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It is shown that every compact nonconnected semigroup (semiring) which
has commuting congruences, has a nontrivial continuous homomorphic image
which is iseomorphic to a direct product of finite congruence free semigroups
(semirings). (This extends parts of earlier work by Kaplansky (1947) on compact
rings.) It is also shown that there is a possibly finer representation but onto a
product of congruence free semigroups (semirings) known only to be compact
Hausdorff. A number of the techniques used evolve from work of Professor
Wallace, who retired in mid-1973, and to whom this paper is dedicated.

In what follows M will stand for either a semigroup or a semiring. (Following
Selden (1963), (1964): A semiring is a triple, (M, + ,o) , such that + and o are
each associative binary operations on M and such that the identities —

(i) ao (b + c) — (a o b) + (a o c)
(ii) (b + c) o a = (b o a) + (c o a) —hold

in M. Note that in general + is not assumed to be commutative.) When topology
is involved we mean a Hausdorff topology on M in which the operation(s) is (are)
jointly continuous. The o will normally be omitted. A maximal congruence will
always be a proper subset o f M x M . The words open or closed, in referring to
a congruence, mean open or closed as a subset o f M x M taken with the usual
product topology. Whenever facts are referred to which fall into the area of al-
gebraic semigroup theory the reader may check them in Clifford and Preston
(1961). For other matters concerning topological algebra not specifically referenced
the reader should find that Koch and Wallace (1954), and Wallace (1955),
(1962) will suffice. We begin by stating two Universal Algebra lemmas which
are of use to us.

LEMMA 1. If a and p are congruences on M, such that p 2 a, then de-
noting the canonical map from M to Mia by 0, it follows that

p = (0x0)-l[(0x0)(p)l
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386 Desmond A. Robbie [2]

PROOF. Omitted.

LEMMA 2. If a and p are congruences on M such that p 2 a , and if p is
maximal, then, denoting the canonical map from M to Mja by 6, we have that
(6 x 6)(p) is a maximal congruence on M/a.

PROOF. Omitted. Follows from Lemma 1.

Before proceeding further we remark that although some other parts of the
paper relate also to general algebras, and not just to semigroups or semirings,
the main results are not likely to hold in such general settings due to difficulties
in establishing the presence of an open and maximal congruence in more general
cases.

From now on-we will be interested in the following property which not all
semigroups or semirings have, but which is possessed by all of them which have
commuting congruences, which includes groups and rings. (See final page).

PROPERTY X. Whenever J is a maximal congruence on M, and B is a proper
congruence on M such that B <£ J, then every J class meets every B class.

LEMMA 3. Any M in which congruences commute has Property X.

PROOF. AS is well known, when congruences commute the join of any pair
of congruences is their composition. Thus if J is maximal and B £ J, B proper,
then we have that

M x M = J o B = Bo J.

Thus if x is in a ./-class [x] j and y is in a B class [y]B then there exists c such that
(x,c)eJ and (c,y)eB.

This means that

In fact, we only need Property X and not that congruences commute. How-
ever, as there has been considerable investigation of algebras in which congruences
commute (see Cohn (1965) for references) we felt it better to state our requirement
in that way. We are pleased to acknowledge comments on this from P. Jones
of Monash University, Mathematics Department.

COROLLARY TO LEMMA 3. Groups and rings have Property X.

PROOF. AS may be checked groups and rings have commuting congruences.

LEMMA 4. If M has Property X, so does any homomorphic image of M.

PROOF. Suppose we have 0: M -» M', and M has Property X. ks is well
known M' is isomorphic to Mja where a is the canonical congruence induced
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by 9. Thus we consider whether Mja has Property X. By abuse of notation
we let 0 also denote the canonical factor map from M to Mja.

Suppose now that J' is a maximal congruence on Mja and that B' is a proper
congruence on Mja with B' <£ J'.

Set J = (0 x 0)~'(./') and B = (0 x 0)~l(B'), congruences on M, each one
of which includes a.

Now if there exists J a proper congruence on M such that J 3 J we must
have that (0 x 0)(J) is a proper congruence on Mja and which properly con-
tains J', by a double application of Lemma 1. However this contradicts the
maximality of J'. Hence J is maximal in M. Also B is a proper congruence on
Af by a similar argument. Further it is clear that B $ J. Now for any J' class
[x]j, in M/ff and any B' class [ j ]B- in Mja their inverse images under 0 are a
J class and a 2? class respectively and so, by Property X in M, must meet. Then
clearly the image under 9 of this intersection must be nonempty and included
in [x~\j> ^ [JOB- s o that we have Property X in Mja. Then by the isomorphism
between M' and Mja, M' has Property X.

