POLYNOMIAL IDEALS IN GROUP RINGS

M. M. PARMENTER, I. B. S. PASSI, AND S. K. SEHGAL

1. Introduction. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in n non-commuting variables $x_{1}, x_{2}, \ldots, x_{n}$ and their inverses with coefficients in the ring Z of integers, i.e. an element of the integral group ring of the free group on $x_{1}, x_{2}, \ldots, x_{n}$. Let R be a commutative ring with unity, G a multiplicative group and $R(G)$ the group ring of G with coefficients in R. If $g_{1}, g_{2}, \ldots, g_{n} \in G$, then the expression $f\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ can be regarded as an element of $R(G)$. We denote the 2 -sided ideal of $R(G)$ generated by $f\left(g_{1}, g_{2}, \ldots, g_{n}\right), g_{1}, \ldots, g_{n}$ $\in G$, by $\mathfrak{H}_{f, R}$ and call the 2 -sided ideals of $R(G)$ that are so defined, polynomial ideals. We wish to study the elements of $Z(G)$ which are mapped under the homomorphism $i_{R}: Z(G) \rightarrow R(G)$ induced by $n \rightarrow n 1_{R}, 1_{R}=$ identity of R, into $\mathfrak{H}_{f, R}$. We prove (Theorem 4.1) that $i_{R}{ }^{-1}\left(\mathfrak{H}_{f, R}\right)$ depends only on $\mathfrak{U}_{f, Z}, i_{Z / p^{n} Z}^{-1}\left(\mathfrak{U}_{f, Z / p^{n Z}}\right)$ and the behaviour of the elements $p 1_{R}, p$ a prime. It is obvious that the powers $\Delta_{R}{ }^{n}(G)$ of the augmentation ideal $\Delta_{R}(G)$ of $R(G)$ are polynomial ideals. We show that the Lie ideals $\Delta_{R}{ }^{(n)}(G)$ defined inductively by

$$
\Delta_{R}^{(1)}(G)=\Delta_{R}(G), \quad \Delta_{R}^{(n)}(G)=\left[\Delta_{R}(G), \Delta_{R}^{(n-1)}(G)\right] R(G)
$$

where $[M, N]$ denotes the R-submodule of $R(G)$ generated by $m n-n m$, $m \in M, n \in N$, are also polynomial ideals.

An application of our result to the polynomial ideals $\Delta_{R^{n}}{ }^{n}(G)$ and $\Delta_{R^{(n)}}(G)$ yields the dimension subgroups $D_{n, R}(G)=G \cap\left(1+\Delta_{R}{ }^{n}(G)\right)$ and the Lie dimension subgroups $D_{(n), R}(G)=G \cap\left(1+\Delta_{R}{ }^{(n)}(G)\right)$ in terms of $D_{n, Z}(G)$, $D_{n, Z / p^{r} Z}(G)$ and $D_{(n), Z}(G), D_{(n), Z / p^{r} Z}(G)$ respectively. Our approach unifies and completes the work of Parmenter [5] and Sandling [7] on dimension subgroups and Lie dimension subgroups over arbitrary rings of coefficients.

We next study the series

$$
\Delta_{R}{ }^{(1)}(G) \supseteq \Delta_{R}{ }^{(2)}(G) \supseteq \ldots \supseteq \Delta_{R}^{(i)}(G) \supseteq \ldots
$$

The group rings $R(G)$ with $\Delta_{R}{ }^{(i)}(G)=0$ for some i are easily characterized. For non-abelian groups G, this happens if and only if G is nilpotent, G^{\prime} is a finite p-group and p is nilpotent in R. We also investigate the property " $\cap \Delta_{R}{ }^{(i)}(G)=0$ ". If R is of characteristic a power of p, p prime, then $\mathrm{R}(G)$ has this property if and only if G is residually "nilpotent with derived group a p-group of bounded exponent". We give a partial answer to this question

[^0]when R has characteristic zero. For applications of these results and the connection with the underlying Lie algebra of a group algebra see [8].
2. Polynomial maps and polynomial ideals. Let G be a group, and R a commutative ring with unity.
2.1. Definition. If $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a polynomial in n non-commuting variables and their inverses with integer coefficients, then a map $\theta: G \rightarrow M$, M an R-module, is called an f_{R}-polynomial map if the linear extension θ^{*} of θ to $R(G)$ vanishes on $\mathfrak{A}_{f, R}$, the polynomial ideal determined by f.

We note that a polynomial map $\theta: G \rightarrow M$ of degree $\leqq n$ in the sense of Passi [6] is an f_{R}-polynomial map for $f=\left(x_{1}-1\right)\left(x_{2}-1\right) \ldots\left(x_{n+1}-1\right)$.

