
J. Functional Programming 11 (1): 33–53, January 2001. Printed in the United Kingdom

c© 2001 Cambridge University Press

33

Algorithms with polynomial interpretation
termination proof

G. BONFANTE, A. CICHON, J.-Y. MARION

Loria, Calligramme project, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France

(e-mail: {bonfante,cichon,marionjy}@loria.fr)

H. TOUZET

LIFL - USTL, 59655 Villeneuve d’Ascq Cedex, France

(e-mail: touzet@lifl.fr)

Abstract

We study the effect of polynomial interpretation termination proofs of deterministic (resp.

non-deterministic) algorithms defined by confluent (resp. non-confluent) rewrite systems over

data structures which include strings, lists and trees, and we classify them according to the

interpretations of the constructors. This leads to the definition of six function classes which

turn out to be exactly the deterministic (resp. non-deterministic) polynomial time, linear

exponential time and linear doubly exponential time computable functions when the class is

based on confluent (resp. non-confluent) rewrite systems. We also obtain a characterisation of

the linear space computable functions. Finally, we demonstrate that functions with exponential

interpretation termination proofs are super-elementary.

1 Introduction

Termination orderings on rewrite systems can give rise to characterisations of classes

of total functions. Examples of this which occur in the literature are the characterisa-

tions of the primitive recursive functions by the Multiset Path Ordering in Hofbauer

(192) and of the multiply recursive functions of Péter (1967) by the Lexicographic

Path Ordering in Weiermann (1995). Termination proofs by polynomial interpre-

tations were introduced by Lankford (1979). Hofbauer and Lautemann (1988)

established that rewrite systems with polynomial interpretation termination proofs

can admit derivations doubly exponential in length. The background for our study

goes back to the work of Cichon and Lescanne (1992) where it was shown that

a particularly important aspect was the interpretations of the constructors. More

recently, we have shown (Bonfante et al., 1998) that, according to the interpretations

of the successors (i.e. constructors), polynomial interpretation termination proofs

for functions give rise to characterisations of the functions computed in polyno-

mial time (Ptime), linear exponential time (Etime = Dtime(2O(n))) and linear doubly

exponential time (E2time = Dtime(22O(n)

)). As a corollary, we established that the

functions over N, where N is the representation of the natural numbers based on

one successor, are precisely the Linspace functions.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

34 G. Bonfante et al.

Table 1. A short summary of results (where exp∞(0) = 2 and exp∞(n+ 1) = 2exp∞(n))

n-ary constructor interpretation Confluent Non-confluent

Kind 0:
∑n

i=1 Xi + γ Ptime NPtime

Kind 1:
∑n

i=1 αiXi + γ Etime NEtime

Kind 2: α
∏n

i=1 X
βi
i + R(X1, . . . , Xn) E2time NE2time

Kind 3:
∑n

i=1 2Xi + γ Dtime(exp∞(n)) Dtime(exp∞(n))

Following Marion (1998), our investigations in the present paper concern, specifi-

cally, the effect of polynomial and exponential interpretation termination proofs for

both deterministic and non-deterministic algorithms which are defined by confluent

(for deterministic algorithms) and non-confluent (for non-deterministic algorithms)

rewrite systems over data structures which include strings, lists and trees. Thus,

we are somewhat closer to real programming languages such as those designed

in POLO (Giesl, 1995), ORME1 and LARCH2. Our approach incorporates ideas

involved in the predicative analysis of recursive definitions which can be found in

the works of Simmons (1988), Bellantoni and Cook (1992) and Leivant (1994), and

we also exploit more traditional methods from rewriting theory.

We present a notion of function computed by a non-confluent system which

appears in Krentel’s (1988) work in a different context, and which seems appropriate

and robust, as argued by Grädel and Gurevich (1995). The purpose is to provide

a basis whereby non-confluent rewrite systems can be seen as a model of non-

deterministic computations.

We classify three kinds of polynomial interpretations of constructors and we

analyse the computational complexity of algorithms with respect to the kind of

interpretation given to the constructors. Hence, we obtain three classes of functions

which characterise exactly Ptime, Etime, E2time when systems are confluent. When

systems are non-confluent, we capture their non-deterministic counterparts, that is

the class of functions computable in non-deterministic polynomial time (NPtime),

non-deterministic exponential time (NEtime), and lastly non-deterministic doubly

exponential time (NE2time).

Machine independent characterisations of complexity classes were originated by

Cobham (1962). His approach is by means of ‘bounded recursion on notation’ in

which rates of growth of functions are limited by functions already defined in the

class. In contrast, in our work, polynomial interpretations, via a reduction ordering,

impose a local condition on each rewrite rule. It is worth mentioning the characteri-

1 See http://www.ens -lyon.fr/∼plescann/publications.html
2 See http://www.sds.lcs.mit.edu/spd/larch/index.html

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 35

sation of Ptime functions over finite models in Sazonov (1980) and Gurevich (1983),

since basically the same system is considered: the Herbrand–Gödel equations.

This paper is organised as follows. Sections 2 and 3 define functions computed

by rewrite systems with polynomial interpretation termination proofs. The main

results with their consequences are presented in Theorems 4.2 and 4.3 of section

4. In section 5, we establish the characterisation of polynomial time computability.

In section 6, we examine Linspace. Sections 7 and 8 are devoted to exponential

time computability, the proofs use results of the previous sections. Finally, section 9

shows that functions with termination proofs using exponential interpretations are

super-elementary.

2 Rewrite systems with polynomial interpretations

2.1 Computing with rewrite systems

Let A be a finite set of symbols of fixed arity. We are concerned with algorithms

defined by terminating rewrite systems over a finitely generated free algebra of

terms, T(A). Hence, a symbol f defined by rewrite rules, involving possibly other

auxiliary defined symbols, describes an algorithm. Furthermore, only normal forms

inT(A) are considered as meaningful. That is,T(A)-terms serve as the algorithmic

data structure, and inputs and outputs also are in T(A).

Example 1

Let s0 and s1 be two unary constructors and ε be a constant. The set W = {s0, s1, ε}
is a set of constructors for binary words.

Example 2

Lists and trees are generated by a binary constructor ∗ (used as an infix operator)

and a constant nil.

