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In this article, we study nonlinear waves propagating along the background magnetic
field in relativistic electron–positron plasmas. Using the reductive perturbation method,
we derive a three-dimensional equation describing these waves. When the perturbations
do not vary in the directions orthogonal to the background magnetic field this equation
reduces to the vector modified Kortewed–de Vries equation. We present solutions of
the obtained equation in the form of planar solitary waves and describe the results of
study of their stability with respect to transverse perturbations. We also study numerically
non-planar solitary waves.
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1. Introduction

The wave propagation in electron–positron plasmas has been studied extensively
by theorists in relation to both astrophysical as well as laboratory applications. The
electron–positron plasmas exist in pulsar magnetospheres (Sturrock 1971; Ruderman &
Sutherland 1975; Chian & Kennel 1983; Arons & Barnard 1986; Aharonian, Bogovalov
& Khangulyan 2012; Cerutti & Beloborodov 2017), active galactic nuclei (Ruffini,
Vereshchagin & Xue 2010; El-Labany et al. 2013; Kawakatu, Kino & Takahara 2016) and
the early universe (Gailis, Frankel & Dettmann 1995; Shukla 2003; Tatsuno et al. 2003).
In the laboratory, electron–positron plasmas are created in inertial confinement fusion
devises using ultra-intense lasers (Begelman, Blandford & Rees 1984; Liang, Wilks &
Tabak 1998; Gahn et al. 2000). Another example is a semi-conductor plasma, where holes
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behave like positive charges with the mass equal to that of electrons (Shukla et al. 1986).
The plasma can be considered as relativistic when either its bulk velocity is close to the
velocity of light or when the averaged kinetic energy of particles is of the order of or
greater than the electron rest energy.

The linear theory of wave propagation in non-relativistic and relativistic electron–
positron plasmas was developed using both hydrodynamic as well as kinetic description
(Sakai & Kawata 1980a; Arons & Barnard 1986; Stewart & Laing 1992; Iwamoto 1993;
Zank & Greaves 1995). The nonlinear theory of waves in electron–positron plasmas has
been also developed. The nonlinear Schrödinger (NLS) equation was derived and used to
study the modulational instability and envelope solitons (Chian & Kennel 1983; Cattaert,
Kourakis & Shukla 2005; Rajib, Sultana & Mamun 2015). The Korteweg–de Vries (KdV)
and modified Korteweg–de Vries (mKdV) equations were obtained and the dependence
of width and amplitude of solitons described by these equations on parameters of an
unperturbed state was studied (Verheest & Lakhina 1996; Lakhina & Verheest 1997; Rajib
et al. 2015).

We aim to study the propagation of nonlinear waves parallel to the equilibrium magnetic
field. In the case of electron–ion plasmas, this problem has been studied intensively
for a few decades. It was shown that the one-dimensional quasi-parallel propagation of
nonlinear waves is described by the derivative nonlinear Schrödinger (DNLS) equation
(Rogister 1971; Mjølhus 1976; Mio et al. 1976a; Ruderman 2002). This equation was used
to study the modulational instability of circularly polarised Alfvén waves (Mjølhus 1976;
Mio et al. 1976b). The DNLS equation describes a few kinds of solitons as well as the
generation of rogue waves (Ichikawa et al. 1980; Mjølhus & Hada 1997; Fedun, Ruderman
& Erdélyi 2008). It was shown that the DNLS equation is completely integrable, the Lax
pair for this equation was found and the inverse scattering method was used to obtain exact
solutions for this equation (Kaup & Newell 1978; Kawata & Inoue 1978).

Later an extension of the DNLS equations to two and three dimensions (3D DNLS)
was derived (Mjølhus & Wyller 1986; Ruderman 1987; Mjølhus & Hada 1997). This
extension is similar to that obtained by Kadomtsev and Petviashvili (KP equation) for
the KdV equation (Kadomtsev & Petviashvili 1970). The 3D DNLS was used to study
the stability of solitons of the DNLS equation with respect to transverse perturbations
(Ruderman 1987; Mjølhus & Hada 1997).

The propagation of nonlinear Alfvén waves parallel to the external magnetic field has
been also studied in an electron–positron plasma (Sakai & Kawata 1980a,b; Mikhailovskii,
Onishchenko & Smolyakov 1985a; Mikhailovskii, Onishchenko & Tatarinov 1985b,c;
Verheest 1996; Lakhina & Verheest 1997). It was shown that, in contrast to the
electron–proton plasma, nonlinear waves propagating parallel to the magnetic field are
described by the vector form of the mKdV equation. Recently Ruderman (2020) derived
the three-dimensional extension of the vector mKdV equation (3D vector mKdV) similar
to the 3D DNLS for nonlinear Alfvén waves propagation parallel to the external magnetic
field in a non-relativistic electron–positron plasma. He then used this equation to study the
transverse stability of planar solitons propagating at small non-zero angles with respect to
the equilibrium magnetic field.

In this article we aim to derive the 3D vector mKdV equation for nonlinear Alfvén
waves propagating parallel to the external magnetic field in a relativistic electron–positron
plasma, and study non-planar solitary waves. The paper is organised as follows. In
the next section we formulate the problem and present the governing equations. In § 3
we briefly describe the linear theory of waves propagating along the magnetic field in
relativistic electron–positron plasmas. The 3D vector mKdV equation for nonlinear Alfvén
waves propagating parallel to the external magnetic field is derived in § 4. In § 5 we
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present solutions describing linearly polarised (planar) one-dimensional solitary waves
propagating at small non-zero angles with respect to the equilibrium magnetic field, and
the results of study of their stability with respect to transverse perturbations. In § 6 we
describe the results of the numerical study of non-planar solitary waves. In § 7 we present
the summary of the results and our conclusions.

