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Abstract

We improve the convergence properties of the iterative scheme for solving unconstrained optimisation
problems introduced in Petrovic et al. [‘Hybridization of accelerated gradient descent method’, Numer.
Algorithms (2017), doi:10.1007/s11075-017-0460-4] by optimising the value of the initial step length
parameter in the backtracking line search procedure. We prove the validity of the algorithm and illustrate
its advantages by numerical experiments and comparisons.

2010 Mathematics subject classification: primary 65K05; secondary 90C30, 90C53.
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1. Introduction
We analyse hybridisation of the accelerated gradient decent model, known as the HSM
method. This algorithm is based on the Picard–Mann hybrid iteration presented in [3]
combined with the accelerated characteristics of the gradient descent SM method
from [9]. The HSM scheme is efficient and preserves the excellent convergence
properties of the SM method as shown in [5]. It is described iteratively by

xk+1 = xk + tkdk, (1.1)

where xk is the value of the objective function at the current iterative point and xk+1
is the value for the next iteration. The iterative step-size tk is commonly calculated
using one of the line search algorithms. The parameter dk is a vector direction at the
kth iteration. These two parameters dictate the efficiency of the iteration and control
the number of iterations, the number of function evaluations and the CPU computation
time.

We apply the HSM iterative algorithm to solve the unconstrained optimisation
problem

min f (x), x ∈ Rn, (1.2)

where f : Rn → R is assumed to be uniformly convex and twice continuously
differentiable. We also use the notation

g(x) = ∇ f (x), G(x) = ∇2 f (x), gk = ∇ f (xk), Gk = ∇2 f (xk),
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where∇ f (x) denotes the gradient of f and∇2 f (x) denotes the Hessian. The step length
parameter is determined by a backtracking algorithm and the vector direction has the
form of accelerated gradient descent. More precisely,

dk = −(αk + 1)γ−1
k gk, (1.3)

where αk ∈ (0, 1) is the parameter adopted in [3]. Using (1.1) and (1.3), we can write
the HSM iteration step as

xk+1 = xk − (αk + 1)tkγ−1
k gk. (1.4)

There are several conjugate and modified gradient descent algorithms [2, 7, 8, 11],
as well as accelerated gradient models [4, 6, 10], comparable to the HSM method and
its modifications. We can make some comparisons between the various approaches in
terms of the vector direction dk and the step-size value tk.

Generally, we assume that the vector direction satisfies the descent condition

gT
k dk < 0.

In the Newton method equipped with the line search procedure, the vector direction is
determined as a solution of the equation

GT
k d = −gk.

Some conjugate gradient methods calculate the vector direction by means of

dk =

{
−gk, k = 0,
−gk + βkdk−1, k ≥ 1. (1.5)

For example, for the Polak–Ribière–Polyak method [7, 8], the scalar βk is determined
by

βPRP
k =

gT
k (gk − gk−1)

gT
k−1gk−1

.

In [11], the sufficient descent condition

gT
k dk < −c‖gk‖

2, k ≥ 0, c > 0.

is used and a modified version βMPRP
k of the scalar βPRP

k is introduced to describe several
conjugate gradient methods. For another conjugate gradient method, the so-called the
Cg-descent iteration [2], the scalar βk is defined by

βk
N

= max
{ 1

dT
k yk

(
yk − 2

dk‖yk‖
2

dT
k yk

)T
gk+1, −

1
‖dk‖min{η, ‖gk‖}

}
,

where η > 0 is a constant.
The methods presented in [4, 6, 9, 10] can be classified as methods of quasi-Newton

type with accelerated approximation of the Hessian inverse, equipped with the line
search technique. As in [9], we refer to these methods simply as accelerated gradient
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descent algorithms with line search. The scheme presented in this paper belongs to this
class of algorithms. Accelerated gradient descent methods generally can be defined by

xk+1 = xk − tkγ−1
k gk,

where γk = γ(xk, xk−1) ∈ R and γ−1
k is a scalar approximation to the inverse of

the Hessian of the objective function, that is, Gk = ∇2 f (xk) = γkI. This so-called
acceleration parameter is calculated from the second-order Taylor series of the
relevant iteration at two successive points. So, unlike the model (1.5) which defined
the vector direction of conjugate gradient methods, in accelerated gradient descent
methods [4, 6, 9, 10] the vector direction is the product of the negative gradient vector
and a derived accelerated parameter.