We assume throughout that a polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has content zero, i.e. the sum of its coefficients is zero.
2.2 Proposition. Let \mathfrak{A} and \mathfrak{B} be polynomial ideals of $R(G)$. Then $\mathfrak{A}+\mathfrak{B}$ and $\mathfrak{A B}$ are also polynomial ideals.

Proof. Let $\mathfrak{H}=\mathfrak{U}_{f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), R}$ and $\mathfrak{B}=\mathfrak{A}_{f_{2}\left(x_{1}, x_{2}, \ldots, x_{m}\right), R}$. Then
(i) $\mathfrak{U}+\mathfrak{B}=\mathfrak{U}_{f\left(x_{1}, x_{2}, \ldots, x_{m+n}\right), R}$ where

$$
f\left(x_{1}, x_{2}, \ldots, x_{m+n}\right)=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)+f_{2}\left(x_{n+1}, x_{n+2}, \ldots, x_{m+n}\right)
$$

and
(ii) $\mathfrak{Y B}=\mathfrak{U}_{g\left(x_{1}, x_{2}, \ldots, x_{m+n}\right)}$ where

$$
g\left(x_{1}, x_{2}, \ldots, x_{m+n}\right)=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{2}\left(x_{n+1}, x_{n+2}, \ldots, x_{m+n}\right)
$$

That the right hand side in (ii) is contained in the left hand side is obvious. For the converse, notice that $f\left(g_{1}, g_{2}, \ldots, g_{n}\right) \cdot g=g f\left(g_{1}{ }^{g}, g_{2}{ }^{g}, \ldots, g_{n}{ }^{g}\right)$, where the g_{i} 's and $g \in G$ and $g_{i}{ }^{g}=g^{-1} g_{i} g$.

Let $G=G_{1} \supseteq G_{2} \supseteq \ldots \supseteq G_{n} \supseteq \ldots$ be the lower central series of G. If N is a normal subgroup of G, we denote by $\Delta_{R}(G, N)$ the kernel of the natural ring homomorphism $R(G) \rightarrow R(G / N)$. It may be noted that

$$
\Delta_{R}(G, N)=\Delta_{R}(N) \cdot R(G)
$$

2.3. Proposition. The ideals $\Delta_{R}\left(G, G_{n}\right)$ are polynomial ideals.

Proof. The ideal $\Delta_{R}\left(G, G_{n}\right)$ is generated by $\left(g_{1}, g_{2}, \ldots, g_{n}\right)-1$, the g_{i} 's in G, where

$$
\left(g_{1}, g_{2}\right)=g_{1}^{-1} g_{2}-1 g_{1} g_{2} \quad \text { and } \quad\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\left(\left(g_{1}, g_{2}, \ldots, g_{n-1}\right), g_{n}\right)
$$

Thus, if $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)-1$, then $\Delta_{R}\left(G, G_{n}\right)=\mathfrak{U}_{f, R}$.
We recall

2.4. Theorem (Sandling [7]).

$$
\Delta_{R}^{(n)}(G)=\Delta_{R}\left(G_{n}\right) R(G)+\sum \Pi \Delta_{R}\left(G_{n_{j}}\right) R(G)
$$

where the sum is over all $n_{j}, n \geqq n_{j}>1$, for which $\sum\left(n_{j}-1\right)=n-1$.
It is clear from Theorem 2.4 that

$$
\Delta_{R}^{(m)}(G) \cdot \Delta_{R}^{(n)}(G) \subseteq \Delta_{R}^{(n+m-1)}(G) \text { for all } m, n \geqq 1
$$

2.5. Proposition. $\Delta_{R}{ }^{(n)}(G)$ is a polynomial ideal for all $n \geqq 1$.

Proof. This follows from Theorem 2.4 and the Propositions 2.2. and 2.3.
2.6. Proposition. Let M be an abelian group, N an R-module, $\theta: G \rightarrow M$ an f_{Z}-polynomial map, $\phi: M \rightarrow N$ a homomorphism. Then the map

$$
\phi \circ \theta: G \rightarrow N
$$

is an f_{R}-polynomial map.
Proof. $\mathfrak{A}_{f, R}$ is generated as an R-module by the elements $g f_{1} f_{2} \ldots f_{k}$ where $g \in G$ and the f_{i} 's are the values of $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (regarded as elements of $R(G)$) when the x_{i} 's take values from G. Since