DEFINITION. M is said to be congruence free if the only congruences on it
are M x M and A.

LEMMA 5. Let M be compact, and have Property X. Let J1,--,Jn be

closed, maximal congruences on M, such that, if n > 1 , Jl n--- C\Jt $ J, + \,

for each t = 1, ••-,/' ~~ 1 • Then with the canonical topologies, and the canonical

map, we have

M/(J j n - - - njn) k MjJl x ••• x Mjjn.

Each of the MjJt is a congruence free compact algebra of the same type
as M, and, if 3{ is open, then MjJt is finite and discrete.

PROOF. By Sierpinski's Lemma, the following diagram may be completed
as shown,

MKJ.n-njj,

by the canonical map £,- which is a continuous homomorphism. As is well known,
each of the spaces, with the quotient topology, is compact Hausdorff, and the
multiplication (or addition) induced in the canonical way is bicontinuous. When
J; is open, then, since M is compact, there is only a finite number of congruence
classes, so that MjJt is finite, and hence has the discrete topology. Clearly, MjJ-t
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is always congruence free, for, if not, then a proper nontrivial congruence on
MjJi would imply one on M and which contained J,, thus contradicting the ma-
ximality of Jt.

Now consider:

n - njn) ' = 1 ' " ' n > M/Ji x ••• x MjJn,

where (i = l , - ,n) (x) = (^(x),.--, £„(*)).
Since our product has the canonical product topology induced by the M/Jf,

and since each £,• is continuous, it is well known that n i = 1 „£; is continuous
and a homomorphism. That it is 1-1 is obvious. The only thing to show is that
it is onto. It n = 1, it is trivial. If n = 2, then as Jx $ J2, by hypothesis, then
by Property X, each J2 class meets each Jt class which means that our map is
onto. Now, since for 3 ^ m g n Ju •••,Jm_1 has the property Jl n - n j , $ J(+1

for each t = l,---,m —2, then by the induction assumption

is onto.
Now M/(/1 x ••• n J J ~ Mj{{Ji n " - n ^ m - i ) n ^ m ) and since Jt n

! $ Jm, by hypothesis, then by Property X again

Af/((J, n - n J , , ^ ) n j j ^ M / (J , n - n j m _ t ) x M/J

So altogether we have that our map is onto for 3 ^ m ^ n if it is for m — 1.
Since our map is onto for m = 2 we have by finite induction that it is onto

for m = n.
This completes the proof of the Lemma.

FURTHER DEFINITIONS. Let M be compact, and let T(M) be the set of open
and maximal congruences on M, if there are any; otherwise, T(M) is the singleton
set containing M x M a s its only element. We define the radical of M, by

R(M)= H T(M).

If R(M) = A, we say that M is semisimple. We note that R(M) is closed, and so
MIR(M) is again a compact topological algebra. We further note that, if we
replace the word "open" above by "closed", T{M) by f(M) and R(M) by
R(M), the weak radical, our definitions and remarks still make sense. If
R(M) = A we say that M is weakly semisimple.

LEMMA 6. / / M is compact, then R(M/R(M)) = A. (The same is true for
R(M) and the proof is simpler).
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PROOF. If T(M) = {M x M} then the proof is trivial. Otherwise there is
at least one, open and maximal, congruence on M. Then let p e T(M). Denoting
as usual the canonical map from M to MjR(M) by 9, the set (6 x 0)(p) is an
open and maximal congruence on M/R(M). This is because: (i) By Lemma 2
above, (9 x G)(p) is a maximal congruence on MjR{M); and: (ii) Each (9 x 9)(p)
class, say A, has for its preimage a p class A', which must then be open and
so A is open. Now choose an arbitrary pair (p, q) e \_MjR(M)\ x \_MjR(M)] so
p # q. We have p = 9(a), q = 9(b) for some a and b in M, and also (a, b) $ R(M).
Thus, there exists an open and maximal congruence, say J, on M such that
(a,b)tJ. Then (0(a),9(b))$(9 x 0)(J) since, by Lemma 1, J = (9 x 9)~1[(6 + 9)
(J)]. However, as already noted (0 x 0)(J) is an open and maximal congruence
on MjR(M)) and thus R(MjR(M) = A.

LEMMA 7. Any congruence p, on a compact M, which is maximal in the
set F (assumed nonempty) of open proper congruences on M, is a maximal
congruence on M. That is, p is an open and maximal congruence on M.