2. Problem formulation and governing equation

We consider the propagation of nonlinear waves along the equilibrium magnetic field
in a plasma that consists of electrons and positrons. We treat the electron and positron
components as two charged fluids. We do not consider the annihilation or pair creation
meaning that the particle number is conserved. To write down the equation describing
the particle number conservation we introduce the particle flux four-vector ni

s (Landau &
Lifshitz 1966), where s = + and s = − correspond to positrons and electrons, respectively.
The time component of the four-vector ni

s is the particle number density times the speed
of light c, and its three spatial components form the three-dimensional particle flux vector.
The four-vector ni

s is proportional to the four-velocity ui
s, ni

s = nsui
s, where the Lorentz

scalar ns is the particle density in the rest frame. Now the particle conservation equation
is written as

∂(nsui
s)

∂xi
= 0, (2.1)

where the summation with the repeating index is from 0 to 3, and x0 = ct, x1 = x, x2 = y,
x3 = z. Using the relation between the four-velocity and the three-dimensional velocity
vector v, ui

s = γs(c, vs), where γs = (1 − v2
s /c2)−1/2 is the gamma-factor and c is the speed

of light, we rewrite (2.1) as

∂(γsns)

∂t
+ ∇ · (γsnsvs) = 0, (2.2)

where ∇ is the three-dimensional gradient.
We assume that the positron and electron fluids are inviscid and the pressure in these

fluids is isotropic. Then the energy–momentum tensors of the positron and electron fluids
are given by (Landau & Lifshitz 1966; Weinberg 1972)

Tik
s = c−2(es + ps)ui

su
k
s + psgik, (2.3)

where ps is the pressure, es = mc2ns the proper energy density, m the rest mass of the
electron and positron, and gik is the metric tensor with the components g00 = −1, g11 =
g22 = g33 = 1, and gij = 0 when i �= j.

We now introduce the anti-symmetric tensor Fik related to the components of the
electric, E, and magnetic, B, fields by (Weinberg 1972; Landau & Lifshitz 1975)

F0α = c−1Eα, α = 1, 2, 3, (2.4a)

F12 = B3, F13 = −B2, F23 = B1. (2.4b)

We also introduce the four-current Ji
s = (cρs, js) where ρs is the density of the electrical

charge and js is the electrical current density defined by js = ρsvs (Landau & Lifshitz
1975). In the reference frame where the charged fluid is at rest (vs = 0) ρs = qsns,
where q+ = q, q− = −q and q is the elementary charge. Then, in the laboratory
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reference frame,
ρs = γsqsns. (2.5)

The energy–momentum tensor is related to the four-current by (Weinberg 1972)

∂Tij
s

∂x j
= gklFilJk

s , (2.6)

where gkl = gkl. We assume that the motion is adiabatic and take

ps = p0

(
ns

n0

)κ

, es = ps

κ − 1
+ mc2ns, (2.7a,b)

where n0 and p0 are the unperturbed number density and pressure (the same for the
electrons and positrons), and κ is the adiabatic index (equal to 5/3 for non-relativistic
plasmas and 4/3 for ultra-relativistic plasmas). The electric and magnetic fields are
governed by the Maxwell equations,

∇ · E = ρ

ε 0
, (2.8a)

∇ · B = 0, (2.8b)

∇ × E = −∂B
∂t

, (2.8c)

∇ × B = μ0j + 1
c2

∂E
∂t

, (2.8d)

where ε0 is the permittivity of free space, μ0 is the permeability of free space and the total
electrical charge and current densities are determined by

ρ = ρ++ρ− = qγ (n+−n−), (2.9a)

j = j++j− = qγ (n+v+−n−v−). (2.9b)

Recall that ε0μ0 = c−2.
Using (2.3)–(2.5), and the relations Ji

s = (cρs, js) and js = ρsvs we obtain from (2.6)
with i = 1, 2, 3

∂[γ 2
s (es + ps)vs]

∂t
+ ∇ · [γ 2

s (es + ps)vsvs] + c2∇ps = c2γsqsns(E + vs × B). (2.10)

Using (2.2) and (2.7a,b) we transform this equation to

∂(γshsvs)

∂t
+ (vs · ∇)(γshsvs) + c2∇ps

γsns
= c2qs(E + vs × B), (2.11)

where

hs = mc2 + κp0

(κ − 1)n0

(
ns

n0

)κ−1

. (2.12)

It is straightforward to show that the equation given by (2.6) with i = 0 follows from (2.2)
and (2.11). Hence, it is not an independent equation and, consequently, it is not used in
the following. Hence, the two-fluid description of an electron–positron plasma is given by
(2.2), (2.8), (2.9), (2.11) and (2.12).

In the following, we assume that in the equilibrium n+ = n− = n0, v+ = v− = 0, E = 0
and B = B0ex, where ex is the unit vector along the x-axis of Cartesian coordinates x, y, z.
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3. Linear theory

Here we briefly describe the linear theory of wave propagation because in the following
we use it as a guide for scaling when deriving the equation governing the propagation of
nonlinear waves. As we only study the longitudinal propagation of nonlinear waves, we
only consider linear wave propagation along the equilibrium magnetic field. Hence, we
linearise (2.2), (2.8), (2.9), (2.11) and (2.12), and then take perturbations of all quantities
proportional to exp[i(kx − ωt)]. As a result, we obtain two disconnected systems of
algebraic equations. The first system is for the perturbation of the number density, pressure
and x-components of the velocity and electric field. It describes the longitudinal wave
mode. The second system is for the y- and z-components of the velocity, electric field
and magnetic field perturbation. It describes transversal wave modes. In the following, we
derive the equation describing the nonlinear transversal waves. However, for completeness
we also present the dispersion equation for the longitudinal waves.

The system describing transversal waves reads

ωh0v⊥s = ic2qs(E⊥−B0ex × v⊥s), (3.1a)

kE⊥ = −ωex × B⊥, (3.1b)

ikex × B⊥ = μ0qn0(v⊥+ − v⊥−) − iω
c2

E⊥, (3.1c)

where

h0 = mc2 + κp0

(κ − 1)n0
, v⊥s = (0, vys, vzs), (3.2a)

E⊥ = (0, Ey, Ez), B⊥ = (0, By, Bz). (3.2b)

Equation (3.1) is a system of linear homogeneous algebraic equations. It only has
non-trivial solutions when its determinant is zero. This condition gives the dispersion
equation

ω2 = V2k2 + h0ω
2(ω2 − c2k2)

2μ0q2n0c4(1 + σ0)
, (3.3)

where

σ0 = B2

2μ0n0h0
, V = c

√
σ0

σ0 + 1
. (3.4a,b)