$$
(\phi \circ \theta)^{*}\left(g f_{1} f_{2} \ldots f_{k}\right)=\phi\left(\theta^{*}\left(g f_{1} f_{2} \ldots f_{k}\right)\right)=0
$$

the result follows (* denotes the linear extension of the map to the group ring).
3. The second dimension subgroups of rationals mod 1 . We denote by T the group of rationals mod 1 . Since the dimension conjecture holds for abelian groups, Sandling's theorem [7, Theorem 6.1 of Chapter I] applies to give the dimension subgroups of T with arbitrary coefficient rings. In view of the important role that $D_{2, R}(T)$ plays in this work, we give an independent proof for this case.
3.1. Theorem. $D_{2, R}(T)=\sum_{p \in \sigma(R)} Z\left(p^{\infty}\right)$, where

$$
\sigma(R)=\left\{p \mid p^{n} R=p^{n+1} R \text { for some } n, p \text { prime }\right\} .
$$

(If $\sigma(R)$ is empty, the right hand side is to be interpreted as the identity subgroup.)

Proof. Let $p \in \sigma(R), t \in Z\left(p^{\infty}\right)$. Then

$$
\begin{aligned}
t-1 & =x^{p^{n}}-1 \text { for some } x \in Z\left(p^{\infty}\right), \text { since } Z\left(p^{\infty}\right) \text { is divisible } \\
& \equiv p^{n}(x-1) \bmod \Delta_{R}{ }^{2}\left(Z\left(p^{\infty}\right)\right) \\
& \equiv r p^{n+m}(x-1) \text { where } x^{p m}=1 \text { and } r \in R \\
& \equiv 0, \text { since } p^{m}(x-1) \in \Delta_{R}{ }^{2}(T)
\end{aligned}
$$

Hence $\sum_{p \in \sigma(R)} Z\left(p^{\infty}\right) \subseteq D_{2, R}(T)$.

Next let $t \in D_{2, R}(T)$. Then for any prime p, t_{p}, the p-primary component of t, is in $D_{2, R}\left(Z\left(p^{\infty}\right)\right)$. This follows from the projection of T on its direct summand $Z\left(p^{\infty}\right)$. Let H be the subgroup generated by the elements of $Z\left(p^{\infty}\right)$ which appear in an expression of $t_{p}-1$ as an element of $\Delta_{R}{ }^{2}\left(Z\left(p^{\infty}\right)\right)$. Then H is a cyclic group of order p^{r}, say, and $t_{p} \in D_{2, R}(H)$. If for no $n, p^{n} R=p^{n+1} R$, then the rings $R / p^{n} R, \quad n \geqq 1$, are of increasing characteristic and as $D_{2, R}(H) \subseteq D_{2, R / p^{n} R}(H)$, we have $t_{p} \in D_{2, R / p^{n} R}(H)=D_{2, Z / p^{n} Z}(H)$, where $Z_{p^{n}}$ denotes the ring of integers $\bmod n$ (see Theorem 4.1, case I, or [7, Chapter I, Corollary 6.4]). Now $D_{2, Z / p^{r} Z}(H)=H^{p^{r}}=(1)$. Hence, if $p^{n} R \neq p^{n+1} R$ for all n, then $t_{p}=1$ and the proof is complete.

4. Main result.

4.1. Theorem. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in n non-commuting variables and their inverses with coefficients in Z, G a group, and R a commutative ring with unity. Then
(i) if the characteristic of $R=n>0, i_{R}^{-1}\left(\mathfrak{U}_{f, R}\right)=i_{Z_{n}}{ }^{-1}\left(\mathfrak{H}_{f, Z_{n}}\right)$, where Z_{n} is the ring of integers $\bmod n$;
(ii) if the characteristic of $R=0$,

$$
i_{R}^{-1}\left(\mathfrak{A}_{f, R}\right)=\sum_{p \in \sigma(R)} \tau_{p}\left(Z(G) \bmod \mathfrak{A}_{f, Z}\right) \cap i_{Z / p^{e} Z}^{-1}\left(\mathfrak{H}_{f, Z / p^{e} Z}\right)
$$

where $\sigma(R)$ is the set of primes p for which $p^{n} R=p^{n+1} R$ for some n, p^{e} is the smallest power of p for which this holds and for a ring $S i_{s}: Z(G) \rightarrow S(G)$ is the ring homomorphism induced by $m \rightarrow m 1_{S}, m \in Z, 1_{S}=$ identity of S. Here $\tau_{p}\left(Z(G) \bmod \mathfrak{H}_{f, Z}\right)$ stands for the p-torsion subgroup of $Z(G) \bmod \mathfrak{A}_{f, Z}$ and if $\sigma(R)$ is empty, then the right hand side of the above equation is to be interpreted as $\mathfrak{U}_{f, Z}$.

