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RINGS CHARACTERIZED BY THEIR CYCLIC MODULES

P. F. SMITH

1. Introduction. A ring R (with identity element) is called a right PCI-ring
if and only if every proper cyclic right R-module is injective; that is, if Cis a
cyclic right R-module then either C = R or C is injective. Faith [3, Theorems
14 and 17] (or see [2, Proposition 6.12 and Theorem 6.17]) proved that if a
ring R is a right PCl-ring then R is semiprime Artinian or R is a simple right
semihereditary right Ore domain. These latter rings we shall call simple right
PCI-domains. Examples of non-Artinian simple right PCl-domains were
produced by Cozzens [1]. The object of this paper is to examine rings with
similar properties and thus extend Faith’s results.

Let S be a semiprime Artinian ring and 7" a simple right PCI-domain. Then
thering 4 =S ® T is not a right PCl-ring by Faith’s theorems. However, 4
has the property that every cyclic right A-module is projective or injective
and we call rings with this property right CPOI-rings. Any right CPOI-ring
is the direct sum of a semiprime Artinian ring and a simple right PCI-domain
(Theorem 2.12). If B = T @ 1 then B is neither a right PCI-ring nor a right
CPOI-ring. Any right ideal E of B has the form F @ G where F and G are right
ideals of 7" and B/E = (T/F) @ (T/G). It follows that every cyclic right
B-module is the direct sum of a projective right B-module and an injective
right B-module and rings with this property we call right CDPI-rings.

These classes of rings are related to a class of rings studied by Goodearl
[5]. He called a ring R a right SI-ring in case every singular right R-module is
injective. Recall that if R is a ring and X a right R-module then the singular
submodule Z (X)) of X is the set of elements x of X such that xE = 0 for some
essential right ideal E of R and X is called singular provided X = Z(X). A
ring R with right socle V' is a right SI-ring if and only if R is a right RIC-ring
and the ring R/V is right Noetherian (Theorem 3.1). By a right RIC-ring
(“RIC" for restricted injective condition) we mean a ring R such that R/E
is an injective right R-module for every essential right ideal E of R. It is not
difficult to see that right RIC-rings are precisely the rings R for which every
finitely generated singular right R-module is injective. Recall that Osofsky
[7] proved that a ring R is semiprime Artinian if and only if every cyclic right
R-module is injective.

A ring R is a right V-ring (after Villamayor) if and only if every simple right
R-module is injective. If R is a right RIC-ring with right socle S then the ring
R/S is a right V-ring (Lemma 2.5). It follows immediately by [6, Theorem
2.1] that if X is a singular right module over a right RIC-ring then X has zero
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Jacobson radical. By contrast, a ring R is a right SI-ring if and only if Z(R) = 0
and every singular right R-module is semisimple (see [5, Proposition 3.1]).

There is one final class of rings we wish to mention. This is the class of rings
R such that every cyclic right R-module is the extension of a projective right
R-module by an injective right R-module and we call such rings right CEPI-
rings. There are the following implications:

semiprime Artinian ring = right PCl-ring = right CPOl-ring =
right CDPI-ring = right CEPI-ring = right RIC-ring
and
semiprime Artinian ring = right SI-ring = right CEPI-ring.

We do not know whether right PCl-rings are right SI-rings. This is true if and
only if right PCl-rings are right Noetherian (see [5, Proposition 3.6]) and this
is a question of Cozzens and Faith [2, p. 109]. If it is true then right CPOI-rings
are right Sl-rings. If K is a field then the ring of 2 X 2 upper triangular
matrices with entries in K is a right Artinian right SI-ring but is not a right
CPOl-ring [5, Theorem 3.11]. We do not know if

right RIC-ring = right CEPI-ring and
right CEPI-ring = right SI-ring
are true.
With additional assumptions about the rings these questions can be

answered. For example for right Noetherian rings the following implications
hold:

right CDPI-ring = right Sl-ring < right RIC-ring

and an example is given in § 4 of a right and left Artinian right and left SI-ring
which is not a right CDPI-ring. On the other hand, for commutative rings we
have

semiprime Artinian ring < CDPI-ring = Sl-ring & RIC-ring.

Perhaps we ought to note that all of the classes of rings discussed above are
closed under taking homomorphic images and the classes of right SI-rings,
right CDPI-rings, right CEPI-rings and right RIC-rings are closed under
taking finite direct sums.

Before proceeding with the proofs of these results we mention two items of
notation. If Risaringand4 is a non-empty subset of R then the right annihila-
tor of A is {r € R : Ar = 0} and is denoted by r(A4). The left annihilator of A
isl(A) ={re R:74 =0}.1f a € Rand A = {a} then we shall write r(a)
and /(a) for 7 (A4) and [(A4), respectively. Also if S and 7" are rings and M is a
left S-, right T-bimodule then

o 7]
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will denote the ring of “matrices”

5]

with s in .S, m in M and ¢ in T, and with the usual matrix addition and multi-
plication. Recall that if R is a ring and ¢ is an idempotent element of R such
that (1 — ¢)Re = 0 then

~ | eRe eR(1 — e)
R:[o U—@Rﬂ—d]

2. Cyclic modules are projective or injective. Recall the following result
of Osofsky [7].

LemMA 2.1. 4 ring R is semiprime Artinian if and only if every cyclic right
R-module is injective.

Let R be a right CPOI-ring such that R is right self-injective. Let I be a right
ideal of R. If the right R-module R/I is projective then R =~ I @ (R/I) and it
follows that R/I is injective. Thus every cyclic right R-module is injective and
R is semiprime Artinian by Lemma 2.1. Thus right self-injective right CPOI-
rings are semiprime Artinian.

LEMMA 2.2. Let R be a right CPOl-ring and A be a proper ideal of R. Then
either A = eR for some idempotent element e of R or the ring R/ A 1is semiprime
Artinian.