PROOF. Since p is open it is also closed. Since M is compact, Mjp is finite
and has the discrete topology. So then Mjp x Mjp is also finite, and also has the
discrete topology. Suppose that Af x M 2 t 2 p, and T is a congruence on M.
Then, denoting the canonical map from M to Mjp by 6, we have that (6 x 0)(T)
is an open congruence on Mjp because there all congruences are open, since we
have the discrete topology. Then, by Lemma l,we have that T = (9 x 0)"1 [(0 x 6)
(T)] , and T is open because 9 x 9 is continuous, since 9 is continuous. This contra-
dicts the maximality of p in F, and thus p is not only maximal in the set F, but
is a maximal congruence on M .

LEMMA 8. / / M is compact, and has an open and proper congruence a
on it, then it has a congruence p on it which is both a maximal congruence,
and an open congruence. (We note that p is of course also closed.)

PROOF. By a simple application of Zorn's Lemma, there is at least one
congruence on M, say p, which is maximal in the set of open and proper con-
gruences on M, and contains a. Then, by Lemma 7, p is also a maximal con-
gruence on M.

LEMMA 9. For (R, +,o) a semiring, T a subsemiring of R (i.e. a subset
of R algebraically closed under + and o), if R 3 A # • , then the set DT(A)
described below is the smallest double T-ideal (i.e. subset of R which contains
all sums and products resulting from elements of itself and of T) of R which
contains A.

DT(A) = U {Tt + TjATk + Tt: i, I e {1,2}, j , k e {2,3}}
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where 7\ is a formal additive identity on R, T2 = T, and T3 is a formal multi-
plicative identity on R.

PROOF. Omitted.

Note that this lemma appears first in Robbie(1970),and later, in the special
case T = M in Bertman and Selden (1973). We will need it in a different special
case namely, R = M x M and T = A, when M is itself a semiring.

In fact the ability to write out DT(A) explicitly with finitely many unions
of finitely many additions and multiplications is the crucial part in obtaining
our main result and is the reason why we stated earlier that it is doubtful if the
main result would be extendable to general algebras.

LEMMA 10. Let (R, + ,o) be a compact semiring, Ta closed subsemiring of
R, KT(R) a double Tideal ofR (when T = M first shown to exist by Selden (1963),
and U an open subset of R which contains KT(R). Then the union, J, of all
double T-ideals contained in U, is an open subset of R.

PROOF. Omitted. Exactly as in earlier work of Koch and Wallace (1954)
given Lemma 9 above.

We remark in passing that from Lemma 10 come maximal double T-ideals,
which are open, as first noted in Robbie (1970) and later, case T = M, in Bertman
and Selden (1973).

In this paper we use Lemma 10 in the special case T = A, R = M x M,
and case KA(M xM) = A, so that the lemma applies for any open subset of
M x M which contains A.

LEMMA 11. Let (M,+ ,o ) be a compact totally disconnected semiring.
Then there exists, C, an open and closed (clopen) proper subset of M x M,
which contains A and is a congruence on M. (In fact every open subset of M x M
which contains A, contains such a congruence.)

PROOF. The proof is merely mutatis mutandis from that of Numakura (1957)
who gives the semigroup case. The difference being the need to invoke Lemma 10
in the manner mentioned above plus some other minor changes.

We also note in passing that this lemma can be used to show that each com-
pact totally disconnected semiring is a strict projective limit of finite discrete
semiring.

COROLLARY TO LEMMA 11. Any nonsingleton, compact, totally disconnected
M has a congruence on it which is both an open congruence and a maximal
one.

PROOF. By Lemma 11 and the similar result for semigroups by Numakura
(1957), plus the application of Lemma 8, the result follows immediately.
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LEMMA 12. Any nonsingleton, compact, totally disconnected M has a non-
trivial semisimple homomorphic image, and a nontrivial weakly semisimple
image.

PROOF. Immediate from Lemma 6 and the Corollary to Lemma 11.

LEMMA 13. / / / is a set of congruences on M such that n / = A, then I
may be well ordered such that, for some / ' c: / with the well ordering induced
from that on I, we will have the following two properties satisfied:

(i) n / ' = A.
(ii) / / Tai, •••, Ta'n is any finite set, with two or more members from I',

arranged in increasing order by the well order on I', then

PROOF. Well order / , and index with an ordinal k. Choose a subset of / as
follows:

if k = Q, I' = /

Otherwise, define a function / : / -» {0,1} by the following procedure. Set
/(To) = 1, and let a be any ordinal such that k ^ a > 0. Then let

Bx = {p: p < a and / ( 7 » = 1} ( # D as OeflJ-

If, for every finite subset of Ba: pu ••-,/?„ (n a natural number) in increasing order,
we have Tfil O ••• n Tfin $ Tx, then we se t / (TJ = 1, otherwise, we set/(Ta) = 0.