Proof. Let $\pi(R)$ denote the set of primes p which are invertible in R.
Case 1. characteristic of $R=n \neq 0$: In this case the theorem asserts that $i_{R}^{-1}\left(\mathfrak{A}_{f, R}\right)=i_{Z_{n}}{ }^{-1}\left(\mathfrak{H}_{f, Z_{n}}\right)$, where n is the characteristic of R and Z_{n} is the ring of integers $\bmod n . Z_{n}$ can be regarded as a subring of R and so the right hand side is contained in the left hand side. Let $z \in Z(G)$ be such that $z^{\prime}=i_{R}(z) \in \mathfrak{U}_{f, R}$. If $z^{\prime \prime}=i_{Z_{n}}(z) \notin \mathfrak{U}_{f, Z_{n}}$, then we can define a homomorphism

$$
\theta: Z_{n}(G) / \mathfrak{A}_{f, Z_{n}} \rightarrow T
$$

where T is the additive group of rationals mod 1 , such that $\theta\left(z^{\prime \prime}+\mathfrak{U}_{f, Z_{n}}\right) \neq 0$. As the image of θ must be contained in Z_{n}, we have an f_{z}-polynomial map $\phi: G \rightarrow Z_{n}, \phi(x)=\theta\left(x+\mathfrak{A}_{f, Z}\right)$. Composing with the embedding $i: Z_{n} \rightarrow R$, we have (Proposition 2.6) an f_{R}-polynomial map $\alpha=i \circ \phi: G \rightarrow R$ such that

$$
\alpha^{*}\left(z^{\prime}\right)=i \phi^{*}\left(z^{\prime \prime}\right)=i \theta\left(z^{\prime \prime}+\mathfrak{A}_{f, Z_{n}}\right) \neq 0
$$

This is a contradiction, since $z^{\prime} \in \mathfrak{H}_{f, R}$. Hence $z^{\prime \prime} \in \mathfrak{H}_{f, Z_{n}}$ and we have $i_{R}{ }^{-1}\left(\mathfrak{H}_{f, R}\right) \subseteq i_{Z_{n}}{ }^{-1}\left(\mathfrak{H}_{f, Z_{n}}\right)$.

For the rest of the proof we assume that R is of characteristic zero.
Case $2 . \pi(R)=$ the set of all primes: In this case Q, the field of rationals, can be regarded as a subring of R. An argument essentially similar to that given in Case 1 , with Q in place of both Z_{n} and T, shows that

$$
i_{R}^{-1}\left(\mathfrak{A}_{f, R}\right)=i_{Q}^{-1}\left(\mathfrak{H}_{f, Q}\right) .
$$

Now $i_{Q}{ }^{-1}\left(\mathfrak{R}_{f, Q}\right)=\sum_{p \in \pi(R)} \tau_{p}\left(Z(G) \bmod \mathfrak{A}_{f, Z}\right)$ and we are done.
We next assume that $\pi(R)$ is not the set of all primes.
Case 3. $\sigma(R)=\pi(R)$: We have the natural homomorphism

$$
\alpha: T \rightarrow \Delta_{R}(T) / \Delta_{R}{ }^{2}(T),
$$

by $t \rightarrow t-1+\Delta_{R}(T)$, where $T=$ the (additive) group of rationals mod 1 . By Theorem 3.1 $\operatorname{Ker} \alpha=D_{2, R}(T)=\sum_{p \in \sigma(R)} Z\left(p^{\infty}\right)$. As $\pi(R)$ is not the set of all primes, Ker $\alpha \neq T$. Let $z \in i_{R}^{-1}\left(\mathfrak{H}_{f, R}\right)$. We assert that for some integer m, all of whose prime divisors are in $\sigma(R), m z \in \mathfrak{U}_{f, z}$. For, otherwise, we can find a homomorphism $\gamma: Z(G) / \mathfrak{A}_{f, Z} \rightarrow T$ such that

$$
\gamma\left(z+\mathfrak{N}_{f, Z}\right) \notin \sum_{p \in \sigma(R)} Z\left(p^{\infty}\right) .
$$

This leads to an f_{z}-polynomial map $\bar{\gamma}: G \rightarrow T$ such that $\bar{\gamma}^{*}(z) \neq 0$. Composing $\bar{\gamma}$ with α we obtain an f_{R}-polynomial map $\left.\theta=\alpha \circ \bar{\gamma}: G \rightarrow \Delta_{R}(T) / \Delta_{R}{ }^{2} T\right)$ into the R-module $\Delta_{R}(T) / \Delta_{R}{ }^{2}(T)$ such that $\theta^{*}(z) \neq 0$. This contradicts the fact that $z \in i_{R}{ }^{-1}\left(\mathfrak{H}_{f, R}\right)$. Hence for some $m, m z \in \mathfrak{H}_{f, Z}$ and all prime divisors of m are in $\sigma(R)$. As $\sigma(R)=\pi(R)$, the proof of this case is complete.