Considered as a quadratic equation for ω2, this equation has two positive roots. The
solution to this equation is

ω2
2

V2
= 1

4σ0

{
1 + 2(1 + σ0)k2
2 ±

√
1 + 4(1 − σ0)k2
2 + 4(1 + σ0)2k4
4

}
, (3.5)

where 
 is the dispersion length given by


 = 1
2cq(σ0 + 1)

√
h0

μ0n0
. (3.6)

When the wavelength is of the order of or smaller than 
, that is, k
 � 1, the wave
dispersion is strong. The condition that the dispersion is weak is written as k
 � 1. As
k
2 → 0 the root given by (3.5) with the plus sign tends to a non-zero value. This value,
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FIGURE 1. Dispersion curves defined by (3.5) and (3.8a–c). To plot these curves we took
a0/V = 1/2 and σ0 = 9/7. The solid and dashed curves correspond to the dispersion equations
given by (3.5) with the plus and minus signs, respectively. The dash-dotted curve corresponds to
the dispersion equation given by (3.8a–c).

in turn, tends to infinity in the non-relativistic limit, that is, when c → ∞. The root given
by (3.5) with the minus sign tends to zero. We are only interested in the second root.
For k
 � 1 the dispersion relation determined by this root is given by the approximate
expression

ω = kV(1 − k2
2). (3.7)

Although we do not need the information concerning longitudinal waves for the derivation
of the nonlinear equation in § 4, we give the dispersion relation for these waves because it
is used for the classification of wave modes. This dispersion relation reads

ω2 = ω2
0 + a2

0k2, ω2
0 = 2c2q2n0

ε0h0
, a2

0 = c2κp0

γ 2n0h0
. (3.8a–c)

When 
k → 0 this dispersion equation corresponds to electrostatic waves with the
frequency ω0 independent of the wavelength. On the other hand, when a0k � ω0 the
dispersion equation for longitudinal waves reduces to the approximate form ω ≈ a0k. This
dispersion equation corresponds to sound waves. This sound wave is the slow mode when
a0 < V and fast mode when a0 > V . Transverse waves represent merged Alfvén mode and
either fast mode when a0 < V or slow mode when a0 > V . The dispersion curves defined
by (3.5) and (3.8a–c) are shown in figure 1. To plot these curves we took a0/V = 1/2
and σ0 = 9/7, which corresponds to V = 3c/4. The dispersion curves are qualitatively the
same for other values of a0/V and σ0. In particular, it can be shown that the dispersion
curve defined by (3.8a–c) is always in between the two dispersion curves defined by (3.5).
As we have stated previously, in the following we are studying nonlinear evolution of
waves with the dispersion relation shown by the dashed curve in figure 1.

In the non-relativistic limit p0 � mc2 and B2/μ0 � mc2, that is, both the density of
the internal plasma energy and the magnetic energy density are much smaller than the
rest energy density of the plasma. The second condition implies that σ0 � 1. In this case
V ≈ c

√
σ0 ≈ B0(2μ0mn0)

−1/2. We can recognise in this expression the Alfvén speed in
a non-relativistic electron–positron plasma. We note that the term describing the wave
dispersion (the second term in the brackets in (3.7)) is proportional to k2. In the case of
electron–ion plasma it is proportional to ik. This difference is related to the fact that the
masses of positively and negatively charged particles are the same in an electron–positron
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plasma, whereas the mass of positively charged particles is much larger than the mass of
negatively charged particles in an electron–ion plasma.

4. Derivation of equation for small-amplitude nonlinear waves

We consider nonlinear waves propagating along the equilibrium magnetic field. To
derive the nonlinear equation describing the parallel propagation of nonlinear waves we
use the reductive perturbation method (Kakutani et al. 1968; Taniuti & Wei 1968). In
accordance with this method we introduce the dimensionless wave amplitude ε � 1.
Ruderman (2020) (referred to as Paper I in the following) showed that these waves in a
non-relativistic electron–positron plasma are described by the 3D vector mKdV equation.
We expect that the propagation of these waves in a relativistic electron–positron plasma
is described by the same equation with the only difference that the expressions of the
coefficients of this equation in terms of equilibrium quantities will be different. Hence, we
introduce the same scaling variables as in Paper I,

ξ = ε(x − Vt), η = ε2y, ζ = ε2z, τ = ε3t. (4.1a–d)

In these new variables (2.2), (2.8), (2.9) and (2.11) are reduced to

ε2 ∂(γsns)

∂τ
− V

∂(γsns)

∂ξ
+ ∂(γsnsvxs)

∂ξ
+ ε∇⊥ · (γsnsv⊥s) = 0, (4.2a)

ε2 ∂(γshsvxs)

∂τ
+ (vxs − V)

∂(γshsvxs)

∂ξ
+ ε(v⊥s · ∇⊥)(γshsvxs)

+ c2

γsns

∂ps

∂ξ
= ε−1c2qs [Ex + ex · (v⊥s × B⊥)] , (4.2b)

ε2 ∂(γshsv⊥s)

∂τ
+ (vxs − V)

∂(γshsv⊥s)

∂ξ
+ ε(v⊥s · ∇⊥)(γshsv⊥s)

+εc2∇⊥ps

γsns
= ε−1c2qs[E⊥+ex × (vxsB⊥ − Bxv⊥s)], (4.2c)

∂Ex

∂ξ
+ ε∇⊥ · E⊥ = ε−1 q

ε0
(γ+n+−γ−n−), (4.2d)

∂Bx

∂ξ
+ ε∇⊥ · B⊥ = 0, (4.2e)

ε2 ∂Bx

∂τ
− V

∂Bx

∂ξ
= −ε ex · (∇⊥×E⊥), (4.2f )

ε2 ∂B⊥
∂τ

− V
∂B⊥
∂ξ

= −ex ×
(

∂E⊥
∂ξ

− ε∇⊥Ex

)
, (4.2g)

ε2 ∂Ex

∂τ
− V

∂Ex

∂ξ
= εc2ex · (∇⊥×B⊥) − ε−1 q

ε0
(γ+n+vx+ − γ _ − n_ − υx−), (4.2h)

ε2 ∂E⊥
∂τ

− V
∂E⊥
∂ξ

= c2ex ×
(

∂B⊥
∂ξ

− ε∇⊥Bx

)

