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We consider the multidirectional swelling and drying of hydrogels formed from
super-absorbent polymers and water, focusing on the elastic deformation caused
by differential swelling. By modelling hydrogels as instantaneously incompressible,
linear-elastic materials and considering situations in which there can be large isotropic
strains (arising from swelling) while deviatoric strains remain small, it is possible to
describe accurately a wider range of gel states than traditional linear elastic theories allow.
An equation is derived relating the displacement field to the polymer fraction in such
hydrogels, permitting the shape of the swelling gel to be determined as it evolves in time,
using the formulation of Part 1 to find the local polymer fraction. We discuss the boundary
conditions to be applied at the surfaces of a gel, both on the bulk elastic stress and on
the pervadic (pore) pressure in the interstices. Similarities between the equation for the
displacements and the equations of classical plate theory are investigated by considering a
model problem of a slender cylinder with its base immersed in water drying by evaporation
into the surrounding air. In this problem, there is differential drying along the axis of the
cylinder, as the base remains swollen while the top dries. The results of our displacement
formulation agree qualitatively with experiments that we have conducted, and provide
a physical interpretation of the forced biharmonic equation describing the displacement
field.

Key words: porous media, polymers

1. Introduction

Hydrogels are materials formed from a hydrophilic polymer and adsorbed water, and can
swell or dry by imbibing or expelling water from the scaffold-like structure created by

† Email address for correspondence: j.webber@damtp.cam.ac.uk

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 960 A38-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:j.webber@damtp.cam.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.201&domain=pdf
https://doi.org/10.1017/jfm.2023.201


J.J. Webber, M.A. Etzold and M.G. Worster

their cross-linked polymer chains. Their swelling and drying behaviour has been well
studied using a range of different theoretical, numerical and experimental approaches.
The development in recent years of super-absorbent polymers (Mignon et al. 2019) has
brought to the fore the importance of modelling hydrogels that can swell or dry to a
much greater extent than seen in the earliest synthetic gels, taking on several hundred
times their dry weight in water (Zohuriaan-Mehr et al. 2010), involving swelling strains
that are much larger than the approximately 10 % beyond which linear elastic theory is
expected to be invalid (Landau & Lifshitz 1986). In Part 1 (Webber & Worster 2023), we
introduced a new continuum-mechanical approach to the modelling of swelling and drying
in super-absorbent hydrogels, allowing for large isotropic strains associated with extreme
swelling but linearising with respect to small deviatoric strains. In effect, this treats a
hydrogel swollen to any degree as an incompressible linear-elastic material, encapsulating
the (potentially highly nonlinear) swelling behaviour of such materials while retaining the
analytic tractability of linear poroelasticity (Doi 2009).

The model that we derived from first principles in Part 1 describes the macroscopic
properties and behaviour of any hydrogel satisfying the assumption of small deviatoric
strains using three macroscopic material parameters: an osmotic pressure Π(φ) (or
equivalently, the osmotic modulus defined by K(φ) = φ ∂Π/∂φ), a shear modulus μs(φ),
and a permeability k(φ). All three parameters are dependent on the polymer volume
fraction φ, encoding the fact that the macroscopic elastic and osmotic behaviour of a
hydrogel can be expected to depend on the degree to which it is swollen, and introducing
potential nonlinearities in the swelling strain. For example, gels that are drier (i.e. have
higher φ) would be expected to be less permeable, more resistant to shear, and with
greater osmotic pressure, having a lower value of k(φ) and higher values of μs(φ) and
Π(φ) (Li et al. 2012). The dynamic viscosity of the interstitial water μl combines with
these parameters to determine a basic slow diffusive poroelastic time scale τ = μlL2/kK
(where L is a characteristic length scale) over which water moves through the gel to cause
swelling or drying. However, the diffusivity and the associated time scale are modified by
deviatoric stresses and depend additionally on the dimensionless parameter M = μs/K
representing the relative contribution of deviatoric stresses to the total stress compared
with isotropic osmotic pressure (Webber & Worster 2023).

This approach, which we refer to as the ‘linear-elastic–nonlinear-swelling’ (LENS)
model, leads to a constitutive relation relating the stresses on an element of hydrogel
to the strain, with contributions from the pervadic (pore) pressure p of the water in
the interstices of the material, the osmotic pressure that serves either to draw in or to
expel water from the bulk, and the elastic stresses arising from deviatoric deformations
of the hydrogel. Combining this constitutive relation for the gel with polymer and water
conservation, Cauchy’s momentum equation and expressions for the interstitial flux of
water, allows for the derivation of a polymer fraction evolution equation, dependent
only on φ and the volume-averaged material flux vector q, equal to the sum of the
interstitial fluid flux and polymer velocity. This strong formulation in terms of differential
transport equations, derived from macroscopic conservation laws and expressed in terms
of macroscopically measurable material properties, contrasts with energy minimisation
approaches (Doi 2009; Cai & Suo 2012; Bertrand et al. 2016) and nonlinear poroelasticity
invoking large-deformation stress–strain relationships (MacMinn, Dufresne & Wettlaufer
2016), and is used in Webber & Worster (2023) to solve some uniaxial swelling problems.
The importance of the deviatoric strain in determining effective diffusivities for swelling
is underlined by the examples in Part 1, where post hoc justification is given for the
assumption of small deviatoric strain, as it is shown that – given suitable choices of
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material properties – it is possible to swell to a large extent, introducing extreme isotropic
strains, without the presence at any time of large deviatoric strains anywhere in the
hydrogel. Deviatoric strains are also seen to be important in the boundary conditions at the
edge of a gel, with their associated shear stresses balanced by a combination of pervadic
(pore) pressures of the liquid phase and osmotic pressures.

Uniaxial swelling problems such as these are the most straightforward to solve, since
there is a fixed relationship between the displacement at a given point in the gel and the
polymer fraction, arising from conservation of polymer. In more general cases, however, it
is necessary to consider the three-dimensional stress field generated by deviatoric strains
in order to determine the displacement field and therefore the shape of a freely swelling
gel. An example of such problems is given by the wrinkling and creasing instabilities
seen when hydrogels begin to swell upon contact with water (Trujillo, Kim & Hayward
2008; Dervaux & Ben Amar 2012), with lateral compressive strains being relieved by the
introduction of shear and the formation of a wrinkled interface, a phenomenon that cannot
be explained uniaxially.

