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DEGREE OF POINTEDNESS OF A CONVEX FUNCTION

ALBERTO SEEGER

A convex function / is said to be pointed if its epigraph has a recession cone which
is pointed. Partial pointedness of / refers to the case in which such a recession
cone is only partially pointed. In this note we show that the degree of pointedness
of / is related to the "thickness" of the effective domain of the conjugate function
/*.

1. INTRODUCTION

Let if be a closed convex cone in some finite dimensional linear space X. It is
easy to see that

1{K) := K n -K

is the largest subspace of X which is contained in K. The dimension of such a subspace
can be used to measure the degree of pointedness of K.

DEFINITION 1: The degree of pointedness of K is defined as the integer

(1) p[K) := dim A" - dim t{K).

If p[K) = dim X, then one says that K is pointed. If 0 < p[K] < dim X, then one
says that K is partially pointed.

Consider a function / : X —> RU {+00} whose effective domain

dom/ := {x € X : f(x) < +00}

is nonempty, and whose epigraph

epi / := {(x, X) € X x R : f{x) ^ A}

is convex and closed. The class of such functions is usually denoted by To (A"). The
recession cone of the set epi / is defined by

( e P i / ) o o : = ( K ct)eX xR: {u,a) + epifC e p i / } .
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The recession function /(*, of / is given by

/oo(u) := sup{/(z +u) - f(x) : x £ dom/} for all u £ X.

Both notions are standard in the context of convex analysis and can be consulted,
for instance, in the book by Rockafellar [3]. In this note we study the following new
concept.

DEFINITION 2: The degree of pointedness of the function / £ T0(X) is the integer

(2) p [ / ] : = d i m * - d i m 4 ( e p i / ) , J .

If p[f] — dim X, then / is said to be pointed. If 0 < p[f] < dim X, then / is called
partially pointed.

REMARK. According to the above definition, / is pointed if and only if (epi / )^ is a
pointed cone. This case has already been considered by Benoist and Hiriart-Urruty [1,
Definition 2.3]. However, these authors do not address the question of the dimension of

2. POINTEDNESS AND CONJUGACY.

In this section we derive a simple formula for computing the degree of pointedness
of a function / 6 To(X). Recall that the Legendre-Fenchel conjugate of / is the
function /* £ T0(X) denned by

r{y) := sup{(y,x) - /(*)} for all y £ X,
xex

where (•,•) is a given inner product in the space X. The next theorem says that the
degree of pointedness of / is equal to the dimension of the effective domain of /* . The
dimension of a nonempty convex set A C. X is defined as the dimension of the affine
hull of A (see [3, p.12]).

THEOREM 1 . Let X be a finite dimensional linear space, and let f £ Fo(X).
Then,

(3) dim (dom/*) + dim ^ (ep i / )^ ) = dim X.

PROOF: We start by proving the equality

(4) L

The notation (C) refers to the linear space spanned by the set C, and (C)^ stands for
the orthogonal complement of (C). By definition one has

(u,o) £ / ((epi /)^) «• («,a) £ (epi / )^ fl -
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Since (epi / )« , = epi /<„ , one can also write

(a ,a ) G /((epi/)„,) <S> / „ ( « ) ^ a and / „ , ( - « ) ^ - a

<* /»(») < « ^ -/oo(-«).

Now we use the fact that /«, is the support function of the set dom/* (see [2]), that
is,

/OO(M) = sup{(y,tt) : y G dom/*}.

One has also

-/oo(-u) = inf{(y,u) : 2/ G dom/*}.

Hence

(«,a)6/((epi/)0O)«»(y,tt) = a for all y G dom/*

«((y,/?),(u,a)) = 0 foraU (y,/3) G dom/* x {-1}.

Equality (4) is proven in this way. To complete the proof of the theorem, it suffices to
observe that

(5) dim A = dim {A x {-1}) - 1,

whenever A is a nonempty convex set in X. The proof of (5) is essentially an exercise
in linear algebra. D

REMARK. By combining Theorem 1 and [3, Theorem 13.4], one sees that
has the same dimension as the set {u G X : /«>(«) = — /<»(—u)} • The latter set is
known as the lineality space of / .

We end this section by illustrating Theorem 1 with two examples.

EXAMPLE 1. Consider the space X = Sn of symmetric matrices of order nxn equipped
with the usual inner product {x,y) := trace (xy). The variance of a matrix x G 5 n is
defined by

1 . / trace x\
n \ n )

The function var : Sn —• R is convex, and its conjugate (var)* : Sn —• R U {+00} is
given by

(var)*(y) = < 4
l_ +00 otherwise.