Proof. If the right R-module R/A is projective then R = 4 ® I for some
right ideal I of R and hence4 = eR for some idempotent element e. Otherwise,
R/A isan injective right R-module and hence an injective right (R /4 )-module.
The above remark shows that in this case the ring R/A4 is semiprime Artinian.

COROLLARY 2.3. Let R be a right CPOI-ring with Jacobson radical J. Then
either J = 0 or the ring R/J is semiprime Artinian.

LeMmMA 2.4. Right CEPI-rings are right semihereditary right RIC-rings.

Proof. Let R be a right CEPI-ring. Let # be a positive integer and I be a
right ideal of R generated by elements a4, ¢y, ..., a, If n = 1 let J = 0 and
if w>11let J=aR 4+ aR + ...+ a,—1R. Suppose that J is projective.
Because I/J is cyclic there exists a right ideal K of R such that J & K C I,
K/7J is projective and I/K is injective. Since K/J is projective it follows that
K=>~J ® (K/J) and hence K is projective. Since I/K is injective it follows
that R/K = (I/K) ® (L/K) for some right ideal L containing K. Then
R =1+ Land K =1 N L, and we can form the exact sequence

0-KNTeoLB RS0
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where N(k) = (k, k) for each kin K and u(¢,b) = ¢ — bforeach7in I, b in L.
Thus I® L= R® K and, because K is projective, it follows that I is pro-
jective. By induction on # it follows that R is right semihereditary.

Now let E be an essential right ideal of R. There exists a right ideal I con-
taining E such that F/E is a projective R-module and R/F is an injective
R-module. But F/E projective implies that F = E® G for some right ideal
G of R and hence F = E because E is essential. Hence R/E is an injective
R-module. Thus R is a right RIC-ring.

LeEMMA 2.5. Let R be a right RIC-ring with Jacobson radical J and right socle S.
Then the ring R/S 1s a right V-ring and J € S.

Proof. Let M be a maximal right ideal of R with SC& M. Then M is an
essential right ideal of R and the right R-module R/M is injective. Thus R/}
is an injective right (R/S)-module and it follows that R/S is a right V-ring.
By [6, Theorem 2.1] J € S.

LemMA 2.6. Let R be a right CPOl-ring with Jacobson radical J. Then J = 0.

Proof. Suppose on the contrary that J # 0. By Corollary 2.3 the ring R/J
is semiprime Artinian. If S is the right socle of R then by Lemma2.5J C .S
and hence J? = 0. Thus R is semiprimary and does not contain an infinite
collection of orthogonal idempotents. Hence without loss of generality we can
suppose that R is indecomposable.

Let 4 be an ideal of R. By Lemma 2.2 either 4 M J = eR for some idem-
potent element ¢ of R and so A M J = 0 or the ring R/(A4 M J) is semiprime
Artinian in which case J & 4. If 4 N J = 0 then R/A4 is not a semiprime
Artinian ring and by Lemma 2.2 there exists an idempotent element f of R such
that 4 = fR. Moreover, A M I(4) and 4 N r(4) are both nilpotent ideals
of R and hence 4 M I(4) € J and 4 Nr(4) € J. Thus 4 N I(4) = 0,
A N r(4) = 0and it follows that [(4) = r(4). Now 1(4) = R(1 — f) and
so fR(1 — f) = 0 and fR C Rf. Thatis, 4 = fR = Rf and 4 = 0 since R is
indecomposable. Thus J € A4 for every non-zero ideal 4 of K.

Since R/J is semiprime Artinian it follows that the right annihilator »(J)
of J is a semisimple left R-module and hence »(J) = 1", where T is the left
socle of R. Let My, M,, ..., M, be the maximal ideals of R. If J C JM, for
each 1 =71=%Fk then JCJ(MM,... M) € J?>=0. Thus there exists
1 £ 17 = ksuch that JM; = 0 and hence 7" is a maximal ideal of R. Moreover,
since R is right semihereditary by Lemma 2.4 and R does not contain an
infinite collection of orthogonal idempotents it follows by [9, Theorem 1] that
T = tR for some non-trivial idempotent element ¢ of R. Then Rt C tR and
(1 — )Rt = 0. Thus without loss of generality we can identify R with the ring

o ¢l

where 4 = tRt, B = tR(1 — )and C = (1 — O)R(1 — t) = (1 — )R = R/T.
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Note that C is a simple Artinian ring and B is a semisimple right C-module. Let
I be the right ideal

o o)

of R. Then we claim that the right R-module R/I is neither projective nor
injective. Consider the right C-module B. Let V' be a minimal right ideal of C.
Then there exist an index set A, submodules B, of B and isomorphisms
fr: B— Vioreach \in A, such that B = @hes By. Define h: I — R/I by

[8 Zoﬂ"[g Z]?x(bx)]-i_[

where by € Byx(A € A) and by # 0 for only a finite number of X\ in A. Then &
is a homomorphism of the right R-module I to the right R-module R/I. 1f R/I
is injective then there exists an element

(o]

of R such that k(i) = i 4+ I for each 71in I. Let x € By. Then

0 x a b 0 «x 0 ax
h[o 0}“[0 c][o 0}”:[0 0]+I’0'

and it follows that x = 0. Thus R/I injective implies that B = 0 and hence
R =4 @ C. This contradicts the fact that R is indecomposable. On the other
hand, if the right R-module R/I is projective then I = jR for some idempotent
element j of R and I = 0 because I C J. Again the fact that R is indecom-
posable is contradicted. This proves that J = 0, as required.

LemMA 2.7. Let e be an idempotent element of a right CPOl-ring R. Then eR
15 a semisimple right R-module or (1 — e)R is an injective right R-module.

Proof. Suppose that eR is not semisimple. Then there exists a right ideal G
of R such that G € eR and G is a proper essential submodule of eR. If R/G is
projective then R = G ® H for some right ideal H and hence eR = G @
(eR M H), a contradiction. Thus R/G is an injective right R-module. Con-
sider the exact sequence

0—eR/G— R/G— R/eR — 0.