Throughout, we shall always assume that the constructor sets contain at least

D = {nil, tt, ff, ε, s0, s1, ∗}, where tt and ff represent the boolean value true and

false. So, lists of binary words are included in the domain of computation. Of course,

we could encode all constructor terms with {nil, ∗} efficiently, so that the size of the

encoding is equal to the size of the original term up to a fixed multiplicative factor.

Example 3

The main rules for defining tree-destructors are

hd(nil) → nil tl(nil) → nil

hd(c ∗ t) → c tl(c ∗ t) → t

The conditional is defined as follows:

if-t-e(tt, u, v)→ u if-t-e(ff, u, v)→ v

The term rewriting notations used throughout are based on Dershowitz and

Jouannaud (1990). The relation
+→ (

∗→) denotes the transitive (reflexive-transitive)

closure of →. If u and v are two terms, we write u
!→v to mean that u

∗→v and v is in

normal form. It is convenient to present a rewrite system as a tuple 〈R,F,A, f〉, where

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

36 G. Bonfante et al.

• A is the set of constructors,

• F is the set of defined auxiliary symbols,

• R is the set of rewrite rules, and

• f is the main symbol of F.

2.2 Polynomial interpretation

A polynomial interpretation termination proof for a rewrite system 〈R,F,A, f〉 con-

sists in the assignment to each symbol g of F ∪ A, of a polynomial [g] with

non-negative integer coefficients which satisfies the following conditions:

• If the arity of g is k then [g] is a polynomial in k variables.

• If the arity of g is 0 then [g] > 0, otherwise, for all nj > 0, where j = 1, . . . , k,

[g](n1, . . . , nk) > ni, for all i = 1, . . . , k. This condition is useful to guarantee

strict monotonicity of the interpretation on terms.

[] is extended canonically to a morphism over terms as follows:

[g(t1, . . . , tn)] = [g]([t1], . . . , [tn]).

Finally, [] must ensure that for all rules l → r ofR, [l] > [r] for all values of variables

greater than or equal to the minimum of the interpretations of the constants. The

above definition follows Dershowitz (1982) (see also Steinbach, 1995).

Example 4

Whatever the choice of polynomial interpretation for the constructors, the symbols

defined in Example 3 admit the following interpretations:

[hd](X) = X + 1 [tl](X) = X + 1 [if-t-e](X,Y , Z) = X + Y + Z + 1

Henceforth, a rewrite system 〈R,F,A, f〉 with a polynomial interpretation, [], is

denoted by 〈R,F,A, f, []〉.
Example 5

The equality predicate on W = {tt, ff, ε, s0, s1} is computed by

eq?(ε, ε) → tt eq?(si(u), si(v)) → eq?(u, v)

eq?(si(u), ε) → ff eq?(si(u), sj(v)) → ff (i 6= j)

eq?(ε, sj(v)) → ff

and admits the interpretation [ff] = [tt] = [ε] = 1, [si](X) = X + 2 and

[eq?](X,Y) = X + Y + 1. Similarly, we define the boolean operator and with

the interpretation [and](X,Y) = X + Y + 1 as follows:

and(tt, tt)→ tt and(ff, x)→ ff and(x, ff)→ ff

Example 6

Over D, a graph is represented by a list V = (s0(ε) ∗ s1(ε) ∗ s0(s0(ε)) ∗ · · · ∗ nil) of

vertices and a list E = ((u0 ∗ v0) ∗ (u1 ∗ v1) ∗ · · · ∗ nil) of edges. We first define a

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 37

predicate find which tests whether or not a pair (u, v) of vertices is an edge of the

graph:

find(u, v, nil)→ ff

find(u, v, (u′ ∗ v′) ∗ E)→ if-t-e(and(eq?(u, u′), eq?(v, v′)), tt, find(u, v, E))

with the polynomial interpretation:

[nil] = 1 [∗](X,Y) = X + Y + 4 [find](X,Y , Z) = (X + Y + 1)(Z + 1)

2.3 Upper bounds on derivation lengths

We end this section by giving some general properties which will be used later. First,

whenever u
+→v, [v] < [u]. This observation implies that the length of any derivation

starting from a term t is bounded by [t].

Lemma 1

A rewrite system with a polynomial interpretation termination proof is terminating.

Define the size |t| of a term t as follows:

|t| =
{

1 if t is a constant or a variable∑n
i=1 |ti|+ 1 if t = f(t1, . . . , tn)

Lemma 2

For all closed terms t, |t| 6 [t].

Proof

The proof is by induction on |t|. The result is immediate if t is a constant because

|t| = 1 and [t] > 0 by assumption on []. Otherwise, t is of the form f(t1, . . . , tn)

and so |f(t1, . . . , tn)| = 1 +
∑n

i=1 |ti| 6 1 +
∑n

i=1[ti]. Since [f] is monotone, for all

n > 0, [f](. . . , n+1, . . .) > [f](. . . , n, . . .)+1. By definition [f](0, . . . , 0) > 0, so we have

[f](X1, . . . , Xn) >
∑n

i=1 Xi+1, for all Xi > 0. Therefore, |f(t1, . . . , tn)| 6 1+
∑n

i=1[ti] 6
[f(t1, . . . , tn)]. q

Definition 1

A class C of unary increasing functions over natural numbers accommodates poly-

nomials if, and only if, for all φ ∈ C, for all polynomials P with natural number

coefficients, there is a function φ′ ∈ C such that, for all x > 0, P (φ(x)) 6 φ′(x).

In the sequel, we shall deal with four main classes of functions: polynomials,

exponentials {2γx ; γ > 0}, double exponentials {22γx ; γ > 0}, and super elemen-

tary functions {exp∞(x + γ) ; γ > 0}, it is clear that these classes accommodate

polynomials.