In this paper, we derive an equation for the displacement field ξ , akin to the biharmonic
equation of linear elasticity (Palaniappan 2011), allowing us to deduce the position of gel
elements in two and three dimensions resulting from changes in polymer fraction and
elastic stresses. Given only the polymer fraction field as forcing, coupled with boundary
conditions on displacement and stress, it becomes possible to find both the shape of the
gel as it swells or dries and also the speed at which the cross-linked polymer scaffold
reconfigures.

The example of a long, slender cylinder drying in air while one end is immersed in
water is analysed to illustrate the utility of our approach. This example illustrates the
importance of boundary conditions on both bulk elastic and interstitial quantities in a
drying hydrogel when determining the displacement field ξ , from which the evolving
shape of the gel can be derived. We also show how the displacement formulation is
equivalent to a Lagrangian approach based on classical plate theory. Our experiments with
such cylinders have shown that the top and bottom surfaces of the gel become curved as
water evaporates from the gel structure and the top of the hydrogel shrinks to a greater
extent than the base, features that our model is able to predict. We also show how a
steady state is reached, in which the rate of transport of water through the gel matches the
evaporation flux.

2. A linear-elastic–nonlinear-swelling model for displacement

The model derived in Part 1 can be summarised briefly as follows. When placed in
water and allowed to swell without any external constraints, a hydrogel will reach a
temperature-dependent fully swollen state in which the polymer volume fraction φ = φ0
is uniform. In the case of super-absorbent polymers, this volume fraction may be less than
1 % (Bertrand et al. 2016). Therefore, describing swelling and drying processes requires
us to account for significant volumetric changes. Labelling the reference positions of gel
elements in this state by X and the positions of the same elements by the coordinates
x(X , t), a displacement vector ξ = x − X can be introduced, representing the change in
position of any part of the gel relative to its position when fully swollen at force-free
equilibrium.

In Part 1, we decomposed the Cauchy strain tensor e into an isotropic part due to the
change in polymer fraction (i.e. swelling or drying) and a traceless deviatoric part ε, which
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is assumed small, and derived the leading-order result that

e ≡ 1
2

[∇xξ + (∇xξ)T] =
[

1 −
(

φ

φ0

)1/n
]

I + ε, where tr ε = 0, (2.1)

with n the dimension of the system (n = 2 in two dimensions, n = 3 in three dimensions).
Here, ∇x represents gradients taken with respect to Eulerian variables. An Eulerian
approach is taken to facilitate a simpler matching with the equations governing fluid flow,
and henceforth all gradients will be denoted ∇ = ∇x unless otherwise stated. We consider
situations in which the deviatoric components of the strain tensor remain small; |εij| � 1
for all i, j, which introduces a small scale ε ≡ maxi,j |εij|.

First, we take the divergence of the Cauchy strain, expressed in (2.1), to show that

1
2

[
∇2ξ + ∇ (∇ · ξ)

]
= −∇

(
φ

φ0

)1/n

+ ∇ · ε, (2.2)

and then take the trace of the same equation to derive that

∇ · ξ = n

[
1 −

(
φ

φ0

)1/n
]

. (2.3)

These two results can be combined to give

∇ · ε = 1
2

∇2ξ +
(

1 − n
2

)
∇

(
φ

φ0

)1/n

, (2.4)

providing an expression for the divergence of the deviatoric strain in terms of
displacements and polymer fraction gradients. In Part 1, this expression is used further
to provide a scaling relationship for ∇φ, since it can be seen from (2.1) that

∇ξ =
[

1 −
(

φ

φ0

)1/n
]

I + O(ε), thence ∇2ξ = −∇
(

φ

φ0

)1/n

+ O(ε/L), (2.5)

by taking divergences, where L is a length scale relevant to the situation under
consideration. When comparing the scales of vector and tensor quantities, we scale the
vector or tensor with its largest element, and here L is therefore the shortest applicable
length scale for the problem, corresponding to the largest component of the gradient.
Combining this result with (2.4) shows that

(n − 1)∇
(

φ

φ0

)1/n

= 2 ∇ · ε + O(ε/L), whence ∇φ = O(ε/L). (2.6)

Provided that n > 1, this result indicates that gradients in polymer fraction are ‘small’ in
a formal sense arising from the assumption of small deviatoric strain.

In Part 1, we showed further that the stress tensor for an instantaneously incompressible
hydrogel can be written as

σ = − [
p + Π(φ)

]
I + 2μs(φ) ε, (2.7)

where the shear modulus μs(φ) and the osmotic pressure Π(φ) are material properties
dependent only on the polymer fraction φ, and p is the pervadic (or Darcy) pressure of
the pore fluid, gradients of which drive the interstitial water through the polymer matrix
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of the hydrogel (Peppin, Elliott & Worster 2005; Doi 2009). In terms of the bulk pressure
P and the osmotic pressure Π , p is equal to P − Π . It can also be convenient to define an
osmotic modulus K(φ) = φ ∂Π/∂φ.

Cauchy’s momentum equation in the absence of any body forces, ∇ · σ = 0, can be
applied using the stress tensor of (2.7) to find that

2 ∇ · [μs(φ) ε] = ∇ ( p + Π) . (2.8)

Expanding the left-hand side, we find two terms, 2μ′
sε · ∇φ and 2μs ∇ · ε, where μ′

s
denotes ∂μs/∂φ. The scaling derived in (2.6) shows that the latter term is a factor 1/ε � 1
greater than the former, and therefore, at leading order in the small deviatoric strain,

2 μs(φ)∇ · ε = ∇ ( p + Π) . (2.9)

Taking the curl of this equation, and again using the scaling derived above for ∇φ to
neglect a term involving μ′

s, shows that

∇ × ∇ · ε = 0, (2.10)

whence

∇ × ∇2ξ = 0 (2.11)

from (2.4). Taking the curl of (2.11), and using the standard identity for the curl of a curl
alongside (2.3), we determine finally that

∇4ξ = −n ∇∇2
(

φ

φ0

)1/n

. (2.12)

This equation, akin to the biharmonic equation for linear elasto-statics (Palaniappan
2011) but forced by a quantity dependent on the polymer fraction field, can be used to
determine the local displacement field and the overall shape of a swelling hydrogel once
the slowly-evolving local polymer fraction field φ(x, t) is known. This equation reduces
straightforwardly to the usual biharmonic equation of linear elasticity in the case that φ is
spatially uniform.