The dimension of dom (var)* = {y G Sn '• trace y = 0} is equal to dimSn — 1- Hence,
the function var is partially pointed and its degree of pointedness is

p[var] = dim Sn - 1 = (n2 + n - 2)/2.
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EXAMPLE 2. Let X = Sn be as in Example 1. Let Amax(x) denote the largest eigen-
value of the matrix x £ S n . It is known that Amax : Sn —> R is equal to the support
function of the set

A = {x £ Sn : x is positive semidefinite, traces = 1}.

Hence dom(Amax)* = A is a set of dimension equal to dim Sn — 1. Thus, Amax is
partially pointed and p[Amax] = (n2 + n — 2) /2 . In this example one can also compute
p[Amax] by using the very definition of this number. The set epi(Amax) is a closed
convex cone, so it coincides with its recession cone. One has

(z,A) £ ^(epi(Amax)) «• Amax(z) ^ A and Amax(-a;) < -A

<=> all the eigenvalues of x are equal to A.

If i £ Sn denotes the identity matrix, then

*(epi (Amax)) = {(Xi, A): A £ R} = R{(i, 1)} c Sn x R

is a space of dimension 1.

3. POINTEDNESS AND GROWTH CONDITION

Recall that each / £ TQ(X) can be minorised by some affine function, that is, one
can find y £ X and b £ R such that

(6) f(x) Z (y,x) +b for all x £ X.

Is it possible to obtain a more precise information on the growth of / ? In other words,
is it possible to write a stronger growth condition for / ? As already observed by Benoist
and Hiriart-Urruty [1, Theorem 2.4], a growth condition of the type

(7) f{x)>r\\x\\ + {y,x)+b for all x £ X,

with r > 0, characterises the class of functions / £ Fo(X) which are pointed. This
observation leads us to think that a partially pointed function / £ To(X) satisfies a
growth condition which is intermediate between (6) and (7). The purpose of the next
theorem is to display in a clear-cut manner the relationship between growth conditions
and degree of pointedness. To start with, observe that the conditions (6) and (7) can
be written in a common format, namely:

/ ( * ) > # i ( * ) + & for all xeX,

where ij>*A denotes the support function of A C X. In the former case A corresponds
to the zero-dimensional set {y}, and in the latter case A is the full dimensional ball
B{y,r):={zeX:\\z-y\\^r}.
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THEOREM 2 . Tie degree of pointedness of the function f G T0(X) is given by

(8) p[f] — max {dim A : / — i(>A is minorised},

where C(X) denotes the class of nonempty convex sets in X . One can also write

(9) p[f] = max {dim A : /«, ^ j>A},

where the maximum in (9) is attained at A = dom/* for, more generally, at any set
A which is contained in the closure of dom/* and which has the same dimension as
dom/*).

PROOF: The inequality /x, ^ rj>A *s equivalent to the inclusion

A C dom/*,

where the upper bar denotes the closure operation in X. Since the closure operation
does not affect the dimension of a convex set (see [3, Theorem 6.2]), the maximum in
(9) is attained at any A C dom/* which has the same dimension as dom/*. Now we
prove that p[f] — m[f], where m[f] denotes the term on the right-hand side of (8). It
is fairly clear that

/ — tj}*A is minorised => /«, ^ ipA.

Thus (9) yields the inequality p[f] ^ *n[/] • According to the Toland-Singer duality
theorem (see [4, 5]), for all A G C(X), one has:

Hence,

(10) m[/] = max {dim A : f* is majorised over A}.

Take any y G ri(dom/*), where "ri" stands for the relative interior (see [3, p.44]).
Then, for some r > 0 sufficiently small, one has

Ar := B(y,r) D dom/* C ri(dom/*).

According to Rockafellar [3, Theorem 10.1], the function /* is continuous relative to
ri(dom/*). Hence, /* is majorised over the compact set AT, and

m[f] > dim AT.

But

dim Ar = dim (dom/*) = dim (dom/*) = p[f\.

This proves the reverse inequality m[f] ^ p[ / ] , and completes the proof of the theo-
rem. U
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REMARK. Since / and rp\ may take the value +00 at the same time, we have implicitly
adopted the rule (+00) — (+00) = +00. The maximum in (8) is attained at a set A of
the form A = B(y,r) fl dom/*. This means that the formula (8) remains true if one
defines C(X) as the class of nonempty convex compact sets in X.

4. CALCULATION RULES FOR THE DEGREE OF POINTEDNESS.

Suppose / £ To(X) is constructed from other functions, say / 1 , . . . ,/TV, whose
degrees of pointedness are known, or can be easily computed. In this case it is helpful
to have a formula which relates p[f] to the degrees p[/i], • •. ,p[/jv] of the component
functions. The calculation rules recorded in the first two propositions can be proved in
a fairly simple way by using Theorem 1.