Case 4. $\sigma(R)-\pi(R)$ is finite: We proceed by induction on the order of the set $\sigma(R)-\pi(R)$. When the order is zero, we have the situation of Case 3 . Let $p \in \sigma(R), p \notin \pi(R)$ and let p^{e} be the smallest power of p for which $p^{e} R=p^{e+1} R$. Then $R \cong R / p^{e} R \oplus R / J$, where $J=\left\{r \in R \mid p^{e} r=0\right\}$, $\sigma(R)=\sigma(R / J)$ and p can be seen to be invertible in R / J [7, Chapter I, section 6]. Thus we can assume that the theorem holds for R / J and so if

$$
z \in i_{R}^{-1}\left(\mathfrak{H}_{f, R}\right)
$$

then

$$
z \in i_{R / J}^{-1}\left(\mathfrak{H}_{f, R / J}\right)=\sum_{q \in \sigma(R / J)=\sigma(R)} \tau_{q}\left(Z(G) \bmod \mathfrak{A}_{f, Z}\right) \cap i_{Z / e^{e(q)}}^{z}-1\left(\mathfrak{H}_{f, Z / e^{e(q)} Z}\right)
$$

where $e(q)$ is the least integer for which

$$
q^{e(q)} R / J=q^{e(q)+1} R / J
$$

It is easy to see that for $q \neq p e(q)$ is also the least integer for which

$$
q^{e(q)} R=q^{e(q)+1} R
$$

Hence

$$
\begin{array}{r}
i_{R}^{-1}\left(\mathfrak{H}_{f, R}\right) \subseteq \sum_{q \in \sigma(R), q \neq p} \tau_{q}\left(Z(G) \bmod \mathfrak{A}_{f, z}\right) \cap i_{z / e^{e(q)} z_{z}^{-1}\left(\mathfrak{H}_{f, Z / q^{e(q)}}\right)+} \tag{**}\\
\tau_{p}\left(Z(G) \bmod \mathfrak{U}_{f, z}\right) .
\end{array}
$$

Also

$$
z \in i_{R / p^{e} R}^{-1}\left(\mathfrak{H}_{f, R / p^{e} R}\right)=i_{Z / p^{e} Z}{ }^{-1}\left(\mathfrak{H}_{f, Z / p^{e} Z}\right)
$$

Since for $q \neq p$

$$
i_{Z / p^{e} Z}\left(\tau_{q}\left(Z(G) \bmod \mathfrak{A}_{f, Z}\right) \subseteq \mathfrak{A}_{f, Z / p^{e} Z}\right.
$$

we get from (**) that

$$
z \in \sum_{q \in \sigma(R)} \tau_{q}\left(Z(G) \bmod \mathfrak{A}_{f, Z}\right) \cap i_{Z / q^{e(q)}}^{Z}-1\left(\mathfrak{H}_{f, Z / q^{e(q)} Z}\right)
$$

Conversely, if

$$
z \in \sum_{q \in \sigma(R)} \tau_{q}\left(Z(G) \bmod \mathfrak{U}_{f, Z}\right) \cap i_{Z / q^{e(q)}}^{z}{ }^{-1}\left(\mathfrak{H}_{f, Z / q^{e(q)} Z}\right),
$$

then, by induction

$$
z \in i_{R / J}^{-1}\left(\mathfrak{H}_{f, R / J}\right)
$$

and also

$$
z \in i_{R / p^{e} R}^{-1}\left(\mathfrak{H}_{f, R / p^{e} R}\right)=i_{Z / p^{e} Z}{ }^{-1}\left(\mathfrak{H}_{f, Z / p^{e} Z}\right) .
$$