The presence of the biharmonic operator in this equation draws natural parallels with
classical plate theory (Landau & Lifshitz 1986), in which the displacement w normal to a
plate with bending stiffness 𝔇 under a load Q is given as a solution to

∇4w = − Q
𝔇

. (2.13)

Take surfaces of constant φ as the deforming plates in our case, and then it is seen that

Q
𝔇

= n ∇∇2
(

φ

φ0

)1/n

, (2.14)

and the ‘load’ on the surface of constant φ is given by gradients in the Laplacian of
(φ/φ0)

1/n, which can be viewed as gradients of curvature of level surfaces of φ. The
clearest way to motivate this interpretation is by the consideration of an example where
surfaces of constant φ act like thin elastic membranes, as shown in Appendix A.
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3. Equivalence of displacement formulation and polymer conservation

The existence of (2.12) provides a second way to calculate the shape of a hydrogel in
the uniaxial swelling problems considered in Part 1, as an alternative to the constraint
on polymer conservation. The strength of this displacement approach is its generality,
applying to situations that are more complicated than unidirectional swelling, and it is
straightforward to show that the two approaches are equivalent in unidirectional problems.

As an example, consider the case of a swelling hydrogel sphere where all displacements
are radial. As in our treatment of this problem in Part 1, we also take a linear osmotic
pressure Π(φ) = K0(φ − φ0)/φ0, alongside constant material parameters μs and k. The
displacement equation (2.12) for the radial component of the displacement field can be
written as

∇2

{[
1
r2

∂

∂r

(
r2 ∂ξ

∂r

)
− 2ξ

r2 + 3
∂

∂r

(
φ

φ0

)1/3
]

r̂

}
= 0. (3.1)

The expression within the Laplace operator here must be a harmonic vector, and can
therefore be expressed as a linear combination of vector spherical harmonics (Hill 1954).
The only such combination that is spherically-symmetric and regular at the origin is the
zero vector, hence

1
r2

∂

∂r

(
r2 ∂ξ

∂r

)
− 2ξ

r2 + 3
∂

∂r

(
φ

φ0

)1/3

= 0. (3.2)

Integrating this expression with respect to r gives

1
r2

∂

∂r

(
r2ξ

)
+ 3 (φ/φ0)

1/3 = α(t), (3.3)

for some spatially constant α(t). Equation (2.3) gives ∇ · ξ = 3[1 − (φ/φ0)
1/3], which

can be written as
1
r2

∂

∂r

(
r2ξ

)
= 3

[
1 − (φ/φ0)

1/3
]
, (3.4)

when ξ is spherically symmetric. Hence α(t) = 3 and

ξ(r, t) = 3
r2

∫ r

0
s2

[
1 − (φ/φ0)

1/3
]

ds, (3.5)

using the fact that ξ(0, t) = 0. This describes the entire radial displacement field and can
be used to give an implicit expression for the radius a(t), namely

ξ(a(t), t) = a(t) − a0 = 3
a(t)2

∫ a(t)

0
s2

[
1 − (φ/φ0)

1/3
]

ds. (3.6)

The numerical results in figure 1 show that this displacement formulation gives values for
a(t) that are very close to those obtained in Part 1 using polymer conservation.

We can show that the displacement formulation complies with the global constraint
of conservation of polymer at leading order for small deviatoric strains. First, we
reintroduce the small parameter ε = maxi,j |εij|. Since small deviatoric strains imply that
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0 1 2 3 4 5

T

A(
T

)

6 7 8 9 10

0.6

0.8

1.0

Polymer conservation

Displacement formulation

Figure 1. Plots of the radius of a swelling sphere of hydrogel, A(T) = a/a0, against dimensionless time T =
kK0t/a2

0μl, where the three material properties are taken to be constants. Here, the initial uniform polymer
fraction is 8φ0, and μs/K0 = 40 to reflect the case considered in Part 1. At no time does the difference between
the two approaches exceed 6 × 10−5, much smaller even than the theoretical upper bound of O(ε2) predicted
in the text.

the gradients in polymer fraction across the sphere are small ((2.6) gives |∇φ| ∼ ε/a0),
we can write

φ

φ0
= Φ̄(t) + ε Φ̂(r, t) + · · · , (3.7)

with all radial variations occurring at first order and above in the small deviatoric strain.
Similarly, we expand a(t)/a0 = Ā(t) + ε Â(t) + · · · and let u = sa0. At orders 1 and ε,
(3.6) implies that

ĀΦ̄1/3 = 1 and Φ̄1/3Â = −
∫ Ā

0
u2Φ̂ du, (3.8a,b)

respectively. Therefore,

∫ Ā+εÂ

0
u2

(
Φ̄ + εΦ̂

)
du = 1

3 + ε
(

Ā2Φ̄ − Φ̄1/3
)

Â + O(ε2) = 1
3 + O(ε2), (3.9)

which can be rewritten as

4π

∫ a(t)

0
s2 φ(s, t) ds = 4π

3
a3

0φ0 + O(ε2a3
0), (3.10)

reproducing the volume constraint
∫

V φ dV = φ0V0 used in Part 1 to O(ε2). This explains
why the numerical results agree so closely.

4. Solving swelling and drying problems

The complete theory describing the shape and composition of a hydrogel and how these
evolve in time, under the assumptions of linear elasticity and nonlinear swelling, are
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summarised as follows. Stresses and strains are related by

σ = − [
p + Π(φ)

]
I + 2 μs(φ) ε, with ε = 1

2

[∇ξ + (∇ξ)T] − 1
n

(∇ · ξ) I, (4.1)

where ξ is the displacement field (in n dimensions) relative to a fully swollen equilibrium
state. Cauchy’s momentum equation ∇ · σ = 0 is to be solved subject to the constraint

∇ · ξ = n

[
1 −

(
φ

φ0

)1/n
]

. (4.2)

The displacement field ξ can be determined from the polymer fraction field φ using the
forced biharmonic equation

∇4ξ = −n ∇∇2
(

φ

φ0

)1/n

. (4.3)

Finally, the polymer fraction is determined from

∂φ

∂t
+ q · ∇φ = ∇ ·

[
k(φ)

μl

{
K(φ) + 2(1 − 1/n) μs(φ)

(
φ

φ0

)1/n
}

∇φ

]
, (4.4)

where the total (phase-averaged) flux is q = u + up. In order to deduce this flux, we must
determine these velocities, both of which can be determined from a knowledge of φ and
ξ . The interstitial (Darcy) velocity is defined using Darcy’s law to be

u = −k(φ)

μl
∇p, (4.5)

whilst up is the polymer velocity. The polymer velocity is given by the material derivative
of ξ with respect to time (MacMinn et al. 2016). Therefore,

up = ∂ξ

∂t
+ up · ∇ξ and thus up = ∂ξ

∂t
· (I − ∇ξ)−1 (4.6)

by rearranging the expression and collecting all terms in up. Using the expression for ∇ξ

found in (2.5) gives

(I − ∇ξ)−1 =
(

φ

φ0

)−1/n

I + O(ε), (4.7)

hence

up =
[(

φ

φ0

)−1/n

I + O(ε)

]
· ∂ξ

∂t
. (4.8)

Therefore, the phase-averaged flux q is, at leading order,

q =
(

φ

φ0

)−1/n
∂ξ

∂t
− k(φ)

μl
∇p. (4.9)
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4.1. Boundary conditions
The equations detailed above require boundary conditions on the displacement or stress
field, the polymer fraction field and the pervadic pressure field. These conditions fall
broadly into those that apply to the bulk material and those that apply to interstitial
variables.

