Abstracts of Oral Presentations-WADEM Congress on Disaster and Emergency Medicine 2019

TECHNOLOGY

A Backup System for Clinical Information after the Great East Japan Earthquake and Tsunami

Prof. Masaharu Nakayama

Tohoku University Graduate School of Medicine, Sendai, Japan

Introduction: On March 11, 2011, the Great East Japan Earthquake and Tsunami hit the northeastern part of Japan, causing 15,895 deaths and 2,539 missing persons as of March 1, 2018. Moreover, many medical facilities were destroyed, resulting in the loss of medical information stored in paper records or on servers in hospitals and clinics.

Aim: To highlight the need for a backup system for saving all clinical information during disaster preparation.

Results: In 2012, a prefectural medical network system - the Miyagi Medical and Welfare Information Network (MMWIN) - introduced a cloud backup data storage service for disasters. This system facilitates the sharing of clinical data among hospitals, clinics, pharmacies, and other care facilities. The backup system is based on the Standardized Structured Medical Information Exchange (SS-MIX), which enables data from medical record systems, developed by different vendors, to be stored in a common format. By the end of September 2018, the total backed up clinical data, including patients' basic information, disease names, blood tests, and prescription list, reached 370 million items from 11.2 million persons. We renewed the system last year and initiated an image data sharing service this year. The number of facilities within the MMWIN was 948, while the number of opt-in patients exceeded 80,000.

Discussion: Although the project was financed by the government, a usage fee was collected from the participating facilities. To sustain this project, it is crucial to improve the balance between cost and income by increasing the number of participating facilities and decreasing maintenance cost. Thus, our clinical information backup system for disasters facilitates information sharing among medical facilities.

Prehosp. Disaster Med. 2019;34(Suppl. 1):s85 doi:10.1017/S1049023X19001766

Exploring the Feasibility of Wearable Technologies to Provide Interactive Telepresence Sub-Specialist Support to Remote Clinicians Treating Patients with Traumatic Injuries Dr. Chiara Santomauro^{1,2}, Dr. Tara McCurdie^{1,2},

A/Prof. Cliff Pollard^{2,3}, Mr. Matthew Shuker¹

- 1. Clinical Skills Development Service, Herston, Australia
- The University of Queensland, St Lucia, Australia
- 3. Jamieson Trauma Institute, Herston, Australia

Introduction: Some patients presenting to rural or regional hospitals may be deteriorating so rapidly that emergency procedures might be necessary before transfer to specialist facilities. Such interventions might include placement of an ICC, establishing a surgical airway, evacuation of an EDH, laparotomy, or intra-abdominal packing. The treating clinician may have had little or no experience in the procedure. Interactive telepresence technology offers further point of care support to the treating clinicians through the virtual presence of a specialist from a major trauma center.

Aim: To explore the feasibility of wearable interactive telepresence technology that can provide sub-specialist support to remote clinicians treating patients with traumatic injuries.

Methods: Thirty-seven wearable near-field display devices and annotation software applications were tested against a set of prespecified technical and user experience requirements. A shortlist of three devices and two software applications underwent usability evaluations with a convenience sample of 24 junior clinicians and sub-specialists. The junior clinicians trialed the wearable devices and the sub-specialists trialed the annotation applications in three simulated trauma scenarios. Measures included participants' ratings of acceptance and workload, technical issues encountered (e.g. frequency of call drop-outs), and anecdotal comments.

Results: Participants' subjective ratings of the solutions and anecdotal feedback were positive. However, there was no clear solution that satisfied the functionality and ease-of-use requirements for all participants. For example, the solutions that were rated more favorably by the junior clinicians were rated less favorably by the sub-specialists, and vice versa.

Discussion: This work provided preliminary evidence of the feasibility and usefulness of interactive telepresence technology in healthcare. A second phase of usability testing is currently underway to explore additional device and software combinations, including those with augmented reality functionality. Future phases of the project will evaluate the solutions under higher-fidelity conditions followed by in-situ trials across selected regional centers.

Prehosp. Disaster Med. 2019;34(Suppl. 1):s85 doi:10.1017/S1049023X19001778

Feasibility and Accuracy of a Wearable Biosensor Device for Vital Sign Monitoring in Septic Emergency Department Patients in Rwanda

Dr. Stephanie Garbern¹, Dr. Gabin Mbanjumucyo², Dr. Christian Umuhoza², Vinay Sharma³, James Mackey⁴, Dr. Kyle Martin¹, Dr. Francois Twagirumukiza²,

s86 Technology

Dr. Samantha Rosman⁵, Dr. Natalie McCall⁶, Stephan Wegerich⁷, Dr. Adam Levine¹

- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, USA
- 2. Kigali University Teaching Hospital, Kigali, Rwanda
- Michigan State University College of Human Medicine, East Lansing, USA
- Columbia University Mailman School of Public Health, New York, USA
- Division of Emergency Medicine, Boston Children's Hospital, Boston, USA
- 6. Department of Pediatrics, Yale University, New Haven, USA
- 7. PhysIQ, Inc., Chicago, USA

Introduction: Low and middle-income countries (LMICs) bear a disproportionately high burden of sepsis, contributing to an estimated 90% of global sepsis-related deaths. Critical care capabilities needed for septic patients, such as continuous vital sign monitoring, are often unavailable in LMICs.