Hence

$$
i_{R}(z) \in \mathfrak{N}_{f, R}
$$

Case 5. $\sigma(R)$ is arbitrary: As in [7, p. 62], the general case reduces to Case 3 since one can assume that R is finitely generated and therefore $\sigma(R)-\pi(R)$ is finite. For details of the reduction argument we refer the reader to [7].
5. Dimension subgroups over arbitrary rings of coefficients. If N is a normal subgroup of G and p a prime, we denote by $\tau_{p}(G \bmod N)$ the subgroup of G which is generated by the elements having some p th power in N.
5.1. Theorem. (i) If characteristic of $R=0$, then

$$
D_{n, R}(G)=\prod_{p \in \sigma(R)}\left\{\tau_{p}\left(G \bmod D_{n, Z}(G)\right) \cap D_{n, Z / p^{e} Z}(G)\right\}
$$

where $\sigma(R)$ and p^{e} are as defined in Theorem 4.1. (If $\sigma(R)$ is empty, then the right hand side is to be interpreted as $D_{n, Z}(G)$.)
(ii) If characteristic of $R=r>0$, then $D_{n, R}(G)=D_{n, Z_{r}}(G)$ for all $n \geqq 1$.

Proof. Suppose char $R=0$. Let $g \in D_{n, R}(G)$. Then $g-1_{R} \in \Delta_{R}{ }^{n}(G)$, where 1_{R} is the identity of R. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}-1\right)\left(x_{2}-1\right) \ldots$ $\left(x_{n}-1\right)$. Then $\mathfrak{A}_{f, R}=\Delta_{R}{ }^{n}(G)$. Therefore, by Theorem 4.1 we have $g-1=\sum_{p \in \sigma(R)} z_{p}$ where $z_{p} \in Z(G)$ is such that for some $m=m(p)$, $p^{m} \cdot z_{p} \in \Delta_{Z}^{n}(G)$ and $i_{Z / p^{e} Z}\left(z_{p}\right) \in \Delta_{Z / p^{e} Z}^{n}(G)$. Let $r=\Pi p^{m(p)}$.T hen r is a $\sigma-$ number and $r(g-1) \in \Delta_{Z}{ }^{n}(G)$. For sufficiently large s, r divides the binomial coefficients $\binom{r^{s}}{i}, i=1,2, \ldots, n-1$. Hence

$$
g^{r^{s}}-1=\sum_{i=1}^{r^{s}}\binom{r^{s}}{i}(g-1)^{i} \equiv 0 \quad \bmod \Delta_{Z}{ }^{n}(G)
$$

From this it is easy to conclude that

$$
g \in \Pi_{p \in \sigma(R)}\left\{\tau_{p}\left(G \bmod D_{n, Z}(G)\right) \cap D_{n, Z / p^{e} Z}(G)\right\}
$$

Conversely, let $g \in \tau_{p}\left(G \bmod D_{n, Z}(G)\right) \cap D_{n, Z / p^{e} Z}(G)$. Then for some u, $g^{p u} \in D_{n, Z}(G)$. This means that $g^{p u}-1 \in \Delta_{Z}{ }^{n}(G)$ which shows that for a sufficiently large $u, p^{u}(g-1) \in \Delta_{Z}{ }^{n}(G)$.

By Theorem 4.1, we have $g-1 \in \Delta_{R}{ }^{n}(G)$, i.e. $g \in D_{n, R}(G)$. This completes the proof of case (i). Case (ii) follows immediately from Theorem 4.1 (i).

6. Lie dimension subgroups over arbitrary rings of coefficients.

6.1. Theorem. (i) If characteristic of $R=0$, then

$$
D_{(n), R}(G)=\prod_{p \in \sigma(R)} G_{2} \cap\left\{\tau_{p}\left(G \bmod D_{(n), Z}(G)\right) \cap D_{(n), Z / p^{e} Z}(G)\right\}
$$

for $n \geqq 2$, where $\sigma(R)$ and p^{e} are as defined in Theorem 4.1. (If $\sigma(R)$ is empty, the right hand side is to be interpreted as $D_{(n), Z}(G)$.)
(ii) If characteristic of $R=r>0$, then $D_{(n), R}(G)=D_{(n), Z_{r}}(G)$ for all $n \geqq 1$.

Proof. Suppose char $R=0$. Since $\Delta_{R}{ }^{(2)}(G)=\Delta_{R}\left(G, G_{2}\right)$, it is clear that $D_{(n), R}(G) \subseteq G_{2}$ for $n \geqq 2$. Let $g \in D_{n, R}(G), n \geqq 2$. As $\Delta_{R}^{(n)}(G)$ is a polynomial ideal, Theorem 4.1 says that for some σ-number $r, r(g-1) \in \Delta_{Z}{ }^{(n)}(G)$. Theorem 2.4 shows that $(g-1)^{m} \in \Delta_{R}^{(m+1)}(G)$ for all m. Hence, choosing s sufficiently large, we can conclude that $g^{7 s}-1 \in \Delta_{R}^{(n)}(G)$ which yields that g is a σ-element $\bmod D_{(n), Z}(G)$. Hence $g=g_{1} g_{2} \ldots g_{k}$ where each g_{i} is a power of g and is a p-element $\bmod D_{(n), Z}(G)$ for some $p \in \sigma(R)$. Thus

$$
g \in \prod_{p \in \sigma(R)} G_{2} \cap\left\{\tau_{p}\left(G \bmod D_{(n), Z}(G)\right) \cap D_{(n), Z / p^{e} Z}(G)\right\}
$$