Mechanically, the hydrogel treated in bulk is an elastic material on which constraints can
be applied to displacements or to bulk stress. Examples of the former include constraints
imposed by confining, rigid walls at which ξ · n = 0, where n is the normal to the wall.
If the gel is adhered to the wall then the whole displacement ξ = 0. Alternatively, the
gel may be subject to imposed stresses prescribing any of the components of σ · n. At a
stress-free boundary, such as the surface of the sphere considered in § 3, both the normal
stress n · σ · n and the tangential stress n × σ · n are zero. At a free boundary with another
material, there is continuity of displacement ξ and total stress σ · n. These conditions are
akin to those used for a single-phase elastic material, since there is no involvement of
interstitial fluid.

For interstitial variables, we start with the definition of the pervadic pressure, which,
fluid-mechanically, is the pore pressure that drives interstitial flow according to Darcy’s
law. The pervadic pressure is the pressure measured in bulk fluid separated from the gel by
an interface that allows passage of the fluid but not the polymer scaffold. Therefore, there is
continuity between the pervadic pressure in the gel and the conventional fluid pressure in a
surrounding pure fluid – a Dirichlet boundary condition on p. At gel–air boundaries, mass
conservation may impose a constraint that the normal component of the Darcy velocity
u · n in the gel is equal to the evaporation flux. Given Darcy’s equation ∇p = −μlu/k(φ),
this flux condition provides a Neumann boundary condition on p if the rate of evaporation
is prescribed.

The equations above, coupled with the boundary conditions described here, provide a
complete system. As shown in specific examples throughout this paper and Part 1, these
boundary conditions can be used in combination with the constitutive relationship for
Π(φ) (equal to P − p) to determine conditions on the polymer fraction φ, on which there
is no direct, physical boundary condition. In order to make this relation, we need to be able
to transform conditions on stresses σ · n into conditions on P through knowledge of the
deviatoric strain ε at the boundaries.

As an aside, we note that the boundary conditions described above can be applied in the
theoretical limit of a rigid porous medium in place of the gel. In that case, the stress in the
medium is whatever it needs to be to satisfy the constraint of rigidity, whereas the pore
pressure in the porous medium is equal to the pressure (not the full normal stress) in the
adjacent bulk fluid.

5. Drying of slender hydrogel cylinders by evaporation

The utility of this new theory is most apparent in two- and three-dimensional problems,
in which deviatoric strains can be generated by differential swelling. This is illustrated
in figure 2, which shows an experiment in which a rectangular prism of hydrogel, fully
swollen by immersion in water, is subsequently left to evaporate into the surrounding air
while its base is maintained in contact with a reservoir of water. Details of the materials
used in the experiment can be found in the supplementary material available at https://doi.
org/10.1017/jfm.2023.201. The prism dries partially by evaporation, but reaches a steady
state with transpiration of water from the dish, through the gel, and into the surrounding
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(a) (b) (c)

Figure 2. (a) A fully swollen rectangular prism of hydrogel (JRM Chemicals, Cleveland, Ohio, USA) removed
from water, approximately 3 cm high and 1 cm across. (b) The same prism more than 48 h after its base was
immersed in water while being allowed to evaporate from its other surfaces. By this time, the gel has reached
a steady state with transpiration through it. (c) The prism removed from water, showing the curvatures of its
base, top and sides, and that its aspect ratio has reduced from approximately 3 : 1 to approximately 1 : 1.

air. The key observation is that curvature is induced on the top and bottom surfaces of the
gel and along the sides.

For simplicity, we consider the problem of a circular cylinder that dries by evaporation
into the air, with initially uniform polymer fraction φ0, radius a0 and height H0, where
ε = a0/H0 � 1. The base of the cylinder is held in water, and it is assumed throughout
that this reservoir remains in contact with the base at all times and that the water within
the reservoir is unlimited in supply, with uniform bulk water pressure P = 0. The cylinder
will shrink radially and vertically as water evaporates from the sides and top, and we
seek to describe both the shape of the gel and the polymer fraction field, which quantifies
the spatial variations in drying. At time t, the polymer fraction is given by φ(r, z, t), the
height of the cylinder (measured along its axis at r = 0) is H(t), and – assuming that the
gel remains axisymmetric throughout its drying – the radius is a(z, t). We describe the
curved bottom and top interfaces by z = s1(r, t) and z = H(t) + s2(r, t), respectively, as
illustrated in figure 3. We seek the leading-order solutions in the small parameter ε for
each dependent variable.

In order to describe the evaporative flux, we prescribe the Darcy flux on the surface of
the cylinder. Drying from the sides is described by taking u · n̂ = us on r = a(z, t), whilst
drying from the top surface is described by u · n̂ = ut on z = H(t) + s2(r, t), where n̂ in
each case is the unit normal to the surface pointing away from the gel.

For simplicity, we assume here that the shear modulus μs of the gel and its permeability
k are both independent of polymer fraction φ, and that the osmotic modulus Π is a linear
function of polymer fraction Π(φ) = K0(φ − φ0)/φ0.