Lemma 3

Let C be a class of functions which accommodates polynomials. Let 〈R,F,A, f, []〉
be a rewrite system. Assume that there exists φ ∈ C such that, for all terms t in

T(A), [t] 6 φ(|t|). Then there is φ′ ∈ C, such that for all terms t1, . . . , tn ∈ T(A),

the following holds:

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

38 G. Bonfante et al.

1. [f(t1, . . . , tn)] 6 φ′(max{|ti| ; 1 6 i 6 n}).
2. The length of any derivation starting from f(t1, . . . , tn) is bounded by

φ′(max{|ti| ; 1 6 i 6 n}).
3. If f(t1, . . . , tn)

+→Rv, then |v| 6 φ′(max{|ti| ; 1 6 i 6 n}).
Proof

Let m = max{|ti| ; 1 6 i 6 n}. By hypothesis, we have

[f(t1, . . . , tn)] 6 [f](φ(m), . . . , φ(m))

6 φ′(m) for some φ′ in C
So (1) is proved. (2) is a consequence of (1) since the length of any derivation is

bounded by the polynomial interpretation of the starting term. Finally, Lemma 2.3

implies |v| 6 [v]. Since [v] 6 [f(t1, . . . , tn)], we obtain (3) by applying (1) again. q

3 Calculating semantics

3.1 Deterministic computation

As we have stated earlier, we see the rewrite system 〈R,F,A, f, []〉 as a program

over the data structure T(A). We shall only consider the normal forms, which are

in the data setT(A), as being meaningful. We shall provide a semantics over strings

for these programs. This will enable us to effect time simulations over computation

models working over strings and to compare expressivities with these models. A

reason is that the usage is to measure the time simulation over a computation model

working on strings, and to compare the expressivity with those models. All along, Σ

will be an alphabet and Σ∗ the set of words over Σ. We relate strings of Σ∗ to the data

structureT(A) by an encoding function which is always assumed to be suitable. An

encoding α : Σ∗ 7→ T(A) is suitable if α is injective and if there is a constant c such

that, for all u in Σ∗, |α(u)| 6 c · |u|. For example, one might define α−1 as a ‘Polish

prefix form’ encoding. The semantics of a program is obtained through a pair of

encoding functions which expresses the input/output behaviour of the program.

Definition 2

Let (α, β) be a pair of encoding functions. The function computed by 〈R,F,A, f, []〉,
where f is of arity n, is the function {f} : (Σ∗)n 7→ Σ∗ defined, for all w1, . . . , wn, v ∈ Σ∗

f(α(w1), . . . , α(wn))
!→β(v) if, and only if, {f}(w1, . . . , wn) = v

The pair (α, β) of encoding functions is a key element of our characterisation of

exponential and doubly exponential time computation. In fact, it happens that two

constructors are needed, while they actually have the same string representation, as

it is illustrated in the next example. However, it is worth noticing that we could

identify α and β to capture polynomial time computation, hence providing a one-one

encoding function. Throughout, we shall omit mention of the encoding pair when it

is not absolutely necessary.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 39

Example 7

Consider the following rewrite system which defines E over the set of constructors

{0, p, q}:
D(0)→ 0 D(p(x))→ p(p(D(x)))

E(0)→ p(0) E(q(x))→ D(E(x))

The symbols admit the following polynomial interpretations, [0] = 1

[p](X) = X + 4 [q](X) = 3X + 12

[D](X) = 3X + 1 [E](X) = X + 5

Now, define the unary numeral over the tally alphabet Σ = {|} by 0 = ε and

n+ 1 = |n. The function n 7→ 2n is computed by E with respect to the pair of

encoding functions (α, β) defined:

α(ε) = 0 α(|u) = q(α(u))

β(ε) = 0 β(|u) = p(β(u)).

Therefore, for all n, E(α(n))
!→β(2n). A consequence of the work of Cichon and

Lescanne (1992) is that p and q must have different kinds of interpretations to

define a function with an exponential growth rate.

3.2 Non-deterministic computation

We have to decide what we mean when we say that a function is computed by a non-

confluent rewrite system 〈R,F,A, f, []〉. Indeed, the computation of f, on arguments

inT(A), leads to several normal forms which depend on the reductions applied. We

shall regard a non-confluent rewrite system as a non-deterministic algorithm. Let us

illustrate this point of view by defining a procedure which searches for a clique in a

graph.

Example 8

Consider a graph G which is represented as in Example 6 by a list V of vertices

and a list E of edges. Here the program clique(K,E) returns the value tt if the

set of vertices K is a complete sub-graph of G. To define clique, we use find

(Example 6), and complete. The term complete(u, V , E) checks whether the vertex

u is connected to each vertex in V using an edge in E:

complete(u, nil, E)→ tt

complete(u, v ∗ V , E)→ if-t-e(find(u, v, E), complete(u, V , E), ff)

clique(nil, E) → tt

clique(u ∗K,E) → if-t-e(complete(u,K, E), clique(K,E), ff)

The set of normal forms of choice(V , nil, E) is the set of all cliques of G:

choice(nil, K, E) → if-t-e(clique(K,E), K, nil)

choice(u ∗ V ,K, E) → choice(V , u ∗K,E)

choice(u ∗ V ,K, E) → choice(V ,K, E)

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

40 G. Bonfante et al.

The last two rules are not confluent, and correspond exactly to non-deterministic

choice. (By Newman’s Lemma, the systems considered are not weakly confluent since

they are terminating.) Now, a maximal clique of G is a longest list among all normal

forms generated by choice-computation. Similarly, when a decision procedure is

carried out by a non-deterministic computation, the result, which is 1 or 0 here, is

given by the maximal output.

One might check that the system is terminating by the following polynomial

interpretations:

[complete](X,Y , Z) = (X + 1)(Y + 1)(Z + 1)

[clique](X,Y) = (X + 1)2 · (Y + 1)

[choice](X,Y , Z) = (2X + Y + 1)2 · (Z + 1)

Actually, we follow closely the definition introduced by Krentel (1988) and by

Grädel and Gurevich (1995) in defining a function computed by a non-confluent

system as follows.

Definition 3

Let (α, β) be a pair of encoding functions. The rewrite system 〈R,F,A, f, []〉
computes the function {f} : (Σ∗)n 7→ Σ∗ defined by

{f}(u1, . . . , un) = max{v ; f(α(u1), . . . , α(un))
!→β(v)}

for all u1, . . . , un ∈ Σ∗, and where strings of Σ∗ are ordered by length and then

lexicographically.

Note that the above notion is a meta-definition. Definability in the system of the

max-operation is equivalent to providing a completion procedure which actually

amounts to transforming a non-deterministic algorithm into a deterministic one.

So, unless Ptime = NPtime, the above completion can not be carried out inside a

∆(i)-rewrite system, as we shall see.