Conversely, let $g \in G_{2} \cap\left\{\tau_{p}\left(G \bmod D_{(n), Z}(G) \cap D_{(n), Z / p^{e} Z}(G)\right\}\right.$. Then $g^{p^{r}}-1 \in \Delta_{Z}^{(n)}(G)$ for some r. As $(g-1)^{m} \in \Delta_{R}^{(m+1)}(G)\left(g \in G_{2}\right)$, we can find an s such that $p^{s}(g-1) \in \Delta_{Z}{ }^{(n)}(G)$. Hence, by Theorem 4.1, $g-1 \in \Delta_{R}^{(n)}(G)$ and so $g \in D_{(n), R}(G)$. This completes the proof of case (i). Case (ii) follows from Theorem 4.1(i).
7. Lie powers of the augmentation ideal. Let G be a group, R a commutative ring with unity. In this section we study the Lie ideals $\Delta_{R}{ }^{(n)}(G)$. (See section 1 for definition.) We recall (*) that

$$
\Delta_{R}^{(n)}(G) \cdot \Delta_{R}^{(m)}(G) \subseteq \Delta_{R}^{(n+m-1)}(G) \text { for all } n, m \geqq 1
$$

Evidently $\Delta_{R}{ }^{(2)}(G)=0$ if and only if G is abelian.
7.1. Theorem. $\Delta_{R^{(n)}}(G)=0$ for some $n>2$ and $\Delta_{R}{ }^{(2)}(G) \neq 0$ if and only if G is nilpotent, G_{2} is a finite p-group $\neq(1)$ and p is nilpotent in R.

Proof. Suppose $\Delta_{R}{ }^{(n)}(G)=0$. Then $D_{(n), R}(G)=(1)$ and so G is nilpotent.

Also $\left(\Delta_{R}{ }^{(2)}(G)\right)^{n-1}=0$ and therefore $\left(\Delta_{R}\left(G_{2}\right)\right)^{n-1}=0$ which implies $([\mathbf{1} ; \mathbf{3}]$ or [7, Chapter 2, Lemma 1.1]) that G_{2} is a finite p-group and p is nilpotent in R. Conversely, suppose G is a nilpotent group with $\left|G_{2}\right|=p^{r}, r \geqq 1$. Then $G_{n}=(1)$ and $\left(\Delta\left(G_{2}\right)\right)^{n}=0$ for sufficiently large n and consequently $\Delta_{R}{ }^{\left(n^{2}\right)}(G)=0$ (Theorem 2.4).
7.2. Remark. The converse in the above proof can also be seen directly by inducting on the order of G_{2}. The theorem for finite groups is due to R. Sandling [7].
7.3. Notation. Let p be a prime. We denote by K_{p} the class of those nilpotent groups whose derived groups are p-groups of finite exponent and by $R K_{p}$ the class of groups which are residually in K_{p}.
7.4. Theorem. Let R be a commutative ring with unity having characteristic a power of p, p prime. Then $\cap_{n} \Delta_{R}^{(n)}(G)=0$ if and only if $G \in R K_{p}$.

Proof. Suppose $\cap_{n} \Delta_{R}{ }^{(n)}(G)=0$. Then the Lie dimension subgroups $D_{(n), R}(G)$ have the property that $\bigcap_{n} D_{(n), R}(G)=(1)$. Notice that $G / D_{(n), R}(G)$ is a nilpotent group, since $G_{n} \subseteq D_{(n), R}(G)$. Let $g \in G_{2}$. Then $g-1 \in \Delta_{R}{ }^{(2)}(G)$ and $(g-1)^{r} \in \Delta_{R}^{(n)}(G)$ for $r \geqq n-1>0$. If the characteristic of R is p^{m}, we choose t so that $p^{t}>n p^{m}$. Then $p^{m} \left\lvert\,\binom{ p^{t}}{r}\right.$, for $r=1,2, \ldots, n-1$ and it follows that

$$
g^{g^{t}}-1=\sum_{r=1}^{p^{t}}\binom{p^{t}}{r}(g-1)^{r} \in \Delta_{R}^{(n)}(G)
$$

Hence $G_{2}{ }^{p^{t}} \subseteq D_{(n), R}(G)$. This proves that $G / D_{(n), R}(G)$ is a nilpotent group whose derived group is a p-group of bounded exponent, i.e. $G / D_{(n), R}(G) \in K_{p}$. As $\cap_{n} D_{(n), R}(G)=(1)$, it follows that $G \in R K_{p}$.

