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On the central limit theorem and

iterated logarithm law for

stationary processes

C.C. Heyde

It has recently emerged that a convenient way to establish

central limit and iterated logarithm results for processes with

stationary increments is to use approximating martingales with

stationary increments. Functional forms of the limit results can

be obtained via a representation for the increments of the

stationary process in terms of stationary martingale differences

plus other terms whose sum telescopes and disappears under

suitable norming. Results based on the most general form of such

a representation are here obtained.

1. Introduction and principal results

In this paper our setting is that of a probability space {Q, B, P)

with an ergodic one-to-one bimeasurable measure preserving transformation

T . Let L2(P) be the Hilbert space of random variables with finite

second moment. Define U on L (P) by UX(u) - X(Tu) for X € L (P) ,

10(11, and write X. = uXn for some particular X € L (P) with

EXn = 0 . Set also, Sn = 0 , S = 7 X-. for n > 1 and a2 = ES2 .
u u M «, ̂ _ K n n

We shall be concerned with giving invariance principles for both the

central limit and iterated logarithm law for appropriate random functions
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in C or D defined from the partial sums S. . Here C = C[0, l] is

the space of continuous functions on [0, l] and D = D[0, l] is the

space of continuous functions on [0, l] which are right continuous with

left hand limits. In both cases we employ the supremum metric which we

denote by p .

Let {6 {•)} be a sequence of random functions on [0, l] defined by

6 (*) = S./o , j/n < * < (j+l)/n , 3 = 0, 1, ..., n-1 ,

and

• Vff» •

Also, let {n (•)) be a sequence of random functions on [0, l] defined

( 2 2 1 - %

n_,(*) = 2a log logo \ [S.-t
ft | 71 Tl\ U fe < nt s fc+l , fe = 0 , 1 , . . . , n-1 .

Let K be the set of absolutely continuous a; € C such that

x(0) = 0

and

where x denotes the derivative of a; determined almost everywhere with

respect to Lebesgue measure. Also define

g = supjn : an < e\ .

Let FQ be a 0-field such that F c B and FQ c I""1^) and write

k f ) , F ^ = n F. and F m = O-f ie ld generated by U F. .
k=_oo k--m

Our object is the following theorem.

THEOREM. If
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(1) I him E\ I x\ + lim S [ x_ I [ < « ,
n=l W*» lr=n ; OT+°° vr=n -* •*

where

(2) S ^ J F J = XQ almost surely, E{XQ\F^J = 0 almost surely,

then l i m a I-Jn = a exists for 0 £ a < » . I f o > 0 t / i e n 6 ^ - = • V i r i

tfte sense (D, p) where W is a standard Wiener process. Also, g < °° ,

{n ; n > g\ is relatively compact and the set of its limit points

coincides with K .

This result extends those of Theorem 3 of Scott [5] (central limit

case) and Theorem 2 of Heyde and Scott [3] (iterated logarithm case) which

were both given with the condition

(3) j

replacing those above. The idea in each case involves a representation for

the X's of the form

(U) *0 = *0 + uzQ - zQ

where the v., Z ? LAP) and \u XQ> forms a stationary ergodic sequence

of martingale differences. The martingale approximation idea is due to

Gordin [1] and the conditions of the theorem appear to be the most general

under which (k) will hold as above. Of course the limit behaviour of S
n

is then easy to study via the corresponding behaviour of £ u Y , since

Sn - X A ) = X. ̂ ° + ̂ • UZ° '
and the effect of u Z - UZ disappears under suitable norming. It
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n
should be remarked that lim E\ \ lf"[Xn-In}\ < «• for J . 6 LAP) with

E{l \E ) = 0 almost surely, i f and only i f X - Y i s representable in

the form (k) (via Theorem 18.2.2 of Ibragimov and Linnlk

That the representation (k) holds under the asserted conditions of the

theorem can easily be extracted from the proof of Theorem 3 of [5].