−ε−1 q
ε0

(γ+n+v⊥+ − γ−n−v⊥−), (4.2i)
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where

∇⊥ =
(

0,
∂

∂η
,

∂

∂ζ

)
. (4.3)

Now we look for the solution in the form of expansions in the power series with respect
to ε,

ps = p0 + εp(1)
s + ε2p(2)

s + ε3p(3)
s + · · · ,

ns = n0 + εn(1)
s + ε2n(2)

s + ε3n(3)
s + · · · ,

vxs = εv(1)
xs + ε2v(2)

xs + ε3v(3)
xs + · · · ,

v⊥s = εv
(1)

⊥s + ε2v
(2)

⊥s + ε3v
(3)

⊥s + · · · ,

Bx = B0 + εB(1)
x + ε2B(2)

x + ε3B(3)
x + · · · ,

B⊥ = εB(1)

⊥ + ε2B(2)

⊥ + ε3B(3)

⊥ + · · ·
Ex = εE(1)

x + ε2E(2)
x + ε3E(3)

x + · · · ,

E⊥ = εE(1)

⊥ + ε2E(2)

⊥ + ε3E(3)

⊥ + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

We impose the boundary conditions at ξ → ∞,

ns → n0, vxs → 0, Bx → B0, Ex → 0,

v⊥s → 0, B⊥ → 0, E⊥ → 0.

}
(4.5)

In the following, we use the expansion

γs = 1 + ε2

2c2

[
v(1)

xs
2 +

∣∣∣v(1)

⊥s

∣∣∣2 + 2ε
(
v(1)

xs v(2)
xs + v

(1)

⊥s · v
(2)

⊥s

)]
+ · · · . (4.6)

4.1. The zero-order approximation
Substituting the expansions given by (4.4) in (2.7a,b), (2.12) and (4.2), and collecting
terms of the order of unity we obtain

n(1)
+ = n(1)

− = n(1), v(1)
x+ = v(1)

x− = v(1)
x , v

(1)

⊥+ = v
(1)

⊥− = v
(1)

⊥ , (4.7a)

E(1)
x = 0, E(1)

⊥ = B0ex × v
(1)

⊥ . (4.7b)

4.2. The first-order approximation
Collecting terms of the order of ε in (2.7a,b) and (4.2), and using (2.12), (4.6) and (4.7)
yields

V
∂n(1)

∂ξ
− n0

∂v(1)
x

∂ξ
= 0, p(1)

s = κp0
n(1)

n0
,

∂B(1)
x

∂ξ
= 0, (4.8a)

h0V
∂v(1)

x

∂ξ
− c2

n0

∂p(1)
s

∂ξ
= −c2qs

[
E(2)

x + ex ·
(
v

(1)

⊥ × B(1)

⊥
)]

, (4.8b)

h0V
∂v

(1)

⊥
∂ξ

= −c2qs

[
E(2)

⊥ − ex ×
(

B0v
(2)

⊥s − v(1)
x B(1)

⊥ + B(1)
x v

(1)

⊥
)]

, (4.8c)

https://doi.org/10.1017/S0022377823000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000156


Solitons in electron–positron plasmas 9

V
∂E(1)

⊥
∂ξ

= −c2ex × ∂B(1)

⊥
∂ξ

+ qn0

ε0

(
v

(2)

⊥+ − v
(2)

⊥−
)

, (4.8d)

V
∂B(1)

⊥
∂ξ

= ex × ∂E(1)

⊥
∂ξ

, n(2)
+ = n(2)

− = n(2), v(2)
x+ = v(2)

x− = v(2)
x . (4.8e)

Each of (4.8b) and (4.8c) represent two equations, one for s = + and the other for s = −.
Adding and subtracting these equations we obtain

h0V
∂v(1)

x

∂ξ
− c2

n0

∂p(1)
s

∂ξ
= 0, E(2)

x = −ex ·
(
v

(1)

⊥ × B(1)

⊥
)

, (4.9a)

∂v
(1)

⊥
∂ξ

= c2qB0

2Vh0
ex ×

(
v

(2)

⊥+ − v
(2)

⊥−
)

, (4.9b)

2E(2)

⊥ = ex ×
[
B0

(
v

(2)

⊥+ + v
(2)

⊥−
)

− 2v(1)
x B(1)

⊥ + 2B(1)
x v

(1)

⊥
]
. (4.9c)

It follows from the boundary conditions (4.5), as well as (4.8a) and (4.9a), that

n(1) = 0, p(1)
s = 0, v(1)

x = 0, B(1)
x = 0. (4.10a–d)

Using (4.7b) and (4.8e) yields

E(1)

⊥ = −Vex × B(1)

⊥ , v
(1)

⊥ = − V
B0

B(1)

⊥ . (4.11a,b)

It follows from (4.8b), (4.8d) and (4.11a,b)

E(2)
x = 0, v

(2)

⊥+ − v
(2)

⊥− = 1
qn0μ0

(
1 − V2

c2

)
ex × ∂B(1)

⊥
∂ξ

. (4.12a,b)

Equation (4.9b), the second equation in (4.12a,b) and the equation obtained by
differentiating the second equation in (4.11a,b) with respect to ξ constitute a linear
homogeneous system of equations for ∂v

(1)

⊥ /∂ξ , ∂B(1)

⊥ /∂ξ , and v
(2)

⊥+ − v
(2)

⊥−. It only has
non-trivial solutions when its determinant is zero. This condition determines that V is
given by (3.6).

