MODIFIED METHOD OF KREJNIN AND MURRI FOR THE DETERMINATION OF ABSOLUTE DECLINATIONS

S.A. TOLCHELNIKOVA-MURRI Central Astronomical Observatory USSR Academy of Sciences Pulkovo 196140 Leningrad, USSR

ABSTRACT. Krejnin and Murri's method (1973) enablesenables one to derive absolute declinations of stars in a narrow equatorial zone $|\delta| \le 10'$ from observations near the Earth's equator $|\phi| \le 10'$. Some systematic effects, including the errors of the value of the micrometer screw for two equatorial instruments (or the scale error if one of the instruments is a PZT), might be determined if a global reduction is used for the original observations from the equator and from those of an astrolabe at latitude $|\phi| \approx 20^\circ$ to 23°. Astrolabes—especially photoelectric ones (Hu 1988) are considered to be the most efficient for determination of absolute declinations of stars and absolute latitudes of the instruments in Tolchel'nikova-Murri (1985).

In *Izv. GAO* No. 206 the method will be published as well as the criterion for estimating the efficiency of different programs, which is required to improve planning in astrometry.

References

Hu Hui, Cai Xing, Wang Rui: 1988, Acta Astron. Sci. 4, 333
Krejnin, E.I., Murri, S.A.: 1973, Astron. zurn., 50, 606
Tolchel'nikova-Murri, S.A.: 1985, "A Method for Determination of Variation of Mean Latitudes and the Secular Polar Motion," Dep. No. 150-185

ON THE DEFINITION OF AN "INERTIAL COORDINATE SYSTEM"

S.S. PERUANSKY Central Astronomical Observatory Pulkovo 196140 Leningrad, USSR

ABSTRACT. Astrometry is a branch of science which develops methods for the quantitative descriptions of places and time instants of astronomical events on the basis of observations of celestial bodies. For this purpose a theoretical coordinate system is introduced (*e.g.* equatorial α , δ). The aim of astrometry is to apply this system to the observed reference objects (stars, planets etc.) so that their coordinates $\alpha(t)$, $\delta(t)$ can be calculated according to the relations $\alpha(t) = f_1(P_k, t-t_o)$ and $\delta(t) = f_2(P_k, t-t_o)$ where P_k are parameters, t_o is the conventional time instant and t is the current time. In order to understand the term inertial coordinate system assume that the coordinates $\alpha(t_1)$, $\delta(t_1)$, i=1,2,...,n are used for plotting the coordinate origins. If these coincide then the system is conventional-fixed and therefore inertial. Thus, the inertial coordinate system in astrometry is a conventional-fixed reference frame reproduced with the use of celestial bodies whose law of motion is known with sufficient accuracy.