Condition (l) gives

{ m -»2 r m \2
lim lim E\ I x I = lim lim E\ I x = 0 ,

so that I x and £ x converge in LAP) . Then
r=0 r=0

Z x\ + lim ff I * • ! [ * + » I x

and our condition (l) is just the condition (k6) of [5]. Once the

representation (h) is obtained the remainder of the proof is exactly that

of Theorem 3 of [5] in the central limit case and Theorem 2 of [3] in the

case of the iterated logarithm law.

We remark that (l) arises via the restriction ZQ € LAP) . In fact,

from [5], p. 133,

Note also that under the conditions of the theorem we have that (k) holds

and lim a l-fn = o exists for 0 < a < «• . Now Z € LAP) , so
n*<*>

O = EYZ t and we can only obtain 0 = 0 in the case where

Xn = D*+1Z0 - lPz0 , some ZQ € LA?) .

We shall show that a useful sufficient condition for (1), in the

presence of (2) is

(5> J i Jo HxkE^FJ^Eix-kxo)-Eix-kE^xoK-i^ I < m '
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To ottain this we first note that

m \ 2 r m
E{[ I «J + I « J } =(6)

r=n l J k=l r=n

Now for any k, r ,

m r \ m-n m-k

so that for k 2 0 ,

m-k

L
Standard martingale results give E[X \P ) • E[XJF) = 0 almost

L
s u r e l y , and E[X \F ) *• E[x \F) = X almost s u r e l y , so t h a t

E(E{XQ\F_n))
2 + 0 and E[XQ-E{XQ\Fn))

2 -*• 0 as n •* <=° , and hence

(7) lim J ^ E[X2
P+X2_P) = SI* - BixjixjF^))

Also,

m-n

fe=l

m-n
- I

k=l

and under the condition (5).
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m-n m-k
(8) lim I I E[x x ,+x x ,t X Pr+k "r ~r-k

I t i s then clear from (6) , (7) , and (8) , that ( l ) holds under the condition

( 5 ) .

Conditions ( l ) and (5) do not appear to simplify in any real ly

convenient vay in general. However, we_jremark that we are free to choose

a convenient FQ . For example, if FQ i s the cr-field generated by X, ,

k - 0 , then the condition (5) becomes just

(9) X X ^ J )
In some cases it may be useful to translate (l) (or (5)) into a condition

on the Fourier coefficients of the expansion of X in terms of a suitable

complete orthonorma! set. Certainly (l) represents a significant

improvement over (3) and this justifies its use. An example is given in

Section 2 to illustrate this point. It should also be remarked that

conditions (l) (or (5)) and (3) provide a convenient vehicle for the study

of central limit and iterated logarithm results for stationary processes

satisfying mixing conditions. Illustrations concerning uniform mixing

processes have been given in the papers [33 and [5].

2. An example

To illustrate the improvement of (l) over (2) we introduce the

stationary linear process {x(n)} given by

CO 00

x(n) - u = I a(j)z(n-j) , I a2(j) < °° ,

where the e(n) are independent and ident ical ly dis tr ibuted with zero mean
2

and variance a . One widely applicable model which gives r i s e to th i s

process i s the standard version of the mixed autoregression and moving

average process. Another i s the stationary gaussian process with

absolutely continuous spectral density.
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Suppose that x(l), x(2), ..., x(N) is a sample of N consecutive

observations on the process (x(w)} and x denotes the sample mean. It

follows from the ergodic theorem that x •* M almost surely, as N •*•<*>,

and it is of interest to obtain functional central limit and iterated

logarithm results which give information on the rate of this convergence.

Here we have X, = x(k) - y and we can take F. as the a-field generated

by e(m) , m £ k . Then

and the theorem of this paper applies if

d o ) I \\i a{r)\ +\ i a{-r)\ r < °° •
n=l ^^r=n ' ^-r=n ' '

On the other hand, the corresponding results based on the use of condition

(3) hold if

(11) I I o?(r)\ < - ,
n=l ^|rI2n J

as in the lemma of Heyde [2]. The condition (10) represents a significant

improvement over (ll) in the case where the ex's vary continually in sign.

For example, a(|r|) = {-l)rr~ , r > 1 . If .the a's are ultimately all

positive, an example where (10) holds but (11) does not is provided by

a(|r|) ~ Cr (logr)~ as r •* °° for some C > 0 .
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