4.3. The second-order approximation
Now we collect terms of the order of ε2 in (2.7a,b) and (4.2), and using (2.12) and (4.6),
and the results obtained in the previous two subsections, we obtain

∂v(2)
x

∂ξ
− V

n0

∂n(2)

∂ξ
− V

2c2

∂|v(1)

⊥ |2
∂ξ

+ ∇⊥ · v
(1)

⊥ = 0, p(2)
s = κp0

n(2)

n0
, (4.13a)

c2

n0

∂p(2)

∂ξ
− h0V

∂v(2)
x

∂ξ
= c2qs

[
E(3)

3 + ex ·
(
v

(1)

⊥ × B(2)

⊥ + v
(2)

⊥s × B(1)

⊥
)]

, (4.13b)

∂v
(2)

⊥s

∂ξ
= −c2qs

Vh0

[
E(3)

⊥ − ex ×
(

B0v
(3)

⊥s − v(2)
x B(1)

⊥ + B(2)
x v

(1)

⊥
)]

, (4.13c)
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∇⊥ · E(1)

⊥ = q
ε0

[n0

c2
v

(1)

⊥ ·
(
v

(2)

⊥+ − v
(2)

⊥−
)

+ n(3)
+ − n(3)

−
]
, (4.13d)

∂B(2)
x

∂ξ
+ ∇⊥ · B(1)

⊥ = 0, V
∂B(2)

x

∂ξ
= ex ·

(
∇⊥×E(1)

⊥
)

, (4.13e)

V
∂B(2)

⊥
∂ξ

= ex × ∂E(2)

⊥
∂ξ

, ex · ∇⊥×B(1)

⊥ = qn0μ0
(
v(3)

x+ − v(3)
x−
)
, (4.13f )

V
c2

∂E(2)

⊥
∂ξ

+ ex × ∂B(2)

⊥
∂ξ

= qn0μ0

(
v

(3)

⊥+ − v
(3)

⊥−
)

. (4.13g)

Using the second equation in (4.11a,b) we transform the first equation in (4.13a) to

∂v(2)
x

∂ξ
− V

n0

∂n(2)

∂ξ
= V3

2c2B2
0

∂|B(1)

⊥ |2
∂ξ

+ V
B0

∇⊥ · B(1)

⊥ . (4.14)

Equation (4.13b) represents two equations, one for s = + and the other for s = −. Adding
these equations and using the second equation in (4.13a) we obtain

κc2p0

n2
0

∂n(2)

∂ξ
− h0V

∂v(2)
x

∂ξ
= c2q

2
ex ·

[(
v

(2)

⊥+ − v
(2)

⊥−
)

× B(1)

⊥
]
. (4.15)

Using (4.12a,b) we transform this equation to

κc2p0

n2
0

∂n(2)

∂ξ
− h0V

∂v(2)
x

∂ξ
= −c2 − V2

4n0μ0

∂|B(1)

⊥ |2
∂ξ

. (4.16)

We find from (4.14) and (4.16)

∂n(2)

∂ξ
= h0n2

0V2

B0(κc2p0 − n0h0V2)

(
∇⊥ · B(1)

⊥ − μ0n0h0V2

c2B3
0

∂|B(1)

⊥ |2
∂ξ

)
, (4.17a)

∂v(2)
x

∂ξ
= κc2p0V

B0(κc2p0 − n0h0V2)

(
∇⊥ · B(1)

⊥ + V2(κp0 − n0h0)

2κc2p0B0

∂|B(1)

⊥ |2
∂ξ

)
. (4.17b)

Using (4.11a,b) and (4.12a,b) we obtain from (4.13d)

n(3)
+ − n(3)

− = ε0V
q

ex ·
(

∇⊥×B(1)

⊥ − c2 − V2

c2B0
B(1)

⊥ × ∂B(1)

⊥
∂ξ

)
. (4.18)

Finally, (4.13c) represents two equation, one for s = + and the other for s = −. Subtracting
the second equation from the first and using (4.9b) and (4.11a,b) yields

E(3)

⊥ − B0

2
ex ×

(
v

(3)

⊥+ + v
(3)

⊥−
)

= ex ×
(

B(2)
x v

(1)

⊥ − v(2)
x B(1)

⊥ − 2V3h2
0

q2c4B2
0

∂2B(1)

⊥
∂ξ 2

)
. (4.19)
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4.4. The third-order approximation
In the third-order approximation we collect the terms of the order of ε3 in (4.2c), (4.2g)
and (4.2i), and use (2.12) and the second equation in (4.13a) to obtain

∂v
(1)

⊥
∂τ

+ v(2)
x

∂v
(1)

⊥
∂ξ

− V
∂v

(3)

⊥s

∂ξ
− V

2c2

∂(v
(1)

⊥ |v(1)

⊥ |2)
∂ξ

− κp0V
h0n2

0

∂(n(2)v
(1)

⊥ )

∂ξ

+
(
v

(1)

⊥ · ∇⊥
)

v
(1)

⊥ + κc2p0

h0n2
0

∇⊥n(2) = c2qs

h0

[
E(4)

⊥

+ex ×
(
v(2)

x B(2)

⊥ + v(3)
xs B(1)

⊥ − B0v
(4)

⊥s − B(2)
x v

(2)

⊥s − B(3)
x v

(1)

⊥
)]

, (4.20a)

∂B(1)

⊥
∂τ

− V
∂B(3)

⊥
∂ξ

= −ex × ∂E(3)

⊥
∂ξ

, (4.20b)

∂E(1)

⊥
∂τ

− V
∂E(3)

⊥
∂ξ

= c2ex ×
(

∂B(3)

⊥
∂ξ

− ∇⊥B(2)
x

)

− q
ε0

{
n0

(
v

(4)

⊥+ − v
(4)

⊥−
)

+
(
v

(2)

⊥+ − v
(2)

⊥−
) (

n(2) + n0

2c2
|v(1)

⊥ |2
)

+v
(1)

⊥
(
n(3)

+ − n(3)
−
)+ n0

c2
v

(1)

⊥
[
v

(1)

⊥ ·
(
v

(2)

⊥+ − v
(2)

⊥−
)]}

. (4.20c)

Equation (4.20a) represents two equations, one for s = + and the other for s = −. Adding
these equations yields

∂v
(1)

⊥
∂τ

+ v(2)
x

∂v
(1)

⊥
∂ξ

− V
2

∂(v
(3)

⊥+ + v
(3)

⊥−)

∂ξ
− V

2c2

∂(v
(1)

⊥ |v(1)

⊥ |2)
∂ξ

−κp0V
h0n2

0

∂(n(2)v
(1)

⊥ )

∂ξ
+ (v

(1)

⊥ · ∇⊥)v
(1)

⊥ + κc2p0

h0n2
0

∇⊥n(2)

= c2q
2h0

ex ×
[
B(1)

⊥
(
v(3)

x+ − v(3)
x−
)− B0

(
v

(4)