4 Classes of functions and results

4.1 Computational models

We shall consider non-deterministic multi-stack Turing machines, abbreviated ND-

STM, as computational models. Formally, a k-NDSTM, M, is a NDSTM with

k stacks which is defined by a tuple M = 〈Σ, ε, Q, q0, Qf, δ〉, where Σ is the al-

phabet and ε is the bottom stack symbol, Q is the set of states with q0 ∈ Q as

initial state, Qf ⊆ Q the set of final states and finally the transition relation is

δ ⊆ Q× (Σ ∪ {ε})k × Q× (Σ∗)k .
A configuration of the machine is a k + 1-tuple 〈q, w1, . . . , wk〉 where q ∈ Q is the

current state, and wi is the content of the ith stack. Now, for all i, if ai is the

first letter of wi, or if both ai and wi are equal to ε, then we may apply the

transition (q, a1, . . . , ak, q
′, u1, . . . , uk) if it belongs to δ. It replaces each letter ai by

the word ui and switches to the state q′ to reach a new configuration. So we obtain

the configuration 〈q′, u1v1, . . . , ukvk〉 where wi = aivi. Note that δ may yield more

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 41

than one next configuration. Let ⇒ be the relation which provides the set of next

configurations provided by δ and
+⇒ the transitive closure of ⇒.

We have already discussed what it means for a function to be defined by a

non-deterministic procedure (see the end of section 3.2). For computation over a

NDSTM, we again follow Krentel (1988) and Grädel and Gurevich (1995).

Definition 4

A function F[M] : (Σ∗)n 7→ Σ∗ is computed by a NDSTM M if F[M](u1, . . . , un) =

max{v ; (q0, u1, . . . , un, ε, . . . , ε)
+⇒(qf, . . . , v) where qf ∈ Qf} where Σ∗ is ordered by

length and then lexicographically.

Now, if δ is the graph of a k + 1-ary function from Q× (Σ ∪ {ε})k into Q× (Σ∗)k ,
the computational model is deterministic (STM). In the deterministic case, the max-

operation defining φ is taken over at most one value, and hence it is a particular

case of the above non-deterministic definition.

Two-stack Turing Machines are sufficiently expressive to delineate classes like

Ptime and NPtime. However, we shall need more than two-stacks in section 6 to

deal with unary computation in order to capture Linspace.

4.2 Classification for deterministic computation

We shall now consider three categories of polynomial interpretation of constructors.

This classification extends that of Bonfante et al. (1998), and follows studies initiated

by Hofbauer and Lautemann (1988) and Cichon and Lescanne (1992).

Kind 0: polynomials of the form P (X1, . . . , Xn) =
∑n

i=1 Xi + γ, where γ > 0.

Kind 1: polynomials of the form P (X1, . . . , Xn) =
∑n

i=1 αiXi + γ, where αi > 1, for

some i.

Kind 2: polynomials of the form P (X1, . . . , Xn) = α
∏n

i=1 X
βi
i + R(X1, . . . , Xn), where

α > 0,
∑n

i=1 βi > 1 and R is any polynomial.

Definition 5

Let i ∈ {0, 1, 2}. A confluent rewrite system 〈R,F,A, f, []〉 is Π(i) if, for each

constructor c of A, the interpretation [c] is of kind less than or equal to i. A

function φ over Σ∗ is Π(i)-computable if it is computed by a Π(i)-rewrite system.

For instance, Example 8 (clique) shows that checking whether a set of vertices

is a clique, is a Π(0)-computable function. Example 7 illustrates the fact that

the exponential function is Π(1)-computable. We now state our main result for

deterministic computation.

Theorem 4

1. The Π(0)-computable functions are exactly the Ptime functions.

2. The Π(1)-computable functions are exactly the Etime functions, i.e. the func-

tions computable in time 2O(n).

3. The Π(2)-computable functions are exactly the E2time functions, i.e. the func-

tions computable in time 22O(n)

.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

42 G. Bonfante et al.

Proof

The above theorem is mostly a consequence of the proof of Theorem 5. Corollary 10

simulates Π(0)-computable functions in Ptime. The converse is stated in Corollary 14.

The characterisation of Etime (resp. E2time) follows from Corollaries 20 and 23

(resp. 27 and 30). q

Now say that a language L is recognised by a rewrite system if the characteristic

function of L is computable by the rewrite system. It is obvious that languages

recognised in time 2O(n) are Π(1)-computable. Actually, every language recognised

in time 2O(nk) is Π(1)-computable, with respect to a polynomial time reduction. To see

this, use a standard padding argument. Indeed, let L ⊂ Σ∗ be a Dtime(2n
k

) language.

Suppose that L is accepted by the TM M. Suppose that @ is not a letter of Σ. Then,

construct L′ = {x@0|x|k ; x ∈ L} ⊂ (Σ ∪ {@})∗, that is, each word of L′ is a word

of L padded by extra 0’s. Thus, L′ is recognised in time 2O(n) using M. Then, the

characteristic function of L′ is Π(1)-computable.

4.3 Classification for non-deterministic computation

As for confluent systems, non-confluent systems fall into the same three categories.

Definition 6

Let i ∈ {0, 1, 2}. A rewrite system 〈R,F,A, f, []〉 is ∆(i) if, for each constructor c of

A, the interpretation [c] is a polynomial of kind less than or equal to i. A function

φ over Σ∗ is ∆(i)-computable if it is computed by a ∆(i)-rewrite system.

It follows that finding a clique (choice) in a graph, as defined in Example 8, is a

∆(0)-computable function.

Theorem 5

1. The ∆(0)-computable functions are exactly the NPtime functions.

2. The ∆(1)-computable functions are exactly the NEtime functions, i.e. the

functions computable in non-deterministic time 2O(n).

3. The ∆(2)-computable functions are exactly the NE2time functions, i.e. the

functions computable in non-deterministic time 22O(n)

.

Proof

The proof is as follows. Lemma 9 shows how to simulate ∆(0)-computable functions

in NPtime. The converse is established in Lemma 13. The characterisation of NEtime

is proved in Lemmas 19 and 22, and the characterisation of NE2time is established

in Lemmas 26 and 29. q

4.4 Weak composition properties

We show a property of weak closure under composition of ∆(i) and Π(i)-computable

functions, enabling us to combine rewrite systems to define functions in a modular

way.

