1\} < \infty$. Thus, we may assume that there exists a component C_0 of $V_0 \in \mathcal{V}^0$ such that $s - \varepsilon < \operatorname{diam} C_0 \leq s$. We have $c_0, c_1 \in C_0$ such

that $d(c_0, c_1) = \operatorname{diam} C_0$. By Lemma 2.2, there exists a geodesic line $\xi \colon \mathbb{R} \to X$ such that $\xi(0) = c_0$ and $\xi(\operatorname{diam} C_0) = c_1$. Since $C_0 \cap \xi(\mathbb{R}) \subset \xi([0, \operatorname{diam} C_0])$, there exists the component N of ∂C_0 containing c_0, c_1 that is contained in the closure of the unbounded component of $X \setminus C_0$.

We note that $N \subset \bigcup \{V_1 : V_1 \in \mathcal{V}^1\}$ is homeomorphic to \mathbb{S}^1 . Since \mathcal{V}^1 is *r*-disjoint, there exists a component C_1 of $V_1 \in \mathcal{V}^1$ such that $N \subset C_1$. Then, there exist $t_0, t_1 \in \mathbb{R}$ with $t_0 < 0 < \operatorname{diam} C_0 < t_1$ such that $\xi(t_0), \xi(t_1) \in C_1 \cap \xi(\mathbb{R}) \subset t_0$ $\xi([t_0, t_1])$. Using a similar argument as above, we can show there exist a component N' of ∂C_1 containing $\xi(t_0), \xi(t_1)$ and $V_2 \in \mathcal{V}^0$ containing N'. If $V_0 = V_2$, by (iii), $d(c_0,\xi(t_0)) \ge \varepsilon$ and $d(c_1,\xi(t_1)) \ge \varepsilon$, *i.e.*, $d(\xi(t_0),\xi(t_1)) > \text{diam } C_0 + 2\varepsilon > s$, which contradicts the definition of s. If $V_0 \neq V_2$, $d(V_0, V_2) > r$. Thus, $d(c_0, \xi(t_0)) > r$ and $d(c_1, \xi(t_1)) > r$, *i.e.*, $d(\xi(t_0), \xi(t_1)) > \text{diam } C_0 + 2r > s$, which contradicts the definition of s.

We prove the main theorem.

Theorem 3.2 Let (X, d) be a proper CAT(0) space that is homeomorphic to \mathbb{R}^2 . Then, $\operatorname{asdim}(X, d) = 2.$

Proof By Lemma 3.1 it suffices to show that $\operatorname{asdim}(X, d) \leq 2$.

Let r > 0. Fix $x_0 \in X$ and $k \in \mathbb{N}$ with $k \ge 6$. By Lemma 2.9, there exist $y_{0,0}, \ldots, y_{0,3n(0)-1} \in S(x_0, kr)$ such that

 $2r \leq \operatorname{diam} \ell(y_{0,i}, y_{0,i+1}) \leq 16r, \{y_{0,0}, \dots, y_{0,3n(0)-1}\} \cap \ell(y_{0,i}, y_{0,i+1}) = \{y_{0,i}, y_{0,i+1}\}$

for each i = 0, ..., 3n(0) - 1 and

 $S(x_0, kr) = \ell(y_{0,0}, y_{0,1}) \cup \cdots \cup \ell(y_{0,3n(0)-1}, y_{0,3n(0)}),$

where $y_{0,3n(0)} = y_{0,0}$. See Figure 3.2.1. Set

$$\mathcal{V}_{0,\delta} = \{\ell(y_{0,3i+\delta}, y_{0,3i+1+\delta}) : i = 0, \dots, n(0) - 1\}$$

for each $\delta = 0, 1, 2$.

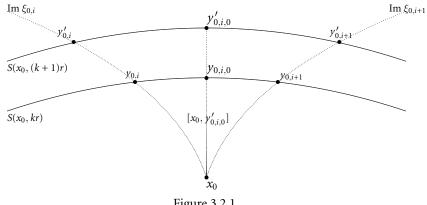


Figure 3.2.1

For every i = 0, ..., 3n(0) - 1, there exists a geodesic ray $\xi_{0,i} \colon \mathbb{R}_+ \to X$ such that $\xi_{0,i}(0) = x_0$ and $\xi_{0,i}(kr) = y_{0,i}$. Set $y'_{0,i} = \xi_{0,i}((k+1)r)$ for each i = 0, ..., 3n(0) - 1. We note that $2r \le d(y_{0,i}, y_{0,i+1}) < d(y'_{0,i}, y'_{0,i+1}) \le 18r$ for each i = 0, ..., 3n(0) - 1. Let $i \in \{0, ..., 3n(0) - 1\}$.