⊥+ − v
(4)

⊥−
)

− B(2)
x

(
v

(2)

⊥+ − v
(2)

⊥−
)]

. (4.21)

Using (4.12a,b), (4.13f ), (4.18) and (4.19) we transform (4.20c) and (4.21) to

∂B(3)

⊥
∂ξ

− V
c2

ex × ∂E(3)

⊥
∂ξ

+ n0qμ0ex ×
(
v

(4)

⊥+ − v
(4)

⊥−
)

= ∇⊥B(2)
x − V

c2

∂B(1)

⊥
∂τ

+c2 − V2

n0c2

∂B(1)

⊥
∂ξ

(
n(2) + n0V2

2c2B2
0
|B(1)

⊥ |2
)

+ V2

c2B0

(
ex × B(1)

⊥
)

ex · ∇⊥×B(1)

⊥ , (4.22)

ex × ∂E(3)

⊥
∂ξ

+ c2qB2
0

2h0V
ex ×

(
v

(4)

⊥+ − v
(4)

⊥−
)

= ∂B(1)

⊥
∂τ

− h2
0V3

c2q2B2
0

∂3B(1)

⊥
∂ξ 3
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+
(

v(2)
x + B0(c2 − V2)

2n0h0μ0V
B(2)

x

)
∂B(1)

⊥
∂ξ

+ ∂

∂ξ

[
B(1)

⊥

(
v(2)

x − κp0Vn(2)

h0n2
0

+ V
B0

B(2)
x − V3

2c2B2
0

∣∣∣B(1)

⊥
∣∣∣2)]+ c2B0

2n0h0μ0V

(
ex × B(1)

⊥
)

ex · ∇⊥×B(1)

⊥

− V
B0

(
B(1)

⊥ · ∇⊥
)

B(1)

⊥ − κc2p0B0

h0n2
0V

∇⊥n(2). (4.23)

Equations (4.20b), (4.22) and (4.23) constitute a system of linear inhomogeneous algebraic
equations for ∂B(3)

⊥ /∂ξ , ∂E(3)

⊥ /∂ξ and v
(4)

⊥+ − v
(4)

⊥−. Now we obtain the condition of
compatibility for this system. To do this we eliminate the variables B(3)

⊥ , E(3)

⊥ and
v

(4)

⊥+ − v
(4)

⊥− from the system of (4.20b), (4.22) and (4.23). First we use (4.20b) to eliminate
B(3)

⊥ from (4.22) and then divide the obtained equation by

c2 − V2

c2V
= 2μ0n0h0V

c2B2
0

= V
σ0c2

. (4.24)

Then we obtain the equation with the left-hand side coinciding with the left-hand side of
(4.23). Subtracting the obtained equation from (4.23) we obtain

∂B(1)

⊥
∂τ

+ c2 − V2

2c2

(
v(2)

x − V
n0

n(2) + V
B0

B(2)
x − V3

2c2B2
0
|B(1)

⊥ |2
)

∂B(1)

⊥
∂ξ

+c2 − V2

2c2

∂

∂ξ

[
B(1)

⊥

(
v(2)

x − κp0V
h0n2

0
n(2) + V

B0
B(2)

x − V3

2c2B2
0
|B(1)

⊥ |2
)]

+V(c2 − V2)

2c2B0

[(
ex × B(1)

⊥
)

ex · ∇⊥×B(1)

⊥ −
(

B(1)

⊥ · ∇⊥
)

B(1)

⊥
]

−κμ0p0V
n0B0

∇⊥n(2) − V
2

∇⊥B(2)
x + h2

0V3(c2 − V2)

2c6q2B2
0

∂3B(1)

⊥
∂ξ 3

= 0. (4.25)

In the following, we use two identities that can be verified by the direct calculation,(
ex × B(1)

⊥
)

ex · ∇⊥×B(1)

⊥ = −B(1)

⊥ ×
(
∇⊥×B(1)

⊥
)

, (4.26a)(
B(1)

⊥ · ∇⊥
)

B(1)

⊥ = 1
2
∇⊥|B(1)

⊥ |2 − B(1)

⊥ ×
(
∇⊥×B(1)

⊥
)

. (4.26b)

It follows from (3.6) that
h2

0V3(c2 − V2)

2c6q2B2
0

= V
2. (4.27)

Using (3.6), (4.13e), (4.17) and (4.24) we obtain

v(2)
x − V

n0
n(2) + V

B0
B(2)

x − V3

2c2B2
0
|B(1)

⊥ |2 = 0, (4.28a)

v(2)
x − κp0V

h0n2
0

n(2) + V
B0

B(2)
x − V3

2c2B2
0
|B(1)

⊥ |2

= V3(n0h0 − κp0)

n0h0V2 − κc2p0

(
c2 − V2

2c2B2
0

|B(1)

⊥ |2 − Φ

B0

)
, (4.28b)
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where
∂Φ

∂ξ
= ∇⊥ · B(1)

⊥ , Φ → 0 as ξ → ∞. (4.29)

Using (4.24), (4.26), (4.27), (4.28) and (4.29) we transform (4.25) to

∂B(1)

⊥
∂τ

+ α(c2 − V2)

c2

∂

∂ξ

[
B(1)

⊥

(
c2 − V2

c2
|B(1)

⊥ |2 − 2B0Φ

)]

−αB0∇⊥

(
c2 − V2

c2
|B(1)

⊥ |2 − 2B0Φ

)
+ V
2 ∂3B(1)

⊥
∂ξ 3

= 0, (4.30)

where

α = V3(n0h0 − κp0)

4n0h0B2
0(V2 − a2

0)
. (4.31)

We note that, in accordance with (4.6), γ = 1 in the leading-order approximation. Hence,
the expression for the sound speed given by (4.6) is simplified to a2

0 = κc2p0(n0h0)
−1. It

follows from (3.2a) that n0h0 > κp0. Hence, α > 0 when V > a0, that is, when transverse
waves are the merged Alfvén and fast waves, whereas α < 0 when V < a0, that is,
when transverse waves are the merged Alfvén and slow waves.