Lemma 6

Let 〈R,F,A, f, []〉 be a ∆(0) (resp. Π(0))-rewrite system and let 〈Ri,Fi,Ai, fi, []i〉

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 43

be a ∆(i) (resp. Π(i))-rewrite system. Assume that there is an injective morphism

τ : T(Ai) 7→ T(A) which preserves symbol arity. Then there is a ∆(i) (resp. Π(i))-

rewrite system 〈R∗,F∗,A∗, f∗, []∗〉 such that

f∗(~u, w1, . . . , wn)
!→v if, and only if, f(τ(fi(~u)), τ(w1), . . . , τ(wn))

!→v
for all ~u, w1, . . . , wn ∈ T(Ai) and v ∈ T(A).

Proof

We give the proof for non-confluent ∆(i)-rewrite systems. Without loss of generality,

we may suppose that both F and Fi are disjoint and also that A and Ai are two

disjoint copies of the same set of constructors. The key point of the construction is

the introduction of a coercion function Tr which translates terms of Ai into terms

of A. Tr is defined as follows:

Tr(c) → τ(c) c ∈ Ai is 0-ary

Tr(c(x1, . . . , xn)) → τ(c)(Tr(x1), . . . , Tr(xn)) c ∈ Ai is n-ary

The interpretation of Tr is

[Tr]∗(X) = α ·X + 1 (1)

where α = max{n + γ; [τ(c)](x1, . . . , xn) =
∑n

i=1 xi + γ where c ∈ Ai}. Indeed, we

have already seen in the proof of Lemma 2 that

n∑
i=1

[xi] + 1 6 [c(x1, . . . , xn)] (2)

Thus, we have

[τ(c)(Tr(x1), . . . , Tr(xn))] 6 α ·∑n
i=1[xi] + n+ γ τ(c) ∈ A

6 α · (∑n
i=1[xi] + 1

)
by definition of α

< [Tr(c(x1, . . . , xn))] by 1 and 2

Define the rewrite system 〈R∗,F ∪ Fi ∪ {f∗},A ∪Ai, f∗, []∗〉 where the set of rules

R∗ contains the set R∪Ri, the above rules for Tr and the rule

f∗(~x, y1, . . . , yn)→ f(Tr(fi(~x)), Tr(y1), . . . , Tr(yn)).

The polynomial interpretation []∗ is an extension of [] and []i:

[g]∗ = [g], if g ∈ F ∪A
[g]∗ = [g]i, if g ∈ Fi ∪Ai

[f∗]∗(~X, Y1, . . . , Yn) = [f]∗([Tr]∗([fi]∗(~X)), [Tr]∗(Y1), . . . , [Tr]∗(Yn)) + 1

q

5 Polynomial time computation

5.1 ∆(0)-computable functions are polynomial time

Lemma 7

Let 〈R,F,A, f, []〉 be a ∆(0)-rewrite system. Then there is a constant γ such that,

for all t ∈ T(A), [t] 6 γ · |t|.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

44 G. Bonfante et al.

Proof

All constructors in A are of kind 0. Therefore, there exists γ > 0 such that [c] 6 γ

when c is 0-ary, and [c](x1, . . . , xn) 6
∑n

i=1 xi+γ, when c is n-ary. So, for all t ∈ T(A),

we have, by composition of interpretations, [t] 6 γ · |t|. q

Corollary 8

Let〈R,F,A, f, []〉 be a ∆(0)-rewrite system. Then there is a polynomial Pf such that,

for all terms t1, . . . , tn ∈ T(A),

1. the length of any derivation starting from f(t1, . . . , tn) is bounded by

Pf(max{|ti| ; 1 6 i 6 n}),
2. if f(t1, . . . , tn)

+→v, then |v| 6 Pf(max{|ti| ; 1 6 i 6 n}).
Proof

(1) is a consequence of Lemma 3-(2) and Lemma 7. (2) is a consequence of Lemma 3-

(3) and Lemma 7. q

Lemma 9

If φ is ∆(0)-computable, then φ is in NPtime.

Proof

Suppose that φ is computed by the ∆(0)-rewrite system 〈R,A,F, f, []〉 and uses

the pair (α, β). We shall describe a NDSTM which produces every normal form

of f(u1, . . . , un) for all u1, . . . , un in T(A). The machine alphabet is Σ. For this,

we use a one-one encoding function on strings cde : T(A) 7→ Σ∗, as the ‘Polish

prefix form’. The inputs will be encoded by (cde(α(u1)), . . . , cde(α(un)). At the end,

of the computation, the result will be decoded by β−1. Therefore, the result of the

computation will correspond exactly to the greatest value with respect to the length

lexicographic ordering on Σ∗.
The non-deterministic algorithm works as follows. At each step, we choose non-

deterministically a redex of the current term and an R-rule. We apply the corre-

sponding reduction. We stop when no reduction is applicable.

The first key point is that at any derivation step, it follows from (2) of Corollary 8

that the size of terms is always bounded by O(max{|wi|}p), for some constant p,

where wi are contents of the stacks of the TM. So a redex position is determined

with O(log(max{|wi|})) bits, and a constant number of bits is necessary to indicate

which R-rule is taken. Hence at each step, we guess O(log(max{|wi|})) bits. Because

of this, the replacement is performed in at most quadratic time. The size of the

term obtained is then bounded by O(max{|wi|}p), again by (2) of Corollary 8.

Therefore, a reduction step, including the guessing procedure, is carried out in time

O(max({|wi|}p+3).

The second key point is that the length of a derivation path is bounded by

O(max{|wi|}q), for some constant q, by (1) of Corollary 8. Consequently, the runtime

is bounded by O(max{|wi|}q+p+3). q

Corollary 10

If φ is Π(0)-computable, then φ is in Ptime.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 45

Proof

Since φ is defined by a confluent rewrite system, it follows that any reduction

strategy will work. So the proof of Lemma 9 provides a deterministic evaluation

procedure which runs in polynomial time. q

5.2 Simulation of time bounded computation

The simulation of a time bounded computation will always proceed as follows. First,

we shall construct a rewrite system in ∆(0) that simulates t steps of the computation

of a NDSTM. This will be done in Lemma 11. It will turn out that the system is

confluent if the computation is deterministic. Then, it will remain to establish that

the time bound is computed by a confluent system. We shall obtain the conclusion

by composing both results, following Lemma 6.