Next, we consider the determination of the iterative step length, tk. In the HSM
model and in its modification presented in this paper, as well as in all the references
mentioned above, a line search procedure is used to calculate tk. In some cases, this is
an exact line search algorithm given by

tk = arg min
t>0

f (xk + tdk).

Theoretically, this algorithm outputs the optimal iterative step length value. But
in practice the computation requires a lot of CPU time and generally reduces the
efficiency. For this reason, inexact line search techniques which sufficiently decrease
the value of the objective function f along the ray xk + tdk, t > 0, are preferred. For
example, in [2, 11] the Wolfe–Powell inexact procedures are used. In the scheme
presented in this paper, as in [4, 6, 9, 10], we use Armijo’s backtracking line search
condition.

The paper is organised as follows. In Section 2 we describe the modified HSM
method by deriving the correction for the initial step size parameter in the backtracking
procedure. We apply this initial step size in Section 3 to prove the convergence of
the modified HSM method. In Section 4 we give numerical results to compare the
performance of the HSM method of [5] and the modified HSM method developed in
this paper. The already good performance characteristics of the hybrid accelerated
method, which are proved and numerically tested in [5], are notably improved using
the initial correction of the starting value for the backtracking line search procedure.

2. Initial value correction in the backtracking procedure

We now return to the HSM method described by (1.1) for solving the unconstrained
optimisation problem (1.2). The vector direction dk is defined by (1.3) and the step
length tk is derived by applying Armijo’s backtracking line search procedure described
in Algorithm 2.1.

We derive the optimal value of the initial step length, which depends on the
parameter αk adopted in [3]. For that purpose we analyse the function

Φk+1(t) = f (xk+1) − (αk+1+1)tgT
k+1γ

−1
k+1gk+1 + 1

2 (αk+1+1)2t2(γ−1
k+1gk+1)T∇2 f (ξ)γ−1

k+1gk+1,
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Algorithm 2.1 Armijo’s backtracking line search starting from t = 1.

Require: Objective function f (x), the direction dk of the search at the point xk and
numbers σ, β with 0 < σ < 0.5 and β ∈ (0, 1).

1: t = 1.
2: While f (xk + tdk) > f (xk) + σtgT

k dk, take t := tβ.
3: Return tk = t.

where ξ ∈ [xk+1, xk+2], t ≥ 0 and γk+1 > 0. If we use the substitution ξ ≈ xk+1,

Φk+1(t) = f (xk+1) − (αk+1 + 1)tγ−1
k+1‖gk+1‖

2 + 1
2 (αk+1 + 1)2t2γk+1γ

−2
k+1‖gk+1‖

2

= f (xk+1) − (αk+1 + 1)tγ−1
k+1‖gk+1‖

2 + 1
2 (αk+1 + 1)2t2γ−1

k+1‖gk+1‖
2.

Clearly, the function Φ is convex when γk+1 > 0 and

(1) Φk+1(0) = f (xk+1),
(2) Φ′k+1(t) = (αk+1 + 1)(αk+1t + t − 1)γ−1

k+1‖gk+1‖
2.

So the function Φ decreases when Φ′k+1(t) < 0 and that is true for t ∈ (0, 1/(αk+1 + 1)).
Moreover,

Φ′k+1(t) = 0 ⇔ t =
1

αk+1 + 1
. (2.1)

Since the minimum of Φk+1 is achieved for t = 1/(αk+1 + 1), we use this step length
value for starting the backtracking line search procedure. We adopt the same
acceleration parameter γk introduced for the HSM method in [5]:

γk+1 = 2γk
γk[ f (xk+1) − f (xk)] + (αk + 1)tk‖gk‖

2

(αk + 1)2t2
k‖gk‖

2
. (2.2)

The modified HSM algorithm (MHSM) is described in Algorithm 2.2. We reset the
third step in Algorithm 2.1 to derive the iterative step-size (2.1).

Algorithm 2.2 The MHSM algorithm defined by (1.4), (2.1) and (2.2).