Now we return to the original independent variables and introduce the notation

b = ε(c2 − V2)

c2
B(1)

⊥ , ϕ = ε2(c2 − V2)

c2
Φ. (4.32)

As a result we reduce (4.29) and (4.30) to

∂ϕ

∂x
= ∇⊥ · b, ϕ → 0 as x → ∞, (4.33)

∂b
∂t

+ V
∂b
∂x

+ α
∂

∂x

[
b(|b|2 − 2B0ϕ)

]− α∇⊥(|b|2 − 2B0ϕ) + V
2 ∂3b
∂x3

= 0, (4.34)

where we changed the notation and put

∇⊥ =
(

0,
∂

∂y
,

∂

∂z

)
. (4.35)

Formally (4.34) is the same as the equation derived in Paper I for non-relativistic plasmas.
Only the expressions for α and V in terms of equilibrium quantities are more involved. In
the limit of c → ∞ these expressions are reduced to those obtained in Paper I.

5. Solitary waves

In this section, we consider solutions to the system of (4.33) and (4.34) that depend on t
and X = x + kyy + kzz, where ky and kz are constant, and ky � 1, kz � 1. Then (4.33) and
(4.34) reduce to

∂ϕ

∂X
= ∂(k⊥ · b)

∂X
, ϕ → 0 as X → ∞, (5.1)
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∂b
∂t

+ V
∂b
∂X

+ α
∂

∂X

[
b(|b|2 − 2B0ϕ)

]
−αB0k⊥

∂

∂X
(|b|2 − 2B0ϕ) + V
2 ∂3b

∂X3
= 0, (5.2)

where k⊥ = (0, ky, kz). It follows from (5.1) that ϕ = k⊥ · b. Substituting this result into
(5.2) yields

∂h
∂t

+ W
∂h
∂X

+ α
∂(|h|2h)

∂X
+ V
2 ∂3h

∂X3
= 0, (5.3)

where
h = b − B0k⊥, W = V − αB2

0k2
⊥. (5.4a,b)

Equation (5.3) is the non-integrable vector mKdV equation. Previously this equation was
derived for waves propagating along the magnetic field in electron–positron plasmas
(Sakai & Kawata 1980b; Verheest 1996). It was also derived for the description of
transverse perturbations in a chain of interacting particles (Gorbacheva & Ostrovsky 1983),
nonlinear waves in micropolar media (Erbay & Suhubi 1989a,b), in generalised elastic
solids (Erbay 1999) and deformed hyperelastic dispersive solids (Destrade & Saccomandi
2008). As (5.2) was derived under assumption that all perturbations decay at infinity, it
follows that b → 0 and, consequently, h → −B0k⊥ as X → ∞.

We note that there is also the integrable vector mKdV equation. In differs from (5.3) in
that the nonlinear term is proportional to |h|2(∂h/∂X).

Now we look for solutions describing solitary waves. It is more convenient to use not
(5.3) but (5.2) with ϕ = k⊥ · b. We look for the solutions to this equation that depend on
θ = X − (C + V)t, where C is a constant. Then we obtain

Cb − α
[
(b − B0k⊥)(|b|22B0k⊥ · b)

]− V
2 ∂2b
∂θ 2

= 0. (5.5)

This is the system of two second-order differential equations for by and bz. It was shown
in Paper I that this system can be written in the Hamiltonian form as

ġy = −∂H
∂by

, ġz = −∂H
∂bz

, ḃy = ∂H
∂gy

, ḃz = ∂H
∂gz

, (5.6a–d)

where the Hamiltonian is given by

H = 1
2

(
g2

y + g2
z

)+ 1
4V
2

[
α(b2 − 2B0k⊥ · b)2 − 2Cb2] , (5.7)

gy = ḃy, gz = ḃz, b2 = b2
y + b2

z and the dot indicates the derivative with respect to θ .
When k⊥ = 0 the waves propagate exactly along the equilibrium magnetic field. In this

case the two equations for by and bz defined by (5.5) are identical. Hence, we can take
one of the two variables equal to zero. We take bz = 0. Then the expression for the soliton
propagating along the magnetic field is (see, e.g., Verheest 1996)

by =
√

2C√
α cosh(θ/L)

, L = 


√
V
C

. (5.8a,b)

It is important that this solution only exists when α > 0.
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Now we consider the case where k⊥ �= 0. Without loss of generality we can take kz = 0
and ky > 0. In the following, we write k instead of ky. First we consider planar solitons
with bz = 0. We have H = 0 for solitons. Then it follows from (5.7) that by satisfies the
equation

2V
2ḃ2
y = b2

y

[
2C − α(by − 2B0k)2] . (5.9)

Solutions to this equation describing solitons satisfy the condition by → 0 as |θ | → ∞. It
is shown in Paper I that these solutions only exist for

C > 2αB2
0k2 (5.10)

when α > 0. These solutions are given by

by = ±2(C − 2αB2
0k2)√

2αC cosh(θ/L) ∓ 2αB0k
, (5.11)

where

L = 


√
V

C − 2αB2
0k2

. (5.12)

This expression is slightly different from that given in Paper I. However, it is easily
obtained from the latter by the linear substitution of the independent variable. The solitons
described by (5.7) with the upper and lower signs are called bright and dark, respectively.

When α < 0 solutions describing solitons exist only when C satisfies the inequality

2αB2
0k2 < C < 0. (5.13)

In this case there is only one soliton described by (5.7) with the upper sign. As now there
is only one soliton, we do not use the terms ‘bright’ and ‘dark’ when α < 0.

It is shown in Paper I that bright solitons are stable and dark solitons are unstable with
respect to transverse perturbations. When α < 0 the solitons are unstable with respect to
these perturbations.

Finally, (5.9) also posses a solution in the form of an algebraic soliton. It can be verified
by the direct substitution that

by = 4kB0

1 + (θ/λ)2
, λ = 


kB0

√
V
2α

(5.14a,b)

is a solution to (5.9) when C = 2αB2
0k2. It can be also obtained from (5.11) with the upper

sign by taking C → 2αB2
0k2.