5.1. The polymer fraction field
In order to determine the polymer fraction field, we must solve the polymer fraction
evolution equation (4.4) on the domain of the gel as it dries. We will then use this
polymer fraction field to determine the shape of the domain, employing the displacement
equation (4.3) to describe the deformation of individual gel elements. First, recall
that all of the elements of ∇φ must scale smaller than or equal to ε/a0 under the
assumption of small deviatoric strain (2.6), which implies that radial variations in polymer
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LENS theory for hydrogels: displacement formulation

H0 H(t)

a0

z = 0

z = H(t) + s2(r, t)

z = s1(r, t)

a(z, t)

p = 0

φ = φ0

ut ut

us us

(a) (b)

Figure 3. (a) The initial state of a drying cylinder with uniform polymer fraction φ0 and constant imposed
evaporation fluxes ut and us from the top and side surfaces, respectively. (b) The state of the cylinder at time t
after it has begun to dry, with curved lower and upper surfaces described by the functions s1(r, t) and s2(r, t),
respectively, and a non-uniform value of φ along the axis. Note that the drying is greatest at the top where
there is also more radial shrinkage, and that the base of the cylinder remains in full contact with the water for
all time.

fraction are small relative to axial variations: order-unity axial variation is allowed since
∂φ/∂z ∼ �φ/H0 ∼ ε �φ/a0. This motivates separating the polymer fraction field into
two parts,

φ(r, z, t) = φC(z, t) + φ1(r; z, t), (5.1)

with φ1 = O(εφC), and, without loss of generality, φ1(0; z, t) = 0. Thus φC(z, t)
represents the evolving polymer fraction along the axis r = 0, while φ1(r; z, t)
encapsulates the relatively small radial variation of polymer fraction, with z and t as slowly
varying parameters. Furthermore, because the total flux vector q = qr r̂ + qzẑ is solenoidal,
qr = O(εqz) since vertical length scales are a factor 1/ε greater than radial ones.

Thence, at leading order in ε, the polymer fraction evolution equation (4.4) becomes

∂φC

∂t
+ qz

∂φC

∂z
= ∂

∂z

[
D(φC)

∂φC

∂z

]
+ 1

r
∂

∂r

[
r D(φC)

∂φ1

∂r

]
, (5.2)

with D(φC) = D̂

[
φC

φ0
+ 4M

3

(
φC

φ0

)1/3
]

, (5.3)

where the basic diffusivity is D̂ = kK0/μl, and M = μs/K0. This shows, firstly, that the
relevant time scale for the cylinder drying is the axial diffusive time scale t∗ = H2

0/D̂ =
a2

0/D̂ε2, which is long compared to the radial diffusive time scale a2
0/D̂. Our formulation

is valid for times t � a2
0/D̂. Secondly, the form of the equation allows us to separate

variables for r, with the separation ‘constant’

S(z, t) = 1
D(φC)

(
∂φC

∂t
+ qz

∂φC

∂z
− ∂

∂z

[
D(φC)

∂φC

∂z

])
= 1

r
∂

∂r

(
r

∂φ1

∂r

)
. (5.4)

The vertical material flux qz is assumed to be a function of z and t only, as a result of
slenderness, which is justified post hoc below in (5.33). Then, φ1 reaches a quasi-steady
state

φ1 = 1
4 S(z, t) r2 (5.5)

on the (fast) radial diffusive time scale, once we impose regularity at r = 0. These radial
variations drive the flow of water through the gel in the radial direction, therefore we can
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use the imposed evaporation flux on the surface of the gel at r = a(z, t) to deduce the form
of the function S(z, t).

The leading-order Darcy velocity can be deduced in terms of polymer fraction gradients
using a combination of Cauchy’s momentum equation and Darcy’s law, with radial
component

u = D(φC)

φC

∂φ1

∂r
= D(φC) S(z, t)

2φC
r, (5.6)

and vertical component

v = D(φC)

φC

∂φC

∂z
. (5.7)

The normal to the sides of the cylinder is given by

n̂ = ∇(r − a(z, t))
|∇(r − a(z, t))| = r̂ − ∂a

∂z
ẑ + O(ε2), (5.8)

therefore the evaporation flux is

us ≡ u · n̂ = u − v
∂a
∂z

(5.9)

to leading order, which gives

S = 2φCus

D(φC) a(z, t)
+ 2

a(z, t)
∂φC

∂z
∂a
∂z

. (5.10)

This combines with (5.5) to show finally that

φ1(r; z, t) = φC

2a

⎧⎨
⎩φCus

D̂

[
φC

φ0
+ 4M

3

(
φC

φ0

)1/3
]−1

+ 1
φC

∂φC

∂z
∂a
∂z

⎫⎬
⎭ r2. (5.11)

Now, since us ∼ a0/t∗, this result illustrates that in fact, φ1 = O(ε2φC), a stronger result
than our starting assumption of an order-ε difference in scales.

5.2. The displacement field
In order to determine the shape of the cylinder as it dries, we first find the full axisymmetric
displacement field ξ = ξ r̂ + ηẑ. We start with the z component of the displacement
equation (4.3):

∇4η = −3
∂

∂z
∇2

(
φ

φ0

)1/3

. (5.12)

Given (5.1) and (5.11), we find that the right-hand side is O(1/H3
0), whilst the left-hand

side, dominated by radial derivatives, is O(ε/a3
0). Therefore, the ratio of the right-hand
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LENS theory for hydrogels: displacement formulation

z = 0z = s1(r, t) nn · σ · n = p = 0

n
n · σ · n = 0

n × σ · n = 0

ξ = η = 0

Figure 4. A schematic diagram showing the boundary conditions imposed on the base and sides of the gel
cylinder.

side to the left-hand side is O(ε2), and

1
r

∂

∂r

[
r

∂

∂r

(
1
r

∂

∂r

[
r

∂η

∂r

])]
= 0 (5.13)

to leading order. Integrating this equation and imposing regularity at r = 0 gives

η = A(z, t) r2 + B(z, t), (5.14)

where A and B are arbitrary functions of vertical position z and time t. Equation (4.2) for
∇ · ξ then allows us to deduce that

ξ =
{

3
2

[
1 −

(
φC

φ0

)1/3
]

− 1
2

∂B
∂z

}
r − 1

4
∂A
∂z

r3 (5.15)

to leading order. Equations (5.14) and (5.15) allow us to write out the components of the
deviatoric strain tensor at the same order:

εrr = (1/2)
[
1 − (φC/φ0)

1/3 − ∂B/∂z
]

− (3/4)(∂A/∂z)r2, (5.16a)

εθθ = (1/2)
[
1 − (φC/φ0)

1/3 − ∂B/∂z
]

− (1/4)(∂A/∂z)r2, (5.16b)

εzz = ∂B/∂z − 1 + (φC/φ0)
1/3 + (∂A/∂z)r2, (5.16c)

εrz = εzr =
[
A(z) − (3/4)(∂/∂z) (φC/φ0)

1/3 − (1/4)(∂2B/∂z2)
]

r

−(1/8)(∂2A/∂z2)r3. (5.16d)

All other components of the tensor are zero to leading order in ε. The requirement that
|εij| � ε allows us to deduce first that ∂A/∂z is order ε/a2

0 or smaller, and also that

B(z, t) =
∫ z

0
1 − (φC/φ0)

1/3 dz′ + C(z, t), (5.17)

where ∂C/∂z is O(ε). Furthermore, the boundary condition η(0, 0, t) = 0, illustrated in
figure 4, implies that C(0, t) = 0.