Suppose that $d(y'_{0,i}, y'_{0,i+1}) < 12r$. We can take $y_{0,i,0} \in \ell(y_{0,i}, y_{0,i+1})$ and $y'_{0,i,0} \in \ell(y'_{0,i}, y'_{0,i+1})$ such that $r \leq d(y_{0,i}, y_{0,i,0}) = d(y_{0,i+1}, y_{0,i,0}) = d(y_{0,i}, y_{0,i+1})/2 < 6r$ and $\{y_{0,i,0}\} = [x_0, y'_{0,i,0}] \cap S(x_0, kr)$. We note that $r < d(y'_{0,i}, y'_{0,i,0}), d(y'_{0,i+1}, y'_{0,i,0}) < 8r$.

Suppose that $12r \leq d(y'_{0,i}, y'_{0,i+1})$. We note that $10r \leq d(y_{0,i}, y_{0,i+1})$. There exist $z_{0,i,0}, z_{0,i,1} \in \ell(y_{0,i}, y_{0,i+1})$ and $z'_{0,i,0}, z'_{0,i,1} \in \ell(y'_{0,i}, y'_{0,i+1})$ such that $d(y_{0,i}, z_{0,i,0}) = d(y_{0,i+1}, z_{0,i,1}) = r$ and $\{z_{0,i,j}\} = [x_0, z'_{0,i,j}] \cap S(x_0, kr)$ for j = 0, 1. We note that $d(y'_{0,i}, z'_{0,i,0}), d(y'_{0,i+1}, z'_{0,i,1}) \leq 3r$ and $6r \leq d(z'_{0,i,0}, z'_{0,i,1})$. By Lemma 2.9, there exist $y'_{0,i,1}, \dots, y'_{0,i,3k_{0,i}-1} \in \ell(y'_{0,i,0}, y'_{0,i,3k_{0,i}})$ such that $2r \leq d(y'_{0,i,j}, y'_{0,i,j+1}) \leq 4r$ and $\ell(y'_{0,i,j}, y'_{0,i,j+1}) \cap \{y'_{0,i,0}, \dots, y'_{0,i,k_{0,i}}\} = \{y'_{0,i,j}, y'_{0,i,j+1}\}$ for each $j = 0, \dots, 3k_{0,i} - 1$, where $y'_{0,i,0} = z'_{0,i,0}$ and $y'_{0,i,3k_{0,i}} = z'_{0,i,1}$. See Figure 3.2.2.



Set $Y_1 = \{y'_{0,i,j} : 0 \le i \le 3n(0) - 1 \text{ and } j = 0, \dots, 3k_{0,i}\}$ and $n(1) \in \mathbb{N}$ with $3n(1) - 1 = |Y_1|$. We can renumber $Y_1 = \{y_{1,i} : i = 0, \dots, 3n(1) - 1\}$ such that

 $\{y' \in S(x_0, (k+1)r) : y \in \bigcup \mathcal{V}_{0,1} \cap \bigcup \mathcal{V}_{0,2}\} \subset \bigcup \mathcal{V}_{1,0}, \\ \{y' \in S(x_0, (k+1)r) : y \in \bigcup \mathcal{V}_{0,0} \cap \bigcup \mathcal{V}_{0,2}\} \subset \bigcup \mathcal{V}_{1,1}, \\ \{y' \in S(x_0, (k+1)r) : y \in \bigcup \mathcal{V}_{0,0} \cap \bigcup \mathcal{V}_{0,1}\} \subset \bigcup \mathcal{V}_{1,2},$

and $\ell(y_{1,i}, y_{1,i+1}) \cap Y_1 = \{y_{1,i}, y_{1,i+1}\}$ for each $i = 0, \ldots, 3n(1) - 1$, where we let $y_{1,3n(1)} = y_{1,0}$ and $\mathcal{V}_{1,\delta} = \{\ell(y_{1,3i+\delta}, y_{1,3i+1+\delta}) : i = 0, \ldots, n(1) - 1\}$ for each $\delta = 0, 1, 2$. We note that $2r \leq \text{diam } V \leq 16r$ for all $\delta = 0, 1, 2$ and all $V \in \mathcal{V}_{1,\delta}$. By induction, for every $m \in \mathbb{N}$ with $m \geq 2$, there exists