Since R/eR =2 (1 — e)R is projective it follows that R/G = (R/eR) @ (eR/G)
and hence (1 — ¢)X is an injective module.

An ideal 4 of a ring R is called von Neumann regular if and only if every
element a of 4 is von Neumann regular; that is, to each ¢ in 4 there corre-
sponds b in R such that ¢ = aba. If a is an element of R such that R/aR is
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projective then R = aR @ B for some right ideal B and it is an easy matter to
show that this implies that the element « is von Neumann regular.

LemMA 2.8. Let R be a right CPOIl-ring with right socle S. Then S is a von
Neumann regular ideal of R.

Proof. Suppose the result is false. Let a € S, @ ¢ aRa. Then the above
remark shows that R/aR is injective. Since aR is semisimple it follows that
aR = U, ® U, ®...® U, where k is a positive integer and U, is a minimal
right ideal of R for each 1 £ 7 £ k. Since R is semiprime (Lemma 2.6) it is
well known that U; = e¢;R where e. is an idempotent element for each
1=4=<k Chooseany 1 <7 < kandlete=e¢, €S . If 1 —e)RC S then
R =eR ® (1 — ¢)R is semiprime Artinian and .S is von Neumann regular, a
contradiction. Thus (I — ¢)R & S and eR is injective by Lemma 2.7. Hence
e;R is injective for each 1 = ¢ < k and this implies that aR is injective. By
Lemma 2.4 aR is projective and hence R = (aR) @ (R/aR). This implies
that R is right self-injective. But we have already remarked that right self-in-
jective right CPOl-rings are semiprime Artinian and again .S is von Neumann
regular, a contradiction. Thus .S is von Neumann regular as required.

LEMMA 2.9. Let R be a right CPOl-ring with zero right socle. Then R is a simple
right PCl-domain.

Proof. Let I be a proper right ideal of R. If R/ is a projective right R-module
then, as before, I = eR for some idempotent element ¢ of R. If ¢ = 0 then
I = 0. Otherwise, eR and (1 — ¢)R are both injective by Lemma 2.7 and hence
R =eR® (1 — e)R is right self-injective. This implies that R is semiprime
Artinian, a contradiction. It follows that if I # 0 then R/I is injective. Thus
R is a right PCI-ring and by [3, Theorem 14] a simple right PCI-domain.

Note that the above argument gives immediately the fact that R is an
integral domain. For if R is a right CPOI-ring with zero right socle and if
a € R then r(a) = eR for some idempotent element e¢ of R because alR is
projective (Lemma 2.4). Since ¢ = 0 or 1 by the proof of Lemma 2.9 it follows
that R is an integral domain.

LEMMA 2.10. If R is a right RIC-ring then the right singular ideal Z (R) is zero.

Proof. Let x € Z(R) and E = r(x). Then xR = R/E is an injective right
R-module and hence R = xR @ I for some right ideal I. Thus xR = ¢R for
sone idempotent element e. But this implies thate € Z(R) and hence (1 — ¢)R
is an essential right ideal of R. Thus eR = 0 and hence x = 0. It follows that
Z(R) = 0.

LEMMA 2.11. Let R be a von Neumann regular right CPOl-ring. Then R s
semiprime Artinian.

Proof. Let S be the right socle of R. If S = 0 then R is an integral domain by
Lemma 2.9 and since R is von Neumann regular it follows easily that R is a
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division ring, a contradiction. Thus .S 5 0. Let
K ={r € R:rEC S for some essential right ideal E of R}.

Then K is an ideal of R and SC€ K. By Lemma 2.2 K = ¢R for some idem-
potent element ¢ or the ring R/K is semiprime Artinian. Suppose firstly that
K 5# R and the ring R/K is semiprime Artinian. Let V' = U/K be a minimal
right ideal of R/K where U is a right ideal containing K. Then V = R/ for
some maximal right ideal M containing K. Since S ©€ K © M it follows that
M is an essential right ideal. Then uM € K for some element z in U but not K
and it can easily be checked that since Z(R) = 0 (Lemma 2.10) this implies
that # € K, a contradiction. Thus K = ¢R for some ideompotent element e.
Since R is semiprime by Lemma 2.6 it follows that K M »(K) = 0,
KNIK) =0, [(K) =r(K) and hence K = Re (see the proof of Lemma
2.6). Thus R = K ® L where L is the ideal (1 — ¢)R. If L £ 0 then L is a
von Neumann regular right CPOI-ring with zero right socle and as before we
get a contradiction. Thus L = 0 and R = K. Since Z(R) = 0 it follows that .S
is an essential right ideal of R.

Next we claim that R does not contain an infinite direct sum of non-zero

ideals. For suppose otherwise and let [; @ [, @ I; @ ... be a direct sum of
non-zero ideals I, of R. Let G =1, @ [; ®I; ® ... and H=1,® [, ®
Ie @ . ... If the right R-module R/G is projective then G = gR for some

idempotent element g and thus there exists a positive integer n, such that
Is,1 = 0 for all # = ng, a contradiction. On the other hand by Lemma 2.2
the ring R/G is semiprime Artinian and hence H is a finitely generated right
ideal so that there exists a positive integer m, such that I, = 0forall m = m,,
another contradiction. Thus R does not contain an infinite direct sum of
non-zero ideals and without loss of generality we can suppose that R is inde-
composable.

If I is an ideal of R such that I = fR for some idempotent element f then
by the argument used earlier in this proof R = I @ J where J is the ideal
(I — f)R. Since R is indecomposable it follows that / = 0 or I = R.

Recall that S = M {E : E is an essential right ideal of R}. Let C be a non-
zero ideal of R. If C has non-zero left annihilator D then by Lemma 2.2 and
the last remark it follows that the rings R/C and R/D are both semiprime
Artinian. Since D M C = 0 we deduce that R is right Artinian and because R
is von Neumann regular as well, R is semiprime Artinian as required. So sup-
pose that every non-zero ideal C has zero left annihilator. In this case C is an
essential right ideal and S C C. Thus we can suppose that S is contained in
every non-zero ideal of R. By Lemma 2.6 .S = S% Thus R is a prime ring.