PROPOSITION 1. Let f e T0(X). Then,

(a) p[f] ^ p[g] for all g G T0(X) such that f^g;

(b) P[f +t]= P[f] for all affine functions I : X -* R;
(c) p[A/]=p[/] for ail A > 0;
(d) p[ / ( /A)]=p[ / ] for all \>0;

(e) p[/c] = p[f], where c £ X and fc(x) = f(x - c).

N

PROPOSITION 2 . Let X = ]} Xk be the Cartesian product of the finite di-

mensional spaces X\,... , Xp{ . Suppose

f(x) = /i(xx) + • • • + /JV(IJV) for all xe X,

where fk £ T0(Xk) for all k = 1 , . . . ,N. Then,

(11) * ?[/] = £>[/*]•
*=i

In particular, f is pointed if and only if all the fk 's are pointed.

In the next four propositions we consider some important functional operations
arising in the context of convex analysis, namely, pointwise maximum, addition, closed
convex hull, and infimal-convolution.

PROPOSITION 3 . Let / 1 , . . . ,/N ETO(X) Definite at some common point, and
let f = max fk . Then,

(12) p[/]
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In particular, f is pointed if at least one of the fk 's is pointed.

P R O O F : F o r m u l a ( 1 2 ) f o l l o w s f r o m P r o p o s i t i o n l ( a ) . I n d e e d , s i n c e e a c h f k ^ f ,

o n e h a s

p[fk)<p[f) for all k = l,...,N.

An alternative proof of (12) is based on Theorem 2 and runs as follows. Let
J4I , . . . , Ajv £ C(X) and &i,.. . , bjv £ R be such that dim Ak = p[fk], and

fk(x) ^ il>*Ak{x) + bk for all xEX.

Then,

/ ( * ) > i>*A{x) + f> f ° r aU x € X,

N
where 6 = min 6jt and A — co M Ak is the convex hull of the sets A\,... , AN •

Since / — if)\ is minorised, we have

pf/1 ^ dim 4̂ ^ max dim Ak- n

PROPOSITION 4 . Let / i , . . . ,/JV € To(X) be finite at some common point, and

let f=jrfk. Then

(13) p[f] ^ dim (domf* + ••• + domfN) ^ max p[fk].

in particular, / is pointed if at least one of the fk 's is pointed.

PROOF: It is known that /* is equal to the lower-semicontinuous hull of the func-
tion

y e X >-> h{y) : = m i { f * { y i ) + ••• + f N { y N ) • 2/i + • • • + yjv = ! / } •

Thus,

dom /* D dom h = dom /j* + • • • + dom f^

and

dim dom/* ^ dim (dom /^ + ••• + dom/j^) ^ max dim dom/j*.

Theorem 1 completes the proof of (13). D

N
REMARK. If f] ri(dom/fc) is nonempty, then h is lower-semicontinuous, and the first

fc=i
inequality in (13) becomes p[f] = dim (dom/j* + • • • + domfN).
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PROPOSITION 5 . Let f be the closed convex hull of the functions / i , . . . ,/N €
To(X). Suppose all the fk 's are minorised by a common affine function. Then

N

(14) p[f] = dim I ] dom/£ ^ min ?[/*]•

PROOF: Since /* = max{/t ' : 1 < k < TV}, one has

N

dom/* = 0 dom/;.
4=1

Formula (14) follows by applying Theorem 1. u

PROPOSITION 6. Let f be the infimal-convolution ofthe functions / i , . . . ,//v £
TQ(X) . Suppose the sets ri(domfk), k = 1,.. . , N have a point in common. Then

N

(15) p[f] = dim p | dom/* s
k=i

PROOF: The proof is the same as in Proposition 4. This time one starts with the
equality

N

h' D
An important use of the infimal-convolution operation is the regularisation of a

given function / 6 Fo(X). The regularised version of / is defined by

x € X i-> [/D0](z) := inf {/(u) + 0(x - u)},

where the function 0 e T0(X) is referred to as a "kernel".

COROLLARY 1. Let 9 e ro(X) be coercive in the sense that 6{x)/ \\x\\ -* +oo
as |Jas|| —» oo . Then

P[fn0]=p[f} for all feTo(X).

PROOF: That fDO e T0(X) follows from the coercivity of 6. One also has
dom0* = X. Thus, dom(/•#)* = dom/* f"l domtf* has the same dimension as
dom/*. D
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