Require: Function f (x), α ∈ (1, 2), initial point x0 ∈ dom( f ).
1: Set k = 0 and calculate f (x0), g0 = ∇ f (x0); set γ0 = 1.
2: Check the test criteria: if stopping criteria are fulfilled then stop the algorithm;

otherwise, go to the next step.
3: Apply Algorithm 2.1: compute the value of step size tk ∈ (0, 1/α] by taking

dk = −γ−1
k gk.

4: Determine xk+1 = xk − αtkγ−1
k gk, f (xk+1) and gk+1 = ∇ f (xk+1).

5: Compute γk+1, approximating the Hessian of f at the point xk+1 using (2.2).
6: If γk+1 < 0, take γk+1 = 1.
7: k := k + 1; go to the step 2.
8: Return xk+1 and f (xk+1).
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Remark 2.1. Clearly, αk ∈ (0, 1) implies αk + 1 ∈ (1, 2). In our further investigation,
we make the simplest choice by taking αk + 1 as a constant α ∈ (1, 2). This choice is
applied in Algorithm 2.2 and it transforms the main iteration (1.4) into

xk+1 = xk − αtkγ−1
k gk.

3. Convergence properties

With one exception dealt with below, the convergence analysis in [5] applies to
the MHSM scheme and we will not repeat these arguments. This analysis guarantees
that the MHSM algorithm is convergent and well defined. However, [5, Lemma 3.2],
which shows that the objective function decreases at each iteration, no longer applies
to MHSM and must be replaced by Lemma 3.1 which we prove next.

Lemma 3.1. For the twice continuously differentiable and uniformly convex function f
defined on Rn and the sequence {xk} defined by Algorithm 2.2,

f (xk) − f (xk+1) ≥ ν‖gk‖
2,

where

ν = min
{
σα

2M
,
σ(1 − σ)

L
β

}
,

L > 0 is the Lipschitz constant, M ≥ 1 is a constant such that γk < M and α ∈ (1, 2) is
the parameter defined in Remark 2.1.

Remark 3.2. The constant M ≥ 1 is defined in [5, Lemma 3.1]. The estimate γk < M
comes from the fact that γk approximates the kth Hessian.

Proof. From (2.1), the starting point for the backtracking line search procedure is
t = 1/α with α ∈ (1, 2), so t ∈ ( 1

2 , 1). We analyse the left and the right boundary values,
tk > 1

2 and tk < 1. The analysis of the case tk < 1 is the same as described in [5], giving
the final inequalities

tk >
β(1 − σ)γk

Lα
(3.1)

and
f (xk) − f (xk+1) >

σ(1 − σ)β
L

‖gk‖
2. (3.2)

For the left boundary value with tk > 1
2 , we apply the exit condition for the

backtracking algorithm, the iterative vector direction dk = −αγ−1
k gk in the MHSM

algorithm and relation (3.1), giving

f (xk) − f (xk+1) ≥ −σtkgT
k dk = σtkgT

k αγ
−1
k gk >

1
2
σαgT

k gk

γk
=

1
2
σα

‖gk‖
2 . (3.3)

The desired conclusion follows from (3.2) and (3.3). �

The linear convergence of the MHSM algorithm is equivalent to the similar result
for the HSM algorithm in [5].
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Theorem 3.3. For the twice continuously differentiable and uniformly convex function
f defined on Rn and the sequence {xk} generated by Algorithm 2.2,

lim
k→∞
‖gk‖ = 0,

and the sequence {xk} converges to x∗ at least linearly.

As in [5], we investigate the convergence of MHSM on the set of strictly convex
quadratic functions

f (x) = 1
2 xT Ax − bT x, (3.4)

where A is a real n × n symmetric positive definite matrix and b ∈ Rn. The proof is
concluded by means of the following statements for MHSM which are proved in the
same way as Lemma 4.1 and Theorem 4.1 in [5]. We omit the proofs.

Lemma 3.4. Suppose A ∈ Rn×n is a symmetric positive definite matrix and λ1 and λn

are respectively the smallest and the largest eigenvalues of A. When the MHSM
Algorithm 2.2 is applied on the strictly convex quadratic function f given by (3.4),

λ1 ≤
γk+1

tk+1
≤

4 · λn

σ
.