We have seen already that .S is an essential right ideal of R. By Lemma 2.2
it follows that S = R and the result is proved or the ring R/S is semiprime
Artinian. Suppose that the latter is the case. If S is a finitely generated right
ideal of R then R is right Artinian and the result follows. Therefore suppose
that S is not finitely generated. There exist an infinite index set A and minimal
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right ideals S\(A € A) such that.S = ®@xcx S\ and, because R is prime, Sy = .S,
for all \, uw in A. Thus there exist submodules X and Y of the right R-module
S such that S = X @ ¥V, X is not finitely generated and V== S. If E(4)
denotes the injective hull of an arbitrary right R-module 4 then E(R) =
E(S) = E(Y).

Now consider the right R-module R/X. Since X is not finitely generated it
follows that R/X is not projective. Thus R/X is injective and Faith’s argument
(see [3, p. 106, proof of Proposition 12]) goes through to show that R is right
self-injective and hence semiprime Artinian. This completes the proof of
Lemma 2.11.

THEOREM 2.12. 4 ring R 1s a right CPOl-ring +f and only if R s a direct sum
V@ T of a semiprime Artinian ring V and a simple right PCl-domain T.

Proof. Let R be a right CPOI-ring. Let S be the right socle of k. By Lemma
2.8 S'is a von Neumann regular ideal of R and by Zorn’s Lemma S is contained
in a maximal von Neumann regular ideal 7. It can easily be checked that the
maximality of V implies that the ring R/V contains no non-zero von Neumann
regular ideals. By Lemma 2.2, V' = 9R for some idempotent element v of R.
Since R is semiprime (Lemma 2.6) it follows that 7" = (1 — v)R is an ideal
and R = V @ T (see the first paragraph of the proof of Lemma 2.11). By
Lemma 2.11 V is semiprime Artinian and by Lemma 2.9 T is a simple right
PCI-domain.

Conversely, let 7 be a semiprime Artinian ring, 7 a simple right PCI-domain
and R = VV @ 7. Let E be a right ideal of R. Then there exist right ideals F
and G of V and 7', respectively, such that £ = F @ G. \Moreover, R/E =
(V/F) @ (T'/G) and it easily follows that R/E is projective or injective. Thus
R is a right CPOI-ring.

3. Right SI-rings. Let R be a ring and X a right R-module. Then X has
finite Goldie dimension if and only if X does not contain an infinite direct sum
of non-zero R-submodules. In this case there exists a positive integer %, called
the Goldie dimension of X, such that every maximal direct sum of submodules
of X contains # non-zero members (see [4, Theorem 1.1]). Moreover if X = R
we say that R has finite right Goldie dimension and call n the right Goldie
dimension of R. A ring R is called a right Goldie ring in case R has finite right
Goldie dimension and satisfies the ascending chain condition on right anni-
hilators.

Recall that a ring R is a right SI-ring if and only if every singular right
R-module is injective. Goodearl [5, Proposition 3.6] proved that if R is a right
SI-ring with right socle S then the ring R/S is right Noetherian. In addition,
it is clear that right SI-rings are right RIC-rings. In fact together these prop-
erties characterize right SI-rings.

THEOREM 3.1. Let R be a ring with right socle S. Then R is a right Sl-ring if
and only if R is a right RIC-ring and the ring R/S is right Noetherian.
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Proof. By the above remarks we need prove only the sufficiency. So suppose
that R is a right RIC-ring and R/S is right Noetherian. If X is a singular right
R-module then XS = 0, because S is the intersection of all essential right ideals
of R. Thus without loss of generality we may suppose that R is right Noethe-
rian. By Zorn’s Lemma X contains a maximal injective submodule A4, because
every right ideal of R is finitely generated. Then X =4 @® B for some sub-
module B of X and we claim that B = 0. If B # 0 let b be a non-zero element
of B. Then bR = R/E where E = {r € R : br = 0} is an essential right ideal
of R. Since R is a right RIC-ring it follows that bR is injective and hence so is
A @ bR, contradicting the choice of 4. Thus B = 0 and X = 4 is injective.
It follows that R is a right SI-ring.

Let R be a right RIC-ring with right socle S. If the ring R/S is right Noethe-
rian then R is a right SI-ring by Theorem 3.1. Now suppose that R/S is a right
Goldie ring. Note that if right Goldie right RIC-rings are right Noetherian
then right PCl-rings are right Noetherian by [3, Theorem 17]. By adapting
the proof of [5, Theorem 3.11] we obtain the following information about the
structure of R.

LEMMA 3.2, Let R be a right R1C-ring with right socle S such that the ring R/S
is right Goldie. Then R 1is a finite direct sum A ® By @ By @ ... ® B, where
S C 4, A/S is a semiprime Artinian ring and B, is a simple right Goldie right
RIC-ring for each 1 < i < n.

Proof. Let A = {r € R:rE C S for some essential right ideal E of R}. Then
A is an ideal of R and S is an essential right ideal of 4 by Lemma 2.10. As in
the proof of [5, Theorem 3.11] there exists an ideal B of R such that 4 M B = 0,
(A4 @ B)/A is an essential right ideal of the ring R/A4 and R/A has zero right
socle. Since the right R-module B =~ (B @ S)/S has finite Goldie dimension
it follows that R/A has finite right Goldie dimension. It can easily be checked
that Z(R/A) = 0 and hence by [4, Theorem 2.3(iii)] R/4 is a right Goldie
ring. Moreover, by Lemma 2.5 R/A is a right V-ring and is semiprime by
[6, Theorem 2.1]. Thus (4 @ B)/A contains a regular element ¢ + 4 of the
ring R/A where ¢ € R. Let R = R/A, ¢ = ¢ + A. Clearly R/éR =~ ¢R/*R.
Since R is a right RIC-ring it follows that ¢R/¢2R is an injective right R-module
and hence there exists a right ideal I of R containing ¢* such that R/¢2R =
(¢R/e*R) ® (I/c2R). As in the proof of [5, Theorem 3.11] this implies that
R = Ré + ¢R and hence R = 4 @ B.