Aim: This study aimed to assess the feasibility and accuracy of using a small wireless, wearable biosensor device linked to a smartphone, and a cloud analytics platform for continuous vital sign monitoring in emergency department (ED) patients with suspected sepsis in Rwanda.

Methods: This was a prospective observational study of adult and pediatric patients (≥ 2 months) with suspected sepsis presenting to Kigali University Teaching Hospital ED. Biosensor devices were applied to patients' chest walls and continuously recorded vital signs (including heart rate and respiratory rate) for the duration of their ED course. These vital signs were compared to intermittent, manually-collected vital signs performed by a research nurse every 6-8 hours. Pearson's correlation coefficients were calculated over the study population to determine the correlation between the vital signs obtained from the biosensor device and those collected manually.

Results: 42 patients (20 adults, 22 children) were enrolled. Mean duration of monitoring with the biosensor device was 34.4 hours. Biosensor and manual vital signs were strongly correlated for heart rate (r=0.87, p<0.001) and respiratory rate (r=0.74 p<0.001). Feasibility issues occurred in 9/42 (21%) patients, although were minor and included biosensor falling off (4.8%), technical/connectivity problems (7.1%), removal by a physician (2.4%), removal for a procedure (2.4%), and patient/parent desire to remove the device (4.8%).

Discussion: Wearable biosensor devices can be feasibly implemented and provide accurate continuous vital sign measurements in critically ill pediatric and adult patients with suspected sepsis in a resource-limited setting. Further prospective studies evaluating the impact of biosensor devices on improving clinical outcomes for septic patients are needed.

Prehosp. Disaster Med. 2019;34(Suppl. 1):s85–s86 doi:10.1017/S1049023X1900178X

Hospital Information Technology Considerations for No Notice Disasters

Dr. Charles Little
University of Colorado Hospital, Aurora, United States

Introduction: Modern hospital systems are highly dependent on computerized information technology (IT) systems. The integration of laboratory and radiology ordering and resulting cannot be easily replicated with a "paper" processes. This poses challenges for no-notice events, where the rapid registration of patients is a must for effective clinical care. This weakness in hospital response has been demonstrated in events such as the Boston Marathon bombing, the Aurora Theater (to be discussed), and Las Vegas shootings.

Aim: To discuss lessons learned in configuring IT systems for disasters.

Results: A integrated system of IT system preparation was implemented at the University of Colorado Hospital. This system has been demonstrated to be effective in multiple real-world events.

Discussion: Four areas of IT preparedness are needed for hospital IT response to disasters. First is rapid disaster registration with prepared disaster medical record numbers and packets. The medical records must be active in the hospital IT environment, and a visit or case number must be preassigned or rapidly generated. The medical record number alone in the IT environment will allow the initiation of test ordering. The packet should include preprinted labels, a demographic data sheet, and downtime charting and ordering forms. The second item for response is templated order sets to allow rapid ordering of multiple studies such as laboratory, and especially radiology, without having to reenter clinical information. The third is a method of patient care charting scalable, from paper to electronic, depending on the patient volume, acuity, and workstation access. The fourth is a method for patient care in the IT downtime in a disaster setting. Simple inexpensive measures will allow rapid placement of patients in the IT environment and therefore allow rapid and accurate test ordering and resulting.

Prehosp. Disaster Med. 2019;34(Suppl. 1):s86 doi:10.1017/S1049023X19001791

Prehospital Advanced Resuscitation with Video Direct Medical Control Using Mobile Smart Device

Dr. Soon-Joo Wang Hallym University, Hwaseong, South Korea

Introduction: The prognosis for out-of-hospital cardiac arrest (OHCA) remains controversial if a smart device or video is used. In this study, a system was used that provides advanced cardiac life support (ACLS) with direct medical control through remote video calls for OHCA patients. The study investigated how this system will improve survival.

Aim: The effect of video remote direct medical control using a mobile smart device for cardiac arrest was the main objective of this research.

Methods: Medical origin OHCA patients over 18 years old for one year were included in the video remote direct medical attempt. Trauma, intoxication, environmental origin, and family disagreement were excluded. The advanced field resuscitation was performed by paramedics with video communication-based medical direction, who were dispatched simultaneously by two ambulances. Video communication was performed by a mobile