$$Y_m = \{y_{m,i} : i = 0, \dots, 3n(m) - 1\} \subset S(x_0, (k+m)r)$$

N. Chinen and T. Hosaka

such that

$$\{ y' \in S(x_0, (k+m)r) : y \in \bigcup \mathcal{V}_{m-1,1} \cap \bigcup \mathcal{V}_{m-1,2} \} \subset \bigcup \mathcal{V}_{m,0}, \\ \{ y' \in S(x_0, (k+m)r) : y \in \bigcup \mathcal{V}_{m-1,0} \cap \bigcup \mathcal{V}_{m-1,2} \} \subset \bigcup \mathcal{V}_{m,1}, \\ \{ y' \in S(x_0, (k+m)r) : y \in \bigcup \mathcal{V}_{m-1,0} \cap \bigcup \mathcal{V}_{m-1,1} \} \subset \bigcup \mathcal{V}_{m,2}, \end{cases}$$

 $\ell(y_{m,i}, y_{m,i+1}) \cap Y_m = \{y_{m,i}, y_{m,i+1}\}$ for each $i = 0, \dots, 3n(m) - 1$ and $2r \leq \text{diam } V \leq 16r$ for all $\delta = 0, 1, 2$ and all $V \in \mathcal{V}_{m,\delta}$, where we let

$$\mathcal{W}_{m,\delta} = \{\ell(y_{m,3i+\delta}, y_{m,3i+1+\delta}) : i = 0, \dots, n(m) - 1\}$$

for each $\delta = 0, 1, 2$.

For each $V \in \mathcal{V}_{m,\delta}$ and each $\delta = 0, 1, 2$, set

$$\overline{V} = \{ x \in B(x_0, (k+m+1)r) \setminus \operatorname{Int}_X B(x_0, (k+m)r) : [x_0, x] \cap V \neq \emptyset \},\$$

 $\overline{\mathcal{V}_{m,\delta}} = \{\overline{V} : V \in \mathcal{V}_{m,\delta}\}$, and $\mathcal{W}_{\delta} = \{W : W \text{ is a component of } \bigcup_{m=0}^{\infty} \overline{\mathcal{V}_{m,\delta}}\}$. By construction, we have the following:

- (i) for $V \in \mathcal{V}_{m,\delta}$, diam $\overline{V} \cap S(x_0, (k+m+1)r) < 12r$ if and only if $\overline{V} \cap \bigcup \overline{\mathcal{V}_{m+1,\delta}} = \emptyset$;
- (ii) let $\mathcal{V}_{m+1}(V) = \{U \in \mathcal{V}_{m+1,\delta} : \overline{V} \cap U \neq \emptyset\}$ for each $V \in \mathcal{V}_{m,\delta}$, then $U \subset \overline{V}$ for $U \in \mathcal{V}_{m+1}(V)$;
- (iii) we have $\mathcal{V}_{m+2}(U) = \emptyset$ for each $V \in \mathcal{V}_{m,\delta}$ and each $U \in \mathcal{V}_{m+1}(V)$, because diam U < 12r by construction.

For every $\delta = 0, 1, 2$ and every $W \in W_{\delta}$, we have

diam $W \leq \sup\{\operatorname{diam} V : V \in \mathcal{V}_{m,\delta} \text{ for } m \geq 0 \text{ and } \delta = 0, 1, 2\} + 4r$

$$\leq 16r + 4r = 20r$$

Let $V_i, V_j \in \mathcal{V}_{m,\delta}$ with $V_i \neq V_j$. We show that $d(V_i, V_j) \geq r$. On the contrary, suppose that d(x, y) < r for some $x \in V_i$ and some $y \in V_j$. By Lemma 2.6, let $\ell(x, y)$ denote the arc in $S(x_0, (k + m)r) \cap B(x, d(x, y))$ with the end points $\{x, y\}$. By construction, we have $i = 0, \ldots, n(m) - 1$ such that $\ell(y_{m,i}, y_{m,i+1}) \subsetneq \ell(x, y)$. However, $r \leq \text{diam } \ell(y_{m,i}, y_{m,i+1}) \leq \text{diam } \ell(x, y) = d(x, y) < r$, a contradiction.