By [6, Corollary 2.2 and Lemma 3.1] the right Goldie right V-ring B is a
finite direct sum B; @ B2® ... ® B, of simple right Goldie rings B;
(1 £ 1 = n). Clearly each ring B; is a right RIC-ring. Note that 4 is also a
right RIC-ring. If C is a right ideal of the ring 4 = 4/S then C = D/S for
some right ideal D of A containing S. Then E = D @ B is an essential right
ideal of R and 4/C =~ A/D =~ R/E is injective. By Lemma 2.1 it follows that
A is semiprime Artinian.
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CoRrOLLARY 3.3. Lel R be a right Goldie right RIC-ring with right socle S. Then
the ring R/S s a right Goldie ring.

Proof. In the notation of Lemma 3.2, the right R-module B has finite Goldie
dimension and hence so does the essential right ideal (B ® 4)/4 of the ring
R/A. It follows that R/A is a right Goldie ring by [4, Theorem 2.3(iii)] and
Lemma 2.10. By the proof of Lemma 3.2 the ring R/S = (4/S) ® (R/A4) is
a right Goldie ring.

LEMMA 3.4. Let R be a right RIC-ring with right socle S such that the ring R/S
is right Goldie. Then R 1is right semihereditary.

Proof. In the notation of Lemma 3.2, R = 4 ® B; @ B> ® ... ® B,. Since
A is a right SI-ring by [5, Proposition 3.1] it follows that 4 is right hereditary
by [5, Proposition 3.3(d)]. Thus it is sufficient to prove the result when R is
a simple right Goldie ring. Let E be a finitely generated right ideal of R. Since
R is a right Goldie ring there exists a finitely generated right ideal /* of R such
that £ N F = 0 and G = E @ F is an essential right ideal of R.
By [4, Theorem 3.9] there exists a regular element ¢ of R such that ¢ € G. Then
X = G/cR is a finitely generated singular right R-module by [4, Theorems 3.9
and 4.1]. Thus X is injective and there exists a right ideal H containing ¢ such
that R/cR = (G/cR) ® (H/cR). By the proof of Lemma 24 R ® (¢R) =
G @ H. Thus G, and hence E, is projective. It follows that R is right semi-
hereditary.

Note that in the above proof G, and hence E, is a homomorphic image of
R ® (¢cR). Therefore E can be generated by two elements. This gives the next
result.

COROLLARY 3.5. Let R be a semiprime right Goldie right RIC-ring. Then every
JSinately generated vight ideal of R can be generated by two elements.

In Lemma 2.4 we saw that right CEPI-rings are right semihereditary right
RIC-rings. We have the following partial converse.

LemwmaA 3.6, Right hereditary right RIC-rings are right CEPI-rings.

Proof. Let R be a right hereditary right RIC-ring. Let E be a right ideal of R.
There exists a right ideal F of R such that £ @ F' is an essential right ideal of
R.If G = LE @ Fthen R/G is an injective right R-module because R is a right
RIC-ring. Since R is right hereditary it follows that the right R-module
G/E = F is projective. Thus R is a right CEPI-ring.

Combining Lemma 3.6 with [5, Proposition 3.3 (d)] we have immediately:
COROLLARY 3.7. Right Sl-rings are right CEPI-rings.

LeEmMmA 3.8. Let R be a right RIC-ring and I an ideal of R with zcro left anni-
hilator. Then the ring R/I is semiprime Artinian.

https://doi.org/10.4153/CJM-1979-011-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-011-2

CYCLIC MODULES 103

Proof. Let E be a right ideal of R containing I. Since I is an essential right
ideal of R then so is E and it follows that R/E is an injective (R/I)-module.
Thus every cyclic right (R/I)-module is injective. By Lemma 2.1 R/I is semi-
prime Artinian.

Note that if R is a right RIC-ring such that the right socle .S of R is an essen-
tial right ideal then /(S) = 0 by Lemma 2.10 and R/S is a semiprime Artinian
ring by Lemma 3.8. In this case R is a right SI-ring by Theorem 3.1.

THEOREM 3.9. The following siatements are equivalent for a commutative ring
R with socle S.
(i) R 4s an Sl-ring.
(ii) R is a CEPI-ring.
(iii) R zs an RIC-ring.
(iv) R is @ von Neumann regular ring and R/S 1is semiprime Artinian.

Proof. By Corollary 3.7, (i) implies (ii). By Lemma 2.4, (ii) implies (iii).
Suppose (iii) holds. If I is an essential ideal of R then R/I is a semisimple
R-module by Lemma 3.8. By (5, Proposition 3.1] and Lemma 2.10 it follows
that R is an Sl-ring. Finally, the equivalence of (i) and (iv) is proved in
[5, Theorem 3.9].

4. Right CDPI-rings. We begin this section with a characterization of
right CDPI-rings.

LEMMA 4.1. 4 ring R is a right CDPI-ring if and only if for every right ideal E
of R there exists an idempotent element e of R such that E is contained in eR and
the right R-module eR/E 1is injective.

Proof. Let R be a right CDPI-ring and let E be a right ideal of K. Then there
exist right ideals F, G of R containing E such that F/E is projective, G/E is
injective and R/E = (F/E) ® (G/E). Then F/E = R/G and R/G is a pro-
jective right R-module. It follows that G = eR for some idempotent element e.
Thus E € G = eR and ¢R/E is injective. Conversely, suppose that R has the
stated property. Let 4 be a right ideal of R. By hypothesis there exists an
idempotent element f of R such that 4 € fR and fR/A is injective. Let
B=(1—-f)R®A. Then B/A = (1 — f)R is projective and R/A =
(B/A) @ (fR/A). It follows that R is a right CDPI-ring.