In order to determine the form of the two remaining unknown functions, A(z, t) and
C(z, t), it is necessary to appeal to boundary conditions on the stress tensor along the
curved surface r = a(z, t) of the cylinder.
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5.2.1. Continuity of tangential stress
Requiring continuity of tangential stress n × σ · n implies that σrz = 2μsεrz = 0 on r = a
at leading order, therefore, using (5.16) for the deviatoric strain,

A = 1
2

∂

∂z

(
φC

φ0

)1/3

+ O(ε2/a0). (5.18)

This leaves C(z, t) as the only undetermined quantity. It also shows that the leading-order
radial displacement is linear in r:

ξ =
[

1 −
(

φC

φ0

)1/3

− 1
2

∂C
∂z

]
r. (5.19)

5.2.2. Continuity of normal stress
Continuity of normal stress n · σ · n implies at leading order that σrr = −P + 2μsεrr = 0
on r = a. We use Cauchy’s momentum equation ∇ · σ = 0 to find the bulk pressure field
P(r, z, t), the radial component of which equation gives

∂P
∂r

= 2μs

[
∂εrr

∂r
+ ∂εrz

∂z
+ εrr − εθθ

r

]
= O(μsε

2/a0), (5.20)

owing to the fact that the shear term ∂εrz/∂z is of order ε2/H0 in this case, as deduced
above. Therefore, the bulk pressure is only a function of z at leading order in the
small parameter ε, as might be expected from the slenderness assumption. The vertical
component of Cauchy’s momentum equation implies that

∂P
∂z

= 2μs

[
∂εzz

∂z
+ 1

r
∂

∂r
(rεrz)

]
. (5.21)

Differentiating this equation with respect to r and working up to terms of order ε3 gives

∂

∂r

[
1
r

∂

∂r
(rεrz)

]
= O(ε3/a2

0), thus εrz = F(z, t) r + O(ε3), (5.22)

where F(z, t) = O(ε2/a0), and terms proportional to 1/r are neglected by requiring
regularity along the z-axis. We reapply the condition of no tangential stress from above
at r = a to find F ≡ 0 and therefore εrz = 0 up to and including terms of order ε3. Hence
(5.21) shows that

∂P
∂z

= 2μs
∂εzz

∂z
+ O(μsε

3/a0) = 2μs
∂2C
∂z2 + O(μsε

3/a0). (5.23)

This gives P(z, t) = P0(t) + 2μs ∂C/∂z for some spatially uniform P0. The condition of
no normal stress at the bottom interface between gel and water, for example applied at
r = z = 0, gives σzz = 0 here, and therefore P0 ≡ 0. Hence, since P = 2μsεrr on r = a,

3μs ∂C/∂z = O(μsε
2), so C(z, t) = O(εa0). (5.24)
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LENS theory for hydrogels: displacement formulation

5.2.3. The shape of the gel
Since C is order εa0, the radial displacement field is given at leading order in ε by

ξ(r, z, t) =
[

1 −
(

φC

φ0

)1/3
]

r + O(ε2a0), (5.25)

which allows us to deduce the radius a(z, t), since ξ is equal to a − a0 on r = a. Therefore,

a(z, t) = (φC/φ0)
−1/3 a0, (5.26)

illustrating how the radial shrinkage is isotropic to leading order. Though we have not fully
determined C here, the vertical displacement along the axis is given up to and including
terms of order a0 by

η(0, z, t) =
∫ z

0
1 − (φC/φ0)

1/3 dz′. (5.27)

This allows us to determine H(t) through setting z = H(t) and noting that η(0, z, t) =
H(t) − H0 on the top surface,

H0 =
∫ H(t)

0
(φC/φ0)

1/3 dz′, (5.28)

with any contributions from the small term C(z, t) being zero at leading order. At leading
order, the curvatures on the top and bottom interfaces (given by s1(r, t) and s2(r, t)) are
described by the order-εa0 radial variation in η, with

s1(r, t) = r2

2
∂

∂z

(
φC

φ0

)1/3
∣∣∣∣∣
z=0

and s2(r, t) = r2

2
∂

∂z

(
φC

φ0

)1/3
∣∣∣∣∣
z=H(t)

. (5.29a,b)

All of these quantities describing the shape of the gel as it dries are dependent on finding
the axial polymer fraction φC(z, t), for which we must return to the polymer fraction
evolution equation (5.3).

5.2.4. Constraints on the aspect ratio
The components of the deviatoric strain tensor of (5.16) can all be seen to be O(ε2) or
smaller in this case, where ε is the aspect ratio a0/H0. It is discussed above how the key
requirement for our linear-elastic–nonlinear-swelling model to apply to a situation is that
all of the components of ε are much smaller than 1, i.e. that ε2 � 1. Therefore, our results
here allow us to relax our initial slenderness assumption ε � 1, instead requiring only that

(a0/H0)
2 � 1. (5.30)

Recall further from Part 1 that linear elasticity is valid only for small strains, where
‘small’ is defined by authors including Landau & Lifshitz (1986) to be approximately
10 %. Therefore, instead of requiring an aspect ratio H0 � 10a0 for validity, this model
should apply even in cases where H0 � 3a0, allowing us to model a wider range of drying
cylinders.
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5.3. Polymer fraction evolution
The expression for S in (5.10) can be combined with (5.4) to give the polymer fraction
evolution equation

∂φC

∂t
+ qz

∂φC

∂z
= ∂

∂z

[
D(φC)

∂φC

∂z

]
+ 2

a

(
φC us + D(φC)

∂φC

∂z
∂a
∂z

)
, (5.31)

which rearranges to

∂φC

∂t
+ qz

∂φC

∂z
= 1

a2
∂

∂z

[
D(φC) a2 ∂φC

∂z

]
+ 2φCus

a
. (5.32)

Equation (5.26) gives an expression for a that can be substituted in here. The vertical flux
qz(z, t) remains to be found in order to result in an equation for φC that can be solved
subject to boundary conditions, and used in turn to determine the radial variation φ1 using
(5.11). To find the latter, we appeal to the definition of the total flux vector as the sum of
the Darcy flux and the polymer velocity, as expressed in (4.9). Then, at leading order in ε,

qz(z, t) = D(φC)

φC

∂φC

∂z
−

(
φC

φ0

)1/3 ∫ z

0

∂

∂t

(
φC

φ0

)1/3

dz′, (5.33)

using the expression for η in (5.27). Notice that ∂qz/∂r = 0 at leading order, as postulated
at the beginning. On the top surface at z = H(t), n̂ · u = ut, which reduces at leading order
to requiring v = ut here. Hence a Neumann boundary condition is provided:

D(φC)

φC

∂φC

∂z
= ut on z = H(t). (5.34)

It was also seen above that P = O(μsε
2) throughout the gel. On the base, which is in

contact with the bulk water, p = 0 in addition, therefore the osmotic pressure is Π =
O(μsε

2). This supplies the Dirichlet boundary condition φC = φ0 on z = 0.