Let $\overline{V_i}, \overline{V_j} \in \overline{V_{m,\delta}}$ with $\overline{V_i} \neq \overline{V_j}$. We show that $d(\overline{V_i}, \overline{V_j}) \geq r$. Let $x' \in \overline{V_i}$ and $y' \in \overline{V_j}$. Set $\{x\} = [x_0, x'] \cap V_i$ and $\{y\} = [x_0, y'] \cap V_j$. By the above, $r \leq d(V_i, V_j) \leq d(x, y)$. Let T be the geodesic triangle consisting of three points x_0, x', y' , let \overline{T} be a comparison triangle for T in \mathbb{R}^2 , and let $\overline{x_0}, \overline{x}, \overline{y}, \overline{x'}$, and $\overline{y'}$ denote the corresponding points in \overline{T} . Since X is a CAT(0) space, we have

$$r \leq d(x, y) \leq d_{\mathbb{R}^2}(\overline{x}, \overline{y}) \leq d_{\mathbb{R}^2}(\overline{x'}, \overline{y'}) = d(x', y'),$$

thus, $d(\overline{V_i}, \overline{V_j}) \ge r$.

Let $\overline{V_i} \in \overline{V_{m,\delta}}$ and $\overline{V_j} \in \overline{V_{m+1,\delta}}$ with $\overline{V_i} \cap \overline{V_j} = \emptyset$. Set $W_j = \{[x_0, x] \cap S(x_0, (k+m)) : x \in \overline{V_j}\}$. By the definition of $y'_{m,i,j}$'s, similarly, we can show $d(V_i, W_j) \ge r$. Since X is a CAT(0) space, we can obtain that $d(\overline{V_i}, \overline{V_j}) \ge r$ by the same method. By (i), (ii), and (iii), we have $d(W, W') \ge r$ for any $W, W' \in W_{\delta}$ with $W \neq W'$.

Let $\mathcal{U}_0 = \{U : U \text{ is a component of } B(x_0, kr) \cup \bigcup \mathcal{W}_0\}$ and $\mathcal{U}_{\delta} = \mathcal{W}_{\delta}$ for $\delta = 1, 2$. By the above, $\mathcal{U}_0 \cup \mathcal{U}_1 \cup \mathcal{U}_2$ is a uniformly bounded cover of (X, d) and $d(U, U') \ge r$ for any $U, U' \in \mathcal{U}_{\delta}$ with $U \neq U'$, which proves the theorem.

636

4 Application

As an application of Theorem 3.2, we obtain the following corollary.

Corollary 4.1 Let (W, S) be a Coxeter system. If the boundary $\partial \Sigma(W, S)$ of $\Sigma(W, S)$ is homeomorphic to \mathbb{S}^1 , then asdim W = 2.

Proof Let (W, S) be a Coxeter system whose boundary $\partial \Sigma(W, S)$ is homeomorphic to \mathbb{S}^1 . Then the Coxeter group W is a virtual Poincaré duality group, and $W = W_{\tilde{S}} \times W_{S \setminus \tilde{S}}$, for some $\tilde{S} \subset S$, where the nerve $N(W_{\tilde{S}}, \tilde{S})$ is homeomorphic to \mathbb{S}^1 and $W_{S \setminus \tilde{S}}$ is finite ([4], cf. [10]). Then the Davis complex $\Sigma(W, S)$ splits as

$$\Sigma(W,S) = \Sigma(W_{\tilde{S}},\tilde{S}) \times \Sigma(W_{S \setminus \tilde{S}},S \setminus \tilde{S}).$$

Here $\Sigma(W_{\tilde{S}}, \tilde{S})$ is homeomorphic to \mathbb{R}^2 and $\Sigma(W_{S \setminus \tilde{S}}, S \setminus \tilde{S})$ is bounded. By Theorem 3.2, we obtain that asdim $\Sigma(W, S) = 2$. Hence asdim W = 2.

In general, it is known that every Coxeter group has finite asymptotic dimension ([6], cf. [8]).