COROLLARY 4.2. Let R be an integral domain. Then R is a simple right PCI-
domain if and only if R is a right CDPI-ring.

Proof. We can use the lemma since the only idempotent elements of R are
the trivial ones 0, 1.

LemMmA 4.3. Let R be a right CDPI-ring and E be a right 1deal of R such that
R/E 1s an injective right R-module. Then R/F is an injective right R-module for
every right ideal F containing E.
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Proof. Let F be a right ideal of R containing E. There exist a projective right
R-module P and an injective right R-module Q such that R/F = P @ Q.
Then P is a homomorphic image of R/E and hence R/E = P ® P, for some
right R-module P;. Thus P is injective and hence so is R/F.

COROLLARY 4.4. Let R be a right CDPI-ring and I be an ideal of R such that
the right R-module R/1 is injective. Then the ring R/1 is semiprime Artinian.

Proof. By Lemmas 4.3 and 2.1.

CoroLLARY 4.5. Let R be a commutative CDPI-ring and I be an ideal of K.
Then there exists an idempotent element e of R such that I is contained tn eR and
eR/I is semisimple.

Proof. By Lemma 4.1 there exists an idempotent element e of R such that
I C ¢R and eR/I is injective. Let A = {r € R:er € I}. Then A4 is an ideal
of R and the R-modules R/A4 and eR/I are isomorphic. By Corollary 4.4 R/A,
and hence eR/I, is a semisimple R-module.

TraroreMm 4.6. 4 commutative ring R is « CDPl-ring iof and only if R is a
semiprime Artinian ring.

Proof. If R is semiprime Artinian then R is a CDPI-ring by Lemma 2.1.
Conversely, suppose that R is a CDPI-ring. By Theorem 3.9 it follows that R
is von Neumann regular and R/S is semiprime Artinian, where .S is the socle
of R. Suppose that S is not finitely generated. Since R is semiprime, every
minimal ideal of R is generated by an idempotent element. Thus there exist an
infinite index set 4 and non-zero idempotent elements ¢, (@« € 4) of R such
that S = @, e.R. Let B be a non-empty subset of 4. If B is finite then, hecause
R is von Neumann regular, there exists an idempotent element f of K such
that fR = @®p c.R. [t follows that fe, = e,(@ € B) and fe, = 0(a € A, € B).
Now suppose that B is infinite. Let I = @5 ¢, K. By Corollary 4.5 there exists
an idempotent element g of R such that I C gR and gR/I is semisimple. Let
C = A\B. Because @ ge.R is isomorphic to a submodule of gR/I there exist
at most a finite number of elements a of C such that ge, # 0. Let
D = {a € C: ge, # 0}. Then there exists an idempotent element # of R such
that @p e = hR. Let « = g(1 — k). Then ae, = e,(a € B) and «e, = 0
(¢ € 4, & B). Let r € R satisfy eor = 0(e € A). Then rS = 0 and since
R/S is semiprime Artinian it follows that 7R is semisimple. Thus rR C .S and
hence »? = 0. Since R is von Neumann regular it follows that » = 0. By
[7, Theorem] the R-module R/S is not injective. But every simple R-module
is injective (see [8, Theorem 6]) and R/S is semisimple, and hence R/S is
injective. This contradiction shows that S is finitely generated. llence R is
Artinian and, because R is von Neumann regular, R is semiprime.

Next we give a new characterization of right CDPI-rings R when R does not
contain an infinite collection of orthogonal idempotents. A ring R is called a
right-PP ring if and only if every principal right ideal of R is projective.
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LEMMA 4.7, Let R be a ring which does not contain an infinite set of orthogonal
idempotents. Then R is a right COPI-ring if and only if R is a right PP-ring such
that rl(E)/E ts an injective right R-module for each right ideal E of K.

Proof. Suppose that R is a right PP-ring and rI(E)/E is injective for each
right ideal E. (By 7I(E) we mean of course the right annihilator of the left
annihilator of E!) For any right ideal E there exists an idempotent element e
of R such that 7I(E£) = eR by {9, Theorem 1]. Thus E C ¢R and e¢R/E is
injective. By Lemma 4.1 R is a right CDPI-ring. Conversely, suppose that R
isaright CDPI-ring. Then Ris a right PP-ring by Lemma 2.4. Let 4 be a right
ideal of R. By Lemma 4.1 there exists an idempotent element b of R such that
if B =0Rthend C Band B/ is an injective module. Let C = rI(A4). Then
4 C CC B and by [9, Theorem 1] C = ¢R for some idempotent element ¢
of R. It follows that B = C ® D where D is the right ideal (1 — ¢)R M B.
Then B/4 = (C/4A) @ ((D + A4)/A) and hence C/A4 is injective. This com-
pletes the proof.

THEOREM 4.8. Let R be a semiprime right and left Goldie ring. Then R is a right
CDPI-ring if and only if R is a right RIC-ring.

Proof. If R is a right CDPI-ring then R is a right RIC-ring by Lemma 2.4.
Conversely, suppose that R is a right RIC-ring. By Corollary 3.3 and Lemma
3.4 R is right semihereditary. By [4, Theorems 1.1 and 4.4] R has a classical
right and left quotient ring Q which is semiprime Artinian. If E is a right ideal
of R then the left annihilator of £ in Q is

I(EQ) = {c'r: 7 € I(E) and ¢ is a regular element of R}.

Thus 7I(E) is contained in r/{EQ). But because Q is semiprime Artinian
rl(EQ) = EQ. Itfollows thatr/(E) € (EQ) M R. It can now easily he checked
that FE is an essential submodule of the right R-module 7/(E). Then ri(E)/E
is an injective right R-module. The result follows by Lemma 4.7.