We note that we do have a function. For, if not, choose the least member
Tx of/ for which our function is not defined.This is possible since / is well ordered.
Certainly a > 0, so that Bx exists and is not empty. Then we choose /(Ta) un-
ambiguously as above, which is a contradiction. S o / i s defined on all of / . A
similar argument shows that our / is uniquely defined. Now define / ' , by
/ ' = / ~ 1 ( l ) - We must show that / ' has properties (i) and (ii). We note first that
the order induced on / is a well order on V. (i) If x =£ y, and (x, y)e Tx. for
each Ta,el', then there exists Ta..eI\I' such that (x,y) $ Ta» (since n / = A).
Now, if Ta~ is the least member of / with this property, consider
B.» = {Pi P < «'" and / ( 7 » = 1}. Now (x,y)e n , e v , , Tfi $ 7 > , and so cer-
tainly, for any finite set Tfil,---,Tfin, PieBa.,,, we have T^ n-- nTfin^ Ta™.
But then, f{T^.) = 1, which is a contradiction, and so n / ' = A.

Now (ii). Suppose we choose a finite set Ta\,---,Ta'n from / ' , and that
Ta'in — nTa'n_l £ Ta'n. Now { a ; , - - - . ^ ! } s Ba'n and so f(Ta'J = 0, and this
contradicts J\Tx'n) = 1. So we have established both required properties.

THEOREM 1. If M has Property X and is compact semisimple, then M is
iseomorphic to a direct product of finite congruence free algebras of the same
type as M, with the discrete topology on each one (the canonical map, and
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canonical product topology being used). (If M has property X, and is compact
weakly semisimple, then we must substitute compact Hausdorff, for finite with
the discrete topology.)

PROOF. If/ is the set of open and maximal congruences on M, we are given
that n / = A. Then, by Lemma 13 above, we may choose from / a well ordered
set / ' with the property that, for any finite subset Tai, •••, TXn from / ' , we have
Tain-nT.n_l£T.it.

Fixing n = n, we may apply this fact again to each of the sets {Tai, •••, T a t } ,

t = 2, •••,« - 1 . So that , denoting Ta. by Jt, i = 1, • • • ,« , we have that {J1,---,Jii}

is a set of maximal and open congruences on M such that J , O ••• n Js $ Js + l ,

5 = I,---, n — 1 . Then by Lemma 5,

M/CJjO--- nJJ k M / J , x ••• x M/J,,,

or,

M/17;, n - n TJ ± M/Ta< x ... x MITa.n.

Thus we have a homomorphism.
M -» M/7^, x ••• x MITtjj for each /; a natural number, and each TXl, •••,Talj

in / ' . So the canonical map M -» TJleI.M/Ta attains at least one point with
any finite number of predetermined coordinates. By the nature of the product
topology on the right, the image of Mis dense in the product. (This is true even
if the Tx are merely closed.) Moreover, as is well known, the canonical function,
namely T^ller00! (where 0a: M -» M/TJ is continuous, because each of the
separate 0x is continuous. So, since M is compact, ( r FI £ r0x) (M) is closed
and, being dense in the product, must be equal to it.

We acknowledge with pleasure assistance received from D. Hajek, now of
Mayaguez, during discussions on this part.

THEOREM 2. Every compact nonconnected semigroup (semiring) which has
commuting congruences, has a nontrivial continuous homomorphic image which
is iseomorphic to a direct product of finite congruence free semigroups (semi-
rings). It is also the case that there is a possibly finer representation but onto
a product of congruence free semigroups (semirings) known only to be compact
Hausdorff.

PROOF. Firstly, one obtains a continuous homomorphic image which is non-
singleton and totally disconnected by factoring modulo the congruence with classes
which are the connected components. Now as M has commuting congruences
it has Property X, by Lemma 3. Thus our totally disconnected image also has
Property X, by Lemma 4. Then factoring our present image modulo its radical
(or the weak radical) we obtain a further continuous homomorphic image which
still has Property X, by Lemma 4, and which, by Lemma 12, will be semisimple
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(weakly semisimple) and nontrivial. Since our image is compact as well Theorem 1
applies and we are finished.

We note that there must be an abundance of semigroups and semirings
which are compact totally disconnected and which have Property X. This is
because, apart from the special cases of groups and rings, any direct product of
finite congruence free objects has Property X and then, taking any continuous
homomorphic image and factoring over its connected component congruence, we
would again obtain a compact totally disconnected object with Property X.
We can see no immediate reason why an object obtained in this way should
not be fairly complicated. Of course if it is nontrivial then it fpll in its turn
have a nontrivial image which is once again a direct product of finite con-
gruence free objects.

How far this work may be extended to the locally compact case and under
what further conditions remains very much an open question.
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