Conversely, as the class K_{p} is closed under finite direct sums it is enough [4] to prove that

$$
G \in K_{p} \Rightarrow \bigcap_{n} \Delta_{R}^{(n)}(G)=0
$$

For a nilpotent group G, Theorem 2.4 gives

$$
\bigcap_{n} \Delta_{R}^{(n)}(G) \subseteq \bigcap_{m} \Delta_{R}{ }^{m}\left(G_{2}\right) \cdot R(G) .
$$

If now G_{2} is a nilpotent p-group of bounded exponent, then, since $R(G)$ is a free $R\left(G_{2}\right)$-module, we can conclude that $\cap_{m} \Delta_{R}{ }^{m}\left(G_{2}\right) \cdot R(G)=0$ [2]. Hence $\cap_{n} \Delta_{R}^{(n)}(G)=0$.

We now consider the case when the characteristic of R is 0 .
7.5. Definition. An element $g \in G_{2}$ is called a generalized Lie p-element if for every n, there exists $r(n)$ such that $g^{p r(n)} \in D_{(n), Z}(G)$ or, equivalently, there exists $s(n)$ such that $p^{s(n)}(g-1) \in \Delta_{Z}{ }^{(n)}(G)$.
7.6. Theorem. Let G be a group having a non-identity generalized Lie p element $g \in G_{2}$. Let R be a commutative ring with unity such that the charac-
teristic of R is zero. Then $\cap_{n} \Delta_{R}{ }^{(n)}(G)=0$ if and only if $G \in R K_{p}$ and $\cap_{n} p^{n} R=0$.

Proof. Suppose first that $\cap_{n} \Delta_{R}{ }^{(n)}(G)=0$. Let

$$
D_{(n), m, p, R}(G)=\left\{x \in G \mid x-1 \in \Delta_{R}^{(n)}(G)+p^{m} \Delta_{R}(G)\right\} .
$$

Then we assert that

$$
\bigcap_{n, m} D_{(n), m, p, R}(G)=(1) .
$$

For, let $h \in \cap_{n, m} D_{(n), m, p, R}(G)$. Then it is easy to prove that

$$
(g-1)(h-1) \in \Delta_{R}^{(n)}(G)
$$

for all n. As the characteristic of R is 0 , this yields $h=1$. The groups $G / D_{(n), m, p, R}(G)$ can be seen to be in class K_{p}. Hence $G \in R K_{p}$. If $r \in \cap_{n} p^{n} R$, then $r(g-1) \in \cap_{n} \Delta_{R}^{(n)}(G)=0$. Hence $r=0$. This proves $\cap_{n} p^{n} R=0$.

Conversely, assume that $G \in R K_{p}$ and $\cap_{n} p^{n} R=0$. As the class K_{p} is closed under finite direct sums [4], we can assume without loss of generality that $G \in K_{p}$. An application of Hartley's result [2, Theorem E] yields this case as it does the converse part of Theorem 7.4.

References

1. I. G. Connell, On the group ring, Can. J. Math. 15 (1963), 650-685.
2. B. Hartley, The residual nilpotence of wreath products, Proc. London Math. Soc. 20 (1970), 365-392.
3. G. Losey, On group algebras of p-groups, Michigan Math. J. 7 (1960), 237-240.
4. J. N. Mital, On residual nilpotence, J. London Math. Soc. 2 (1970), 337-345.
5. M. M. Parmenter, On a theorem of Bovdi, Can. J. Math. 23 (1971), 929-932.
6. I. B. S. Passi, Polynomial maps on groups, J. Algebra 9 (1968), 121-151.
7. R. Sandling, The modular group rings of p-groups, Ph.D. Thesis, University of Chicago, 1969.
8. S. K. Sehgal, Lie properties in group algebras, Proceedings of the conference on "Orders, Group Rings and Related Topics", Ohio State University, 1972, Springer-Verlag (to appear).

University of Alberta,
Edmonton, Alberta;
University of Kurukshetra,
Kurukshetra, India

[^0]: Received June 7, 1972 and in revised form, December 7, 1972. This research was supported by NRC Grant A-5300.