Lemma 11

Let M = 〈Σ, ε, Q, q0, Qf, δ〉 be a NDSTM. Then there is a ∆(0)-computable func-

tion φM such that, if M halts in less than t steps then φM(0t, w1, . . . , wk) =

F[M](w1, . . . , wk), for each w1, . . . , wk in Σ∗ and 0 ∈ Σ.

Proof

We construct a rewrite system which computes φM as follows:

• constructors are W = {si | i ∈ Σ} ∪ {ε};
• the defined symbols are {q ; q ∈ Q}, where q is a function symbol of arity

k + 1. The first parameter corresponds to the remaining computation runtime

and the k other parameters to stacks;

• the encoding pair is (α, α) with α(ε) = ε and α(i) = si for all i ∈ Σ.

Let s be s0. The rewrite rules are the following:

• If (q, a1, . . . , ak, q
′, u1, . . . , uk) ∈ δ, then

q(s(t), sa1
(x1), . . . , sak (xk))→ q′(t, α(u1)(x1), . . . , α(uk)(xk)),

with the the following convention: if the ith stack is empty, that is ai is ε, then

sai (xi) is xi.

• if qf ∈ Qf , then qf(s(t), x1, . . . , xk)→ xk .

It is straightforward to verify that

〈q, w1, . . . , wk〉⇒〈q′, w′1, . . . , w′k〉
if and only if

q(s(t), α(w1), . . . , α(wk))→ q′(t, α(w′1), . . . , α(w′k))
and that

q is a final state iff q(s(t), α(w1), . . . , α(wk))→ α(wk)

Therefore, if M halts in less than t steps on inputs w1, . . . , wk then the result of

the computation is provided by the normal form of q0(s
t(ε), α(w1), . . . , α(wk)), which

is exactly F[M](w1, . . . , wk).

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

46 G. Bonfante et al.

Finally, we interpret each function symbol by

[ε] = 1

[si](X) = X + 2 ∀i ∈ Σ

[q](T ,X1, . . . , Xk) = k · c · T +X1 + · · ·+Xk ∀q ∈ Q
where the constant c is strictly greater than the interpretation of any word that is

involved in the definition of δ. More precisely, associate to the lth transition rule

(q, a1, . . . , ak, q
′, u1, . . . , uk) ∈ δ the constant cl = max{[α(uj)(ε)] ; 1 6 j 6 k}, and

define c as the strict supremum of all cl . We conclude that the system is ∆(0). q

5.3 Simulation of polynomial time computation

Lemma 12

Each polynomial is Π(0)-computable.

Proof

The following rules and interpretations show that addition (Add) and multiplication

(Mul) are Π(0)-computable functions:

Add(x, 0) → x

Add(0, y) → y [0] = 1

Add(s(x), s(y)) → s(s(Add(x, y))) [s](X) = X + 2

Mul(0, y) → 0 [Add](X,Y) = 2X + Y + 1

Mul(s(x), y) → Add(y, Mul(x, y)) [Mul](X,Y) = (X + 1)(Y + 1)

Hence, by Lemma 6, a polynomial is a Π(0)-computable function since it is obtained

by composition of Π(0)-functions. q

Lemma 13

If φ is in NPtime, then φ is ∆(0)-computable.

Proof

Let φ be a function computed by a NDSTM such that the time of computation is

bounded by a polynomial P . Since φM , as defined in Lemma 11, is a ∆(0)-computable

function and P is a Π(0)-computable function, then φ is also ∆(0)-computable by

Lemma 6. q

Corollary 14

If φ is in Ptime, then φ is Π(0)-computable.

Proof

Since the transition relation of a deterministic Turing machine is the graph of a

function, it follows that the rewrite system described in the proof of Lemma 11 is

confluent, and so is Π(0). The conclusion follows using Lemmas 12 and 6. q

6 A characterisation of Linspace

A function is in Linspace if it is computed by a multi-stack Turing machine (STM)

over an alphabet with at least two letters running in linear space. Actually, there is

an alternative characterisation of Linspace due to Gurevich (1983).

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 47

Theorem 15

A function φ is computable over a STM over a unary alphabet in polynomial time

if, and only if, φ is in Linspace.

Proof

The proof essentially follows Leivant (1994). Let φ be an m-ary function. Assume

that φ is computed by a k-stack Turing machine M which works on the unary

alphabet {|} and whose runtime is bounded by P (w1, . . . , wm) for some polynomial P

and for all inputs w1,. . . ,wm. From M, we construct a (k + 1)-stack Turing machine

N over the binary alphabet {0, 1}. The stack i, i = 1, . . . , k, of N contains the binary

representation of the number of |’s in the ith stack of M. Now, observe that M’s

operations just consist in adding or removing some fixed number of |’s. So, when M

adds c |’s to some stack, for example, N will also add c to the same stack in base

two. However, this is easily performed by N with the spare stack. Thus, the size of

each stack of N is bounded by O(log(max{wi ; i = 1, . . . , m})).
Conversely, assume that φ is computed by a k-stack Turing machine, M, over,

say, {a, b}∗. Define u to be the dyadic representation of the word u ∈ {a, b}∗ (that is,

ε = 0, au = 2 · u + 1 and bu = 2 · u + 2). We build a (k + 2)-stack Turing machine,

N, over the unary alphabet {|} as follows. If u is in stack i of M then there are u |’s
in stack i of N. When M pushes a onto a stack, N doubles the number of |’s in this

stack and then adds |. To multiply by two, N uses the two extra stacks to duplicate

the stack. N proceeds similarly to push or pop a word given by the transition

function of M. The runtime of M is bounded by 2c·n where n is the maximum size

of the inputs. So, the runtime of N is linear in 2c·n, i.e. polynomial in the greatest

input value. q

Theorem 16

A function is computed by a Π(0)-rewrite system 〈R,F,N, f, []〉 over the domain

N = {s, 0} if, and only if, it is in Linspace.

Proof

Let φ be the function computed by 〈R,F,N, f, []〉. By Corollary 5.1, φ is computable

in polynomial time over a unary alphabet. So, by Theorem 6, φ is in Linspace.