Recall that in Lemma 2.5 we saw that if R is a right RIC-ring with Jacobson
radical J then J is a semisimple right R-module. ‘If in addition R is a right
Goldie ring then J is a finite direct sum of minimal right ideals. We can extend
Theorem 4.8 to the case when J is a minimal right ideal.

ToeorEM 1.9. Let R be a right and left Goldie ring with Jacobson radical J
such that J = 0 or J 1is « minimal right ideal. Then R is a right CDP1-ring if and
only if R 1s a right RIC-ring.

Proof. The necessity is a consequence of Lemma 2.4. Conversely, suppose
that R is a right RIC-ring. By Corollary 3.3 and Lemma 3.4 R is right semi-
hereditary. By Lemma 3.2 Risa direct sum 4 ® B:® B, ® ... ® B, where
A is a right Artinian ring and B, is a simple right and left Goldie ring for each
1 £ ¢ = n. By Theorem 4.8 B, is a right CDPI-ring foreach 1 < 7 < #n. Thus
B ® By ®...® B, is a right CDPI-ring and the result will follow once we
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have proved that 4 is a right CDPI-ring. Thus without loss of generality we
can suppose that R = A4 is right Artinian and hence right hereditary. Also
without loss of generality we can suppose that R is indecomposable.

If J =0 then R is semiprime Artinian and hence a right CDPI-ring by
Lemma 2.1. Therefore suppose that J is a minimal right ideal of R. Since by
[9, Theorem 1] R has zero left singular ideal it follows that J is not an essential
left ideal of R. Thus there exists a maximal ideal P of R such that P is not an
essential left ideal. Let £ be a non-zero left ideal of R such that /£ M P = 0.
Then PE = 0 and it follows that P = Ir(P). By {9, Theorem 1] there exists
an idempotent element e of R such that P = Re. Then eR(1 — ¢) = 0 and R
is isomorphic to the ring

S M

6 T
where S = (1 — e)R(1 —e) = R(1 — ¢) = R/Re = R/P is a simple Artinian
ring, 17" = ¢Re is a right Artinian ring and M = (1 — ¢)Re is a left S-, right

T-bimodule. Without loss of generality we can identify R with this ring of
“matrices”. Then

0 M
S = [0 JI:I

where J; is the Jacobson radical of 7. Because R is indecomposable it follows
that J, = 0 and M is a simple right 7-module.

Let I be a right ideal of R. Suppose that # M\ J # 0. ThenJ C /Fand it can
easily be checked that there exist idempotent elements ¢ of S and f of 7" such
that

eS M
F’[o fil‘]

If ¢ ## 0 then el isa T-submodule of M and hence eM = M since S is a simple
ring and A is a simple right 7-module. It follows that in this case I = IR,
where % is the idempotent element

e 0
h‘:[o f]’

and AR/ F is an injective right R-module. If ¢ = 0 then

0 M
r= [o fT]

and it can easily be checked that

o -3 413 2
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Let G be the set of elements

a b
L0 ¢

of R such that

1 o[a b7
L0 f_[() C]CF'

Then

o5 4]

and 7I(F)/F = R/G. Since G is an essential right ideal of R it follows that R/G,
and hence r/(F)/F, is an injective right R-module.
Now suppose that /M J = 0. Then F is contained in the ideal

0 M
0o T

and F = aR for some idempotent element « of R since 7 is semiprime Artinian.
Thus eR/F is an injective right R-module. By Lemma 4.1 R is a nght CDPI-
ring and the theorem is proved.

CoROLLARY 4.10. Let R be a right and left Goldie ring with right socle S such
that the right R-module S has Goldie dimension = 2. Then R is a right CDPI-ring
if and only if R is a right R1IC-ring.

Proof. In the notation of the proof of Theorem 4.9, 7 &€ S C 4 where 4 isa
right Artinian ring. Since J is not an essential right ideal of 4 it follows that
J = 0 or J is a minimal right ideal. The result follows by the theorem.

COROLLARY 4.11. Let R be a right and left Noetherian ring with Jacobson
radical J such that J = 0 or J is @« minimal right ideal. Then R is a right SI-ring
if and only if R is a right CDPI-ring.

To highlight these last few results we now give an example of a right and left
Artinian right and left SI-ring of right Goldie dimension 3 (that is, the right
socle of R has Goldie dimension 3 as a right R-module) such that the Jacobson

radical of R is the direct sum of two minimal right ideals but R is not a right
CDPI-ring.

Example 4.12. Let K be a field and V be a two-dimensional vector space over
K. Let

K V
‘R_[o K:I

It can easily be checked that R is a right and left Artinian ring and

https://doi.org/10.4153/CJM-1979-011-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-011-2

108 P. F. SMITH

by [5, Proposition 3.1} is a right and left SI-ring. The right socle of R is

(0 1]
0 K|
and the Jacobson radical of R is
0 1
0 0

Let 1" have K-basis vy, v9, and let E be the right ideal

[0 Ko,
0 K |

Then /() = 0 and rI(E) = R. We claim that R/E is not an injective right
R-module. Let 4 be the right ideal

0 17]
0 o]
and define f: 4 — R/E by

0 kﬂ’] + kzl’g] I:O kl'll‘z:' .
[0 0 “lo o JTE

for all elements ky, ks of K. It can easily be checked that [ is a homomorphism.
If [ can be lifted to a homomorphism g : K — K/E then there exist elements
a, b of K and v of 17 such that f(x) = cx for all elements x of 4, where

a v
“2{0 J+E'

In this case,

0 v _la v O o1 :
[o 0}:[0 b][o o} (mod £)

and hence vs — «v; € Kvy, a contradiction. Thus / cannot be lifted to g and
R/E is not injective as we claimed. By Lemma 4.7 R is not a right CDPI-ring.

Finally we look briefly at right Artinian rings which are right Sl-rings or
right CDDPI-rings. Recall that if R is a right Noetherian ring then the maximai
members of the set of ideals I of R with non-zero left annihilator are prime
ideals of R, called the maximal right annihilator prime ideals of R.