Theorem 3.5. Suppose A ∈ Rn×n is a symmetric positive definite matrix, λ1 and λn are
respectively the smallest and the largest eigenvalues of A, and λn < 2λ1/(αk + 1). Let
{v1, v2, . . . , vn} be the orthonormal set of eigenvectors of the matrix A. Let {xk} be
the sequence of values constructed by Algorithm 2.2 applied to the function (3.4), and
write the gradients gk = Axk − b of (3.4) as

gk =

n∑
i=1

dk
i vi,

for some real constants dk
1, d

k
2, . . . , d

k
n. Then, for i = 1, 2, . . .,

(dk+1
i )

2
≤ δ2(dk

i )
2
, δ = max

{
1 −

σλ1(αk + 1)
4λn

,
λn(αk + 1)

λ1
− 1

}
and

lim
k→∞
‖gk‖ = 0.

4. Numerical comparisons

In this section we show that the MHSM iterative scheme generally has better
numerical characteristics than the HSM scheme in terms of the number of iterations,
CPU time and number of function evaluations.

We tested the same set of 25 test functions selected in [5] from the test function
collection [1]. As in [5], 11 numerical tests were taken on each chosen test function for
the parameter values 1000,2000,3000,5000,7000,8000,10 000,15 000,20 000,30 000
and 50 000 and the number of iterations, CPU time and number of function evaluations
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Table 1. Results of numerical experiments for MHSM and HSM algorithms.

Iterations CPU time Function evaluations
Test function MHSM HSM MHSM HSM MHSM HSM
Extended Penalty 550 504 20 23 7 806 7 343
Perturbed Quadratic 21 446 49 149 453 1402 196 877 443 917
Raydan-1 11 282 13 694 206 288 74 994 91 106
Diagonal 1 7 887 11 016 189 414 92 929 115 076
Diagonal 3 6 452 7 801 263 241 54 020 62 530
Generalized Tridiagonal − 1 443 468 0 0 1 562 1 720
Extended Himmelblau 292 308 0 0 1 068 1 023
Quadr. Diag. Perturbed 34 356 57 448 715 1461 343 321 649 740
Quadratic QF1 14 283 45 885 262 1555 12 1867 394 504
Extended Quad. Penalty QP1 339 413 7 8 2 899 3 064
Extended Quad. Penalty QP2 2 640 1 876 73 78 18 473 14 166
Quadratic QF2 27 778 49 186 1079 1955 275 850 465 172
Extended EP1 286 186 6 4 2 664 1 847
Almost Perturbed Quadratic 21 133 40 190 524 1135 194 973 359 019
Engval1 599 540 11 8 3 180 2 983
Quartc 11 11 0 0 33 33
Diagonal 6 127 140 0 0 274 290
Tridia 79 796 256 476 2382 7567 858 752 2597 726
Indef 11 11 0 0 33 33
Nonscomp 11 11 0 0 33 33
Dixon 3dq 11 11 0 0 33 33
Biggsb 1 11 11 0 0 33 33
Hager 1 023 1 031 13 18 6 004 5 879
Raydan 2 88 84 0 0 181 189
Arwhead 651 276 16 15 4 789 3 717

were examined. The stopping criteria were the same as in [5], namely

‖gk‖ ≤ 10−6 and
| f (xk+1) − f (xk)|

1 + | f (xk)|
≤ 10−16,

as were the backtracking parameters σ = 0.0001 and β = 0.8. The code was written
in the visual C++ language and the testing carried out on a Workstation Intel Celeron
1.6 GHz.

Table 1 shows the total number of iterative steps, CPU time (in seconds) and the
number of function evaluations for the HSM method in [5] and the MHSM method
of this paper for the tests on each of the 25 test functions. MHSM outperforms HSM
on around half the tests with respect to the number of iterations and the number of
function evaluations, and also with respect to the CPU time, but on a slightly different
set of tests.

A more convincing comparison of the performance of the two algorithms is revealed
in Table 2. This table shows the average values of the number of iterations, the CPU
time and the number of function evaluations over all the tests. MHSM outperforms
HSM by more than a factor of 2.
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Table 2. Average results for 25 test functions on 11 numerical experiments.

Average performance MHSM HSM
Number of iterations 9 260.24 21 469.04
CPU time (sec) 248.76 646.88
Number of function evaluations 90 505.92 208 847.09
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