6. Non-planar solitary waves

In the previous section we described planar solitary waves where the magnetic field
perturbation is in the plane defined by the direction of solitary wave propagation and the
unperturbed magnetic field, that is, the plane containing the vectors ex and k⊥. These
solutions can be called solitons because they are the solutions to the integrable mKdV
equation. In this section we consider non-planar solitary waves where the magnetic field
perturbation is not in the plane defined by the vectors ex and k⊥. As they are solutions to
the non-integrable vector mKdV equation we call them solitary waves rather than solitons.
We only consider the case where α > 0.
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Although we cannot rigorously prove this, it seems that the Hamiltonian system defined
by (5.6a–d) and (5.7) is non-integrable, that is, there is only one first integral of this
system, H = const. Hence, we only can find non-planar solitary waves numerically. For
the numerical study, we introduce the dimensionless variables

σ = kB0θ
√

α



√

V
, uy = by

kB0
, uz = bz

kB0
, U = C

αk2B2
0
. (6.1a–d)

We note that U is the dimensionless soliton speed in the reference frame moving with the
velocity of infinitely long small perturbations V

Without loss of generality, we always can take k⊥ = key with k > 0, where ey is the unit
vector of the y-axis. Then the Hamiltonian system of equations (5.6a–d) reduces to

d2uy

dσ 2
= −(u2 − 2uy)(uy − 1) + Uuy, (6.2)

d2uz

dσ 2
= −uz(u2 − 2uy − U), (6.3)

where u2 = u2
y + u2

z . The dimensionless form of the Hamiltonian is

H̃ = 2V
2

αk4B4
0
H =

(
duy

dσ

)2

+
(

duz

dσ

)2

+ 1
2

[
(u2 − 2uy)

2 − 2Uu2] . (6.4)

For a solitary wave we have H̃ = 0. This condition was used for controlling the accuracy
of numerical solutions. In the dimensionless variables, (5.11) describing planar solitary
waves is rewritten as

uy = ±2(U − 2)√
2U cosh(σ

√
U − 2) ∓ 2

. (6.5)

The solutions describing these solitons exist for U > 2. The asymptotic behaviour of
solutions to the system of (6.2) and (6.3) decaying at infinity is given by

uy ∼ exp
(
−√

U − 2 |σ |
)

, uz ∼ exp
(
−

√
U |σ |

)
. (6.6a,b)

It follow from these asymptotic expressions that non-planar solitary waves also can exist
only for U > 2.

The system of (6.2) and (6.3) is very complicated and the full study of properties
of its solutions deserves a separate paper. Here we only present its particular solutions
showing that non-planar solitary waves exist. We looked for solutions where by(σ ) is an
even function and bz(σ ) is an odd function. In accordance with this we impose the initial
conditions at σ = 0

uy = 2 + a
√

2U,
duy

dσ
= 0,

duz

dσ
= −

(
2 + a

√
2U
)√

(1 − a2)U, uz = 0,

(6.7a–d)

where a ∈ (0, 1]. Taking a = 1 we obtain the solution given by (6.5) with the upper sign
and bz = 0. We note that the expressions for uy and duz/dσ at σ = 0 are related by the
condition H̃ = 0. Obviously if uy(σ ) and uz(σ ) are solutions to the system of (6.2) and
(6.3), then uy(σ ) and −uz(σ ) are also solutions. Hence, the solitary waves exist in pairs.
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FIGURE 2. Dependence of uy (solid line) and uz (dash-dotted line) on σ for various values of
U and a given in the figures.

In general, solutions to the system of (6.2) and (6.3) with the initial conditions (6.7a–d)
are very complicated with both uy(σ ) and uz(σ ) having many maxima and minima.
However, for any values of U we found a particular value of a when uy(σ ) closely
resembles this function defined by (6.5) with the upper sign. These solutions are shown in
figure 2 for various values of U.

The solitary wave half-width σ̄ can be defined as the half-width of the graph of uy(σ ) at
the half of its height, that is, uy(σ̄ ) = 1

2 uy(0). We calculated the dependences of U and σ̄
on the solitary wave amplitude A = uy(0) for non-planar solitary waves. They are shown
in figure 3 by solid curves. For comparison, we calculated the same quantities for planar
solitons. It follows from (6.5) that

U = 1
2
(A − 2)2, σ̄ =

√
2√

A(A − 4)
ln

2(A − 3) + √
(A − 4)(3A − 8)

A − 2
. (6.8a,b)
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(a) (b)

FIGURE 3. Dependence of (a) the dimensionless relative soliton velocity U and (b) the
dimensionless soliton width σ̄ on the dimensional soliton amplitude A. The solid lines
correspond to non-planar solitons and the dashed lines to planar solitons described by (6.5) with
the upper sign.

The curves defined by these equations are shown in figure 3 by dashed lines. We can see
that the difference between the solid and dashed curves is very small.

7. Summary and conclusions

In this article, we have studied the propagation of nonlinear waves along the
background magnetic field in a relativistic electron–positron plasma. We assumed that
the characteristic spatial scale of variation of all quantities along the background magnetic
field, Lch, is much larger than the dispersion length, whereas the characteristic spatial scale
of variation of all quantities in the directions orthogonal to the background magnetic field
is much larger than Lch. Using the reductive perturbation method, we have derived an
equation describing the temporary evolution of the magnetic field perturbation in these
waves. This equation is a generalisation of a similar equation previously derived for waves
in a non-relativistic electron–positron plasma, and it coincides with the non-relativistic
equation when the speed of light tends to infinity. When the magnetic field perturbation
does not vary in the directions orthogonal to the background magnetic field this equation
reduces to the vector mKdV equation.

As the relativistic equation differs from the non-relativistic equation only in the
expressions for coefficients, we immediately used the results obtained previously for the
non-relativistic equation. In particular, we have presented the expression for quasi-parallel
planar solitons and then recalled the results on the stability of these solitons with respect
to transverse perturbations.

We have then studied non-planar solitary waves. They are described by a Hamiltonian
system of equations with two degrees of freedom, which is an autonomous system of two
second-order differential equations. Although we cannot prove this rigorously, it seems
that this system is not integrable. Therefore, we looked for non-planar solitary waves
numerically. In general, these solitary waves have very complex properties; however, for
some values of parameters we found solutions where the behaviour of one of the two
components of the magnetic field perturbation resembles very closely the behaviour of
the magnetic field perturbation in planar solitons. The numerical results clearly show that
non-planar solitary waves exist.
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