Conversely, if φ is in Linspace, then Theorem 6 yields that φ is computable in

polynomial time on some STM which works on a unary alphabet. Therefore, by

Corollary 5.3, φ is Π(0)-computable. q

7 Exponential time

7.1 ∆(1)-computable functions are exponential time

Lemma 17

Let 〈R,F,A, f, []〉 be a ∆(1)-rewrite system. Then there is a constant γ such that,

for all t ∈ T(A), [t] 6 2γ·|t|.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

48 G. Bonfante et al.

Proof

By definition of ∆(1), for all constructors in A, there is a constant γ such that

[c](X1, . . . , Xn) 6 γ · (∑n
i=1 Xi), where Xi > 0. It is clear that

[c(t1, . . . , tn)] 6 γ ·
(

n∑
i=1

[ti]

)
6 γ ·

(
n∑
i=1

2γ·|ti|
)
6 2γ·|c(t1 ,...,tn)|.

q

Corollary 18

Let 〈R,F,A, f, []〉 be a ∆(1)-rewrite system. Then there is a constant γ such that,

for all terms t1, . . . , tn ∈ T(A),

1. the length of any derivation starting from f(t1, . . . , tn) is bounded by

2γ·max{|ti| ; 16i6n};

2. if f(t1, . . . , tn)
+→Rv, then |v| 6 2γ·max{|ti| ; 16i6n}.

Proof

This is a consequence of Lemma 3 and Lemma 17. q

Lemma 19

If φ is ∆(1)-computable, then φ is in NEtime.

Proof

The argument follows the proof of Lemma 9. Suppose that φ is computed by

〈R,F,A, f, []〉 in ∆(1). It follows that for each term t ∈ T(A), [t] 6 2O(|t|). At

each reduction step, we choose a redex non-deterministically. By Corollary 18-(2),

throughout the reduction process, expressions have a size bounded by 2O(|t|). So,

guessing a redex requires at most O(|t|) bits. Finally, if follows again by Lemma 18-

(1), that the maximal length of a derivation is bounded by 2O(|t|). We conclude that

the computation is carried out in non-deterministic time bounded by 2O(|t|). q

Corollary 20

If φ is Π(1)-computable, then φ is in Etime.

Proof

Any reduction strategy will work with a confluent system. q

7.2 Simulation of exponential time computation

Lemma 21

Let γ be a constant. The function λn. 2γ·n is Π(1)-computable

Proof

The function λn. 2γ·n is represented by Eγ which is defined as follows.

Eγ(0) → s(0)

Eγ(r(x)) → Add(Eγ(x), . . . Add(Eγ(x), Eγ(x)) . . .) (2γ − 1 occurrences of Add)

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 49

Add is defined and interpreted as in Lemma 12. The function λn. 2γ·n is Π(1)-

computable because we can assign the following polynomial interpretations:

[r](X) = 2γ+1(X + 4) [Eγ](X) = X + 3

q

Lemma 22

If φ is in NEtime, then φ is ∆(1)-computable.

Proof

Let φ be a function computed by a NDSTM such that the time of computation is

bounded by an exponential 2γ·n for some constant γ. The function φ can be obtained

by composing φM as defined in Lemma 5.2 and λn. 2γ·n. Since φM is ∆(0) and λn. 2γ·n
is Π(1), φ is ∆(1)-computable by Lemma 6. q

Corollary 23 If φ is in Etime, then φ is Π(1)-computable.

Proof

In the proof of the previous lemma, observe that φM turns out to be in Π(0). So

Lemma 6 yields that φ is Π(1)-computable. q

8 Doubly exponential time

8.1 ∆(2)-computable functions are doubly exponential time

Lemma 24

Let 〈R,F,A, f, []〉 be a ∆(2)-rewrite system. Then there is a constant γ > 0 such

that, for all t ∈ T(A), [t] 6 22γ·|t| .

Proof

By definition of ∆(2), there is a constant a such that for every constructor c,

[c](X1, . . . , Xn) 6 a · (∏n
i=1 Xi)

a where Xi > 0. Define γ = 2a. It is easy to verify that

[c(t1, . . . , tn)] 6 a ·
(

n∏
i=1

[ti]

)a

6 a · (22γ·(
∑n
i=1 |ti |)

)a 6 (22γ·(
∑n
i=1 |ti |)

)2a

We have that the interpretation is bounded by 22γ·(
∑n
i=1 |ti |+1)

. q

Corollary 25

Let 〈R,F,A, f, []〉 be a Π(2)-rewrite system. Then there is a constant γ such that,

for all terms t1, . . . , tn ∈ T(A),

1. the length of any derivation starting from f(t1, . . . , tn) is bounded by

22γ·max{|ti | ; 16i6n}
;

2. if f(t1, . . . , tn)
+→Rv, then |v| 6 22γ·max{|ti | ; 16i6n}

.

Proof

These are consequences of Lemmas 3 and 24. q

Lemma 26

If φ is ∆(2)-computable, then φ is in NE2time.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

50 G. Bonfante et al.

Proof

By definition of ∆(2), for each term t ∈ T(A), we have [t] 6 22O(|t|)
. So it follows from

Corollary 25, that the evaluation procedure described in the proof of Lemma 9, runs

in time bounded by 22O(|t|)
. q

Corollary 27

If φ is Π(2)-computable, then φ is in E2time.

8.2 Simulation of doubly exponential time computation

Lemma 28

Let γ be a constant. The function λn. 22γ·n is Π(2)-computable.

Proof

The following rules define DE which denotes the function λn.22γn:

DE(0) → s(s(0))

DE(r(x)) → Mul(DE(x), . . . Mul(DE(x), DE(x)) . . .) (2γ − 1 occurrences of Mul)

Mul is defined and interpreted as in Lemma 12. Since these rules admit the polynomial

interpretation

[r](X) = (X + 6)2γ+1

[DE](X) = X + 5,

we conclude that the function λn.22γn is Π(2)-computable. q

Lemma 29

If φ is in NE2time, then φ is ∆(2)-computable.

Proof

Let φ be a function computed by a NDSTM such that the time of computation

is bounded by a doubly exponential function, DE. The function φ is obtained by

composing φM as defined in Lemma 11 and DE. Since φM is ∆(0)-computable and

DE is Π(2)-computable, Lemma 6 implies that φ is ∆(2)-computable. q

Corollary 30

If φ is in E2time, then φ is Π(2)-computable.