5.4. Non-dimensional system
Alongside rewriting φC/φ0 = Φ, we introduce the other non-dimensional variables

R = r
a0

, Z = z
H0

, H = H
H0

, A = a
a0

, T = D̂t

H2
0
, Ut = H0ut

D̂
, Us = H2

0us

a0D̂
,

(5.35a–g)

which allows us to rewrite (5.32) as

∂Φ

∂T
+

[
2 f (Φ)

3
∂Φ

∂Z
− Φ1/3

∫ Z

0

∂Φ1/3

∂T
dZ′

]
∂Φ

∂Z
= Φ

∂

∂Z

[
f (Φ)

∂Φ

∂Z

]
+ 2Φ4/3Us,

(5.36)

where f (Φ) = 1 + (4M/3)Φ−2/3. The boundary conditions are Φ = 1 at Z = 0, and

f (Φ)
∂Φ

∂Z
= Ut at Z = H(T). (5.37)
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LENS theory for hydrogels: displacement formulation

The shape of the gel – and therefore the domain on which to solve the equation – is given
by

A = Φ−1/3 and 1 =
∫ H(T)

0
Φ1/3 dZ′, (5.38a,b)

alongside

S1 = ε2R2

2
∂Φ1/3

∂Z

∣∣∣∣
Z=0

and S2 = ε2R2

2
∂Φ1/3

∂Z

∣∣∣∣
Z=H(T)

, (5.39a,b)

where Si = si/H0, scaling vertical displacements with the vertical length scale. The
(small) radial variation in polymer fraction is given by

Φ1 = φ1

φ0
= ε2

[
Φ1/3Us

2 f (Φ)
− 1

6Φ

(
∂Φ

∂Z

)2
]

R2. (5.40)

The numerical method that we used to solve this equation with its boundary conditions is
outlined in the supplementary material. We will consider two special cases – firstly, where
Us = 0, and secondly, where Ut = 0 – in order to understand the qualitative phenomena
seen in experiments and how they relate to different aspects of the model.

Notice that the non-dimensionalisation here provides constraints on the size of the
evaporative fluxes for the assumptions of our model to hold. By the scaling of (2.6),
gradients in polymer fraction, radial and axial, would be too large for there to be
small deviatoric strain throughout unless Us � 1 or Ut � 1, respectively. Using the
non-dimensional scalings above, this implies that

us � a0D/H2
0 and ut � D/H0. (5.41a,b)

Therefore, our model can support evaporation fluxes from the top surface that are O(1/ε)

larger than their radial counterparts owing to slenderness. In either case, these two
conditions are equivalent to requiring the radial and axial Péclet numbers to be at most
order unity.

Recall that D has contributions from the pure diffusivity of the gel as a colloidal mixture
(D̂), but is adjusted by shear modulus, with a greater value of M leading to a larger
diffusivity. In the limit as M → 0, D → D̂ and it is the ‘pure diffusivity’ that provides
the upper bounds on us and ut. As M → ∞, D → 4MD̂Φ1/3/3 and the gel can support
greater evaporative fluxes whilst still satisfying the requirements of small deviatoric
strains. Therefore, increasing the shear modulus relative to the osmotic modulus, or drying
the gel (so as to increase Φ throughout), allows for ever-larger evaporative fluxes.

6. Modelling evaporation from the top and sides of a cylinder

We contrast the behaviour of cylinders where the drying occurs only from the top surface,
with zero evaporation from the sides (non-zero Ut with Us = 0) with drying that occurs
only from the sides and not from the top (non-zero Us with Ut = 0). Though we are
likely to observe a mixture of both of these behaviours in experiments, considering them
separately allows us to understand the physics driving the different qualitative observations
that can be made.
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Figure 5. For a hydrogel with M = 1 and initial dimensions H0 = 3a0, contour plots of the polymer fraction
Φ = φ/φ0 at four subsequent times through the drying process. (a) A gel with Ut = 2.5 and Us = 0, showing
the fact that shrinkage is initially localised at the top surface, and the formation of curved top and bottom
interfaces. (b) A gel with Ut = 0 and Us = 2.5, illustrating the flat top surface and the important radial gradients
in φ that drive flow towards the sides of the cylinder.

When drying from the top, (5.36) becomes an advection–diffusion equation (with no
loss term 2Φ4/3Us), and the radial variation in polymer fraction is

Φ1 = − ε2

6Φ

(
∂Φ

∂Z

)2

R2. (6.1)

This suggests that the polymer fraction decreases slightly towards the edges of the cylinder,
which drives a small flow of interstitial fluid radially inwards, in order to impose the
condition of no normal flux when the sides of the hydrogel slope outwards towards its
base. The drying is initially localised around the top surface of the cylinder, until the
gradient in polymer fraction formed along the axis of the cylinder draws water up from
lower down, as illustrated in figure 5(a).

If, on the other hand, drying occurs only from the side surface of the hydrogel, then there
are two distinct phases of the subsequent evolution. Axial derivatives in polymer fraction
are initially small, so (5.36) is dominated by the balance

∂Φ

∂T
≈ 2Φ4/3Us. (6.2)
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Figure 6. Plots of the variation in the radius along the axis of a hydrogel as it evaporates into the air from
(a) its top surface only, or (b) its sides only. In both cases, M = 1, H0 = 3a0, and the non-dimensional
evaporative flux is 2.5.