Example 4.2 Let $m \in \mathbb{N}$ and let $D_m \subset \mathbb{R}^2$ be a regular *m*-polygon with a metric $d_m = d_{\mathbb{R}^2}|_{D_m}$ and edges e_1, \ldots, e_m such that diam $e_i = 1$ for each $i = 1, \ldots, n$. We consider a noncompact cell 2-complex (Σ, d) with a triangulation \mathfrak{T} as follows:

- (i) for every $\sigma \in \mathcal{T} \setminus \mathcal{T}^{(1)}$ there exist $m(\sigma) \in \mathbb{N}$ and a simplicial isometry f_{σ} from $(D_{m(\sigma)}, d_{m(\sigma)})$ onto $(|\sigma|, d|_{|\sigma|})$;
- (ii) $|\{\sigma \in \mathcal{T} \setminus \mathcal{T}^{(1)} : \tau < \sigma\}| = 2$ for each $\tau \in \mathcal{T}^{(1)} \setminus \mathcal{T}^{(0)}$;
- (iii) $r(v) = \sum \{\pi 2\pi/m(\sigma) : v < \sigma \in \mathcal{T} \setminus \mathcal{T}^{(1)}\} \ge 2\pi$ for each $v \in \mathcal{T}^{(0)}$;
- (iv) for any $x, y \in \Sigma$

$$d(x, y) = \min\{\sum_{j=1}^{k} d_{m(\sigma)}(f_{\sigma_{j}}^{-1}(x_{j-1}), f_{\sigma_{j}}^{-1}(x_{j})):$$
$$x = x_{0} \in |\sigma_{1}|, x_{j} \in |\sigma_{j}| \cap |\sigma_{j+1}| (1 \le j < k), y = x_{k} \in |\sigma_{k}|\}.$$

By [3] or [11], every (Σ, d) above is a CAT(0) space that is homeomorphic to \mathbb{R}^2 , hence we obtain that $\operatorname{asdim}(\Sigma, d) = 2$ from Theorem 3.2. Here we note that (Σ, d) need not have an action of some group, and (Σ, d) is neither a Euclidean nor a hyperbolic plane in general.

References

- M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*. Fundamental Principles of Mathematical Sciences, 319, Springer-Verlag, Berlin, 1999.
- G. Bell and A. N. Dranishnikov, *Asymptotic dimension*. Topology Appl. 155(2008), no. 12, 1265–1296. doi:10.1016/j.topol.2008.02.011
- [3] M. W. Davis, Nonpositive curvature and reflection groups. In: Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 373–422.
- [4] M. W. Davis, The cohomology of a Coxeter group with group ring coefficients. Duke Math. J. 91(1998), no. 2, 297–314. doi:10.1215/S0012-7094-98-09113-X

N. Chinen and T. Hosaka

- [5] A. N. Dranishnikov, Asymptotic topology. Uspekhi Mat. Nauk 55(2000), no. 6, 71–116; translation in Russian Math. Surveys 55(2000), no. 6, 1085–1129. doi:10.1070/rm2000v055n06ABEH000334
- [6] A. N. Dranishnikov and T. Januszkiewicz, *Every Coxeter group acts amenably on a compact space*. In: Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT). Topology Proc. 24(1999), Spring, 135–141.
- [7] A. N. Dranishnikov, J. Keesling, and V. V. Uspenskij, On the Higson corona of uniformly contractible spaces. Topology 37(1998), no. 4, 791–803. doi:10.1016/S0040-9383(97)00048-7
- [8] A. N. Dranishnikov and V. Schroeder, Embedding of hyperbolic Coxeter groups into products of binary trees and aperiodic tilings. http://arxiv.org/abs/math/0504566.
- [9] M. Gromov, Asymptotic invariants for infinite groups. In: Geometric group theory, vol. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
- T. Hosaka, On the cohomology of Coxeter groups. J. Pure Appl. Algebra 162(2001), no. 2–3, 291–301. doi:10.1016/S0022-4049(00)00115-8
- [11] G. Moussong, Hyperbolic Coxeter groups. Ph. D. thesis, Ohio State University, 1988.
- [12] J. Roe, Hyperbolic groups have finite asymptotic dimension. Proc. Amer. Math. Soc. 133(2005), no. 9, 2489–2490. doi:10.1090/S0002-9939-05-08138-4
- [13] E. H. Spanier, Algebraic topology. McGraw-Hill Book Co., New York-Toronto-London, 1966.
- [14] R. L. Wilder, *Topology of manifolds*. American Mathematical Society Colloquium Publications, 32, American Mathematical Society, New York, NY, 1949.
- G. Yu, The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. 147(1998), no. 2, 325–355. doi:10.2307/121011

Hiroshima Institute of Technology, Hiroshima 731-5193, Japan e-mail: naochin@cc.it-hiroshima.ac.jp

Department of Mathematics, Faculty of Education, Utsunomiya University, Utsunomiya, 321-8505, Japan e-mail: hosaka@cc.utsunomiya-u.ac.jp