9 Exponential interpretation termination proof

We now attack the problem of showing that a function, admitting a termination proof

with an exponential interpretation, is super-elementary. Exponential interpretations

were considered by Lescanne (1992) in ORME. Henceforth a symbol f of arity n is

interpreted by a function

[f](X1, . . . , Xn) = P (X1, . . . , Xn, 2
X1 , . . . , 2Xn)

where P is a monotone polynomial, with positive integer coefficients, which satisfies

P (X1, . . . , Xn, 2
X1 , . . . , 2Xn) > Xi, for i = 1, . . . , n. Hence, exponential interpretations

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 51

provide a simplification order. Note that, the set of functions on which the interpre-

tation is based is not closed under composition.

Say that an interpretation P is of kind 3, if

P (X1, . . . , Xn) =

n∑
i=1

2Xi + γ

Define Π(3)-computable functions as in Definition 5. Let us now illustrate the

computational power of these functions.

Example 9

Recall Example 7. The successors p and q were interpreted by [p](X) = X + 4 and

[q](X) = 3 · X + 12 We define Tr which converts a numeral pn(0) of kind 0 into a

numeral qn(0) of kind 1.

Tr(0) → 0

Tr(p(x)) → q(Tr(x))

It is easy to check that the interpretation [Tr](X) = 2X gives a termination proof.

So, ∆(0) and ∆(1)-computable functions collapse when exponential interpretations

of function symbols are allowed.

Example 10

The super-elementary function exp∞ defined by exp∞(0) = 2 and exp∞(n + 1) =

2exp∞(n) is computed by exp as follows

exp(0) → p(p(0))

exp(r(x)) → E(Tr(exp(x)))

where E denotes the exponential function as defined in Example 7.

So, exp(rn(0))
!→pexp∞(n)(0). The system has the following interpretation:

[r](X) = 2X + 8 [exp](X) = 2X + 8

Theorem 31

The class of functions which are Π(3)-computable, is exactly the functions which

are in Dtime(exp∞(n+ O(1))).

Proof

Assume that φ is a unary Π(3)-function computed by 〈R,F,A, f, []〉. For each

term t ∈ T(A), we have [t] 6 exp∞(|t| + γ′), for some constant γ′. Let n be the

maximal size of the inputs. Lemma 3 implies that the derivation length is bounded

by exp∞(n + γ) and also that each expression in the reduction process is of size

bounded by exp∞(n+ γ). So, φ is computed in time bounded by exp∞(n+ γ + 1).

Conversely, to simulate a function φ running in time bounded by exp∞(n + γ),

we use the construction in Lemma 11, where we insert the time bound provided by

exp(rn+γ(0)). q

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

52 G. Bonfante et al.

In conclusion, it is well known that NDtime(T (n)) = Dtime(kT (n)). It follows that

NDtime(exp∞(n+O(1))) = Dtime(exp∞(n+O(1))). This means that a function which

is computed by a non-confluent ∆(3)-rewrite system is also definable by a confluent

Π(3)-rewrite system.

References

Bellantoni, S. and Cook, S. (1992) A new recursion-theoretic characterization of the poly-time

functions. Computational Complexity, 2, 97–110.

Bonfante, G., Cichon, A., Marion, J.-Y. and Touzet, H. (1998) Complexity classes and rewrite

systems with polynomial interpretation. CSL: Lecture Notes in Computer Science 1584, pp.

372–384. Springer-Verlag.

Cichon, E. A. and Lescanne, P. (1992) Polynomial interpretations and the complexity of

algorithms. CADE’11: Lecture Notes in Artificial Intelligence 607, pp. 139–147. Springer-

Verlag.

Cobham, A. (1962) The intrinsic computational difficulty of functions. In: Y. Bar-Hillel,

editor, Proceedings of the International Conference on Logic, Methodology, and Philosophy

of Science, pp. 24–30. North-Holland.

Dershowitz, N. (1982) Orderings for term-rewriting systems. Theor. Comput. Sci., 17(3), 279–

301.

Dershowitz, N. and Jouannaud, J. P. (1990) Handbook of Theoretical Computer Science vol.B.

Elsevier.

Grädel, E. and Gurevich, Y. (1995) Tailoring recursion for complexity. J. Symbolic Logic,

60(3), 952–969.

Giesl, J. (1995) Generating polynomial orderings for termination proofs. RTA: Lecture Notes

in Computer Science 914, pp. 427–431. Springer-Verlag.

Gurevich, Y. (1983) Algebras of feasible functions. Twenty Fourth Symposium on Foundations

of Computer Science, pp. 210–214. IEEE Press.

Hofbauer, D. and Lautemann, C. (1988) Termination proofs and the length of derivations.

RTA: Lecture Notes in Computer Science 355. Springer-Verlag.

Hofbauer, D. (1992) Termination proofs with multiset path orderings imply primitive recursive

derivation lengths. Theor. Comput. Sci., 105(1), 129–140.

Krentel, M. (1988) The complexity of optimization problems. J. Computer & System Sci., 36,

490–519.

Lankford, D. S. (1979) On proving term rewriting systems are noetherien. Technical Report

MTP-3, Louisiana Technical University.

Leivant, D. (1994) Predicative recurrence and computational complexity I: Word recurrence

and poly-time. In: P. Clote and J. Remmel, editors, Feasible Mathematrics II. Birkhäuser.

Lescanne, P. (1992) Termination of rewrite systems by elementary interpretations. In: H. Kirch-

ner and G. Levi, editors, 3rd International Conference on Algebraic and Logic Programming:

Lecture Notes in Computer Science 632, pp. 21–36. Springer-Verlag.

Marion, J.-Y. (1998) An hierarchy of terminating algorithms with semantic interpretation

termination proofs. Rapport de recherche 98-R-273, LORIA.

Péter, R. (1967) Rekursive Funktionen. Akadémiai Kiadó, Budapest. (English translation:

Recursive Functions, Academic Press, New York, 1967.)

Sazonov, V. (1980) Polynomial computability and recursivity in finite domains. Elektronische

Informationsverarbeitung und Kybernetik, 7, 319–323.

Simmons, H. (1988) The realm of primitive recursion. Archive for Mathematical Logic, 27,

177–188.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

Algorithms with polynomial interpretation termination proof 53

Steinbach, J. (1995) Simplification orderings: history of results. Fundamenta Informaticae, 24,

47–87.

Weiermann, A. (1995) Termination proofs by lexicographic path orderings yield multiply

recursive derivation lengths. Theor. Comput. Sci., 139, 335–362.

https://doi.org/10.1017/S0956796800003877 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003877