Tueorem 4.13. A ring R is a righl Artinian right Sl-ring 1] and only if R is
semiprime Artinian or there exisi semiprime Artinian rings S, 1" and a left S-,
right T-bimodule M such that M s a faithful lefi S-module and a finitely generated
right T-modulc and R 1s isomorphic to the ring

S M
o 7]
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Proof. Semiprime Artinian rings are clearly right Artinian right SI-rings.
Therefore suppose that S, T°and M have the stated properties and

s M]

R= [0 T3

Since M is a faithful left S-module it can easily be checked that R has right
socle 4 given by

0 M
A—[o T]‘

Since M is a finitely generated right 7-module it follows that 4 is a finitely
generated right R-module. But the ring R/4 =2 S and hence R is right Artinian
and by [5, Theorem 3.11] R is a right SI-ring.

Conversely, let R be a right Artinian right SI-ring. Let J be the Jacobson
radical of R and suppose that J # 0. By [5, Proposition 3.3(b)], /2 = 0. Thus
I(J) # 0and by Lemma 2.10, J is not an essential right ideal of R. This implies
that there exists a maximal ideal M of R such that A is not an essential right
ideal. Let E be a non-zero right ideal of R such that £ /N M = 0. Then
EM = 0 and hence (M) 5 0. There exist positive integers 1 < k¥ = n such
that the distinct maximal ideals of R are M = M, M,, ..., M, and
Bi=I(M)#01<i<hk),I(M)=0Fk+1<i<n).Let N= Ny M,
Then M; is a maximal ideal implies that M; = r(B;)(1 = ¢+ £ k) and hence
N = r(B) where B = By + B, + ... + B;. By [5, Proposition 3.3(d)] R is
right hereditary and by [9, Theorem 1] there exists a non-trivial idempotent
element e such that N = eR. It follows that (1 — ¢)Re = 0 and

oS M

R= [0 T]

where S = eRe, T = (1 —e)R(1 —e) = (1 —e)R = R/eR = R/N is semi-
prime Artinian and M = eR(1 — ¢) is a left S-, right T-bimodule. Since R is
right Artinian it can easily be checked that .S is right Artinian and A is a
finitely generated right 7-module. Now suppose that s € .S satisfies s} = 0.
Then there exists an element 7 of R such that s = ere and ere(eR(1 — ¢)) = 0.
That is, (ereR)(1 — ¢) = 0 and hence (RereR)(1 — e) = 0. If RereR # 0
then 1 — ¢ belongs to a maximal right annihilator prime ideal of R. But this
means that 1 — e € M ;for some 1 < ¢ < k, and this contradicts the fact that
e € M, Thus RereR = 0 and hence s = 0. It follows that 3 is a faithful left
S-module.

Now clearly

[ n M]
=15

where J; is the Jacobson radical of S. Since J? = 0 it follows that J,4f = 0
and hence J; = 0. Thus S is semiprime and the theorem is proved.
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LEvva 4.14. Let R be a right hereditary right Artinian ring. Then R is a right
CDPI-ring if and only if vl(E)/E is injective for every right ideal I contuined in
the right socle of R.

Proof. The necessity is a consequence of Lemma 4.7. Conversely, suppose
that 7/(E)/E is injective for every right ideal E contained in the right socle .S
of R. Let I be a right ideal of R and J = I M S. Then J is an essential sub-
module of I. Itis well known that because R is right hereditary the right singular
ideal Z(R) of R is zero. For each element x of I there exists an essential right
ideal Fof R such that xF C J. Since Z(R) = 0it follows that [(J) = [(I) and
hence 7/(J) = ri(I). By hypothesis 7/(I)/J is injective. Since K is right here-
ditary it follows that #/(I)/I is injective. By Lemma 4.7 R is a right CDPI-ring.

THEOREM 4.15. Let S be a semiprime Artinian ring and R be the ring

S S
0 S|
Then R 1s a right CDPIl-ring.

Proof. It can easily be checked that the right socle 4 of R and the Jacobson
radical J of R are given by

R R P
Let E be a right ideal of R such that E C 4. If E M J = 0 then, since S is
semiprime Artinian, £ = xR for some idempotent element x of K. Thus in
this case £ = 7I(E) and 7I(E)/E is injective. Now suppose that /£ M J 5 0.
There exists a right ideal F contained in E such that J M F = 0
and E = (EMNJ) @ F. It can easily be checked that there exist idempotent
elements ¢, g of S and an element f of S such that f = fg and

[o e o f]
E,f\]—[o O]R and f'—|:0 gR.

C=|:l—e —(l-e)f]

0 1—g '
then it can be checked that ¢ is an idempotent element of R and /(£) = Re.
Thus 7I(E) = (1 — ¢)R. Another routine verification shows that if
B=1{rcR:( —c)rcE}then 4 C B. Thus B is an essential right ideal
of R. But R is a right SI-ring by Theorem 4.13 and hence R is a right RIC-ring.

Thus #I(E)/E =2 R/B is injective. By Lemma 4.14 it follows that R is a right
CDPI-ring.

If

Example 4.16. Let K be a field and #» a positive integer. Let S = K, be the
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complete ring of nxn matrices with entries in K. Consider the ring

s s
R‘[o S:I'

By Theorem 4.15 R is a right and left Artinian right CDPI-ring. If 4 and J
denote the right socle and Jacobson radical of R, respectively, then

0 S 0 S
A”[o S] and J‘[o 0]‘

Thus the Goldie dimension of the right R-module 4 is 2n and J is the direct

sum of # minimal right ideals of R. Contrast this example with Theorems 4.9
and 4.13.

Remark. Since submitting this paper [ have discovered that Theorem 2.12
has also been proved by S. C. Goel, S. K. Jain and S. Singh in ‘““Rings whose
cyclic modules are injective or projective,” Proc. Amer. Math. Soc. 53 (1975),
16-18.
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