This admits early-time solutions of the form Φ ≈ (1 − 2UsT/3)−3, which result in radii
A ≈ 1 − 2UsT/3, independent of Z. Eventually, diffusive and advective effects dominate
as gradients along the Z direction become appreciable. Unlike when drying from the top,
the radial variation in polymer fraction takes the full form of (5.11), and therefore, for
sufficiently large Us, polymer fraction increases radially outwards, which supports the
radial evaporative flux. Figure 5 shows the curved contours of φ that form in this case.

The differences in early-time drying behaviour are also apparent through considering
the radius of the cylinders. Since initially only the top of the cylinder contracts when
evaporating from the top surface alone, the radial contraction is restricted to this upper
surface before continuing down the cylinder, as shown in figure 6(a). On the other hand,
figure 6(b) shows how the radial contraction is initially approximately uniform, before
differential drying along the axis of the cylinder (the base remains more swollen due to
contact with the reservoir) becomes more apparent at later times.

The top and bottom surfaces, described by S1 and S2, also show another key difference
between the top-drying and side-drying cases. Combining the expression for S2 in (5.39b)
with the Neumann boundary condition (5.37) on Z = H(T) implies that

S2(R, T) = ε2UtR2

2 f (Φ)Φ2/3

∣∣∣∣
Z=H(T)

. (6.3)

Hence there is no curved top surface when drying from the sides, since Ut = 0, as shown
in figure 5.

Figure 5 indicates the existence of a steady state that is approached as evaporative fluxes
from the gel surface become matched exactly by the interstitial flows of water from the
base of the cylinder. Once this state, illustrated in figure 7, is reached, there is no longer
any swelling or drying, but instead there is steady transpiration from the reservoir through
the hydrogel. Varying M affects both the rate at which this state is approached and also the
form of the steady state, with there being significantly less shrinkage as M is increased. It
is seen in figure 7 that a larger value of M leads to a more rapid approach to steady state,
since the effective diffusivity D(φC) increases. Therefore, for a fixed evaporative flux Ut,s,
there is less drying of the cylinder before this state is reached, leading to less shrinkage for
larger M. In addition, the steady state is reached when Darcy fluxes u = [D(φC)/φC] ∇φ
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Figure 7. The steady states reached by gels with H0 = 3a0 drying from (a) their top and (b) their sides
alone. (a i,b i) Representative shapes of the steady state for different evaporative fluxes, with M = 1. (a ii,b ii)
Fixing the non-dimensional evaporative flux Us or Ut to 2.5, the contraction in height for a range of material
parameters M.

match evaporative fluxes, therefore a larger value of D requires smaller values of ∇φ to
reach equilibrium, again showing less shrinkage for larger M.

The approach to steady state can be understood as an equalisation of interstitial fluxes;
at early times, the interstitial fluid flux is localised to the surface from which evaporation
occurs, leading to drying of that region. The induced gradients in polymer fraction arising
from this drying in turn drive flow from regions that are swollen to a greater degree, and
this process continues until the rate at which water is fed into the system from the reservoir
at the base of the gel matches the rate at which it is lost from the evaporating surface.
Figure 8 shows the Darcy flux field u at two different times for both cases, showing how
these fluxes equalise as time progresses.

7. Conclusion

In order to describe the behaviour of a hydrogel fully, it is necessary to solve both for
its composition, described by the polymer fraction field φ(x, t), and also for its shape,
which we can deduce from the displacement field ξ(x, t). This displacement field is also
needed to find the polymer velocity (and therefore the phase-averaged flux q) and the
deviatoric strain 𝟄, which gives the stress field in the hydrogel. In Part 1, it was shown
that for one-dimensional swelling problems, ξ and φ could be related straightforwardly
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Figure 8. Plots of the interstitial flow field (the Darcy velocity u) in red, showing the fluxes at both early and
late times.

by conservation of polymer, while ∇ · q = 0 allowed us to deduce the total flux vector,
providing a complete description of these simpler physical situations.

In this paper, we have shown how the displacement field can be deduced from the
polymer fraction field, solving a forced biharmonic equation with a forcing arising from
gradients in polymer fraction through the hydrogel. Parallels between this result of
linear-elastic–nonlinear-swelling theory and linear elasticity can be drawn easily, with the
displacement field given by our model reducing to the biharmonic displacement field of
linear elasticity in the absence of gradients in φ, corresponding to our founding assumption
that a hydrogel behaves on short time scales as a linear-elastic material.

Given φ and ξ , it is possible thus to deduce an expression for the phase-averaged
flux q, with contributions from both the flow of water through the polymer scaffold
and the deformation of the polymer itself, and therefore the evolution of φ in time
can be described using only our knowledge of φ at a given time, alongside prescribed
boundary conditions. These conditions can apply to the displacement field itself (rigid
walls, or no-slip conditions at the edges of a gel), the bulk stress σ (continuity of normal
or tangential stress) or the pervadic pressure p (continuity of pervadic pressure or flux
conditions), all of which we can now deduce given the form of the polymer fraction field
φ(x, t). This model is applicable when the deviatoric strains are small, and does not rely on
any assumptions on the direction of swelling or the symmetry of the situation, unlike the
cases considered in Part 1, and in principle allows us to describe the evolution of any gel
satisfying the founding assumption of small deviatoric strains using a system of coupled
partial differential equations alongside the aforementioned boundary conditions.

We have illustrated the utility of this model by considering the example of hydrogels
drying into air by evaporation with their bases submerged in water, leading to steady
transpiration at late times. In these examples, the evolution equation for polymer fraction
and the displacement equation describe the composition and shape of the hydrogel,
respectively, as it dries, and we have shown specifically how the displacements of
individual gel elements depend on φ and its gradient. The results derived from this model
give good qualitative agreement with experiments that we have carried out, and provide a
physical explanation for phenomena seen in these experiments, such as the formation of
curved gel–air interfaces and the approach to a steady state where evaporative fluxes match
imbibition fluxes from the reservoir of water in which the cylinders are sat. An alternative
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physical interpretation of these results, in the simpler case where all of the evaporation
occurs from the top of a cylinder, is provided in Appendix A, showing how assuming
locally isotropic drying and using the equations of classical plate theory leads to the same
result for the displacement field. However, as mentioned above, a strength of our model is
its generality in not requiring such simplifying assumptions to be made.

Together with the founding assumptions of Part 1, we have illustrated here how
our linear-elastic–nonlinear-swelling theory can describe hydrogels in a wide variety of
situations, and requires only the assumption of small deviatoric strains to be applicable.
We have shown that this condition can be met with large variations in polymer fraction
provided that M = μs/K0 is large, as was seen in Part 1. In the specific evaporating
system that we analysed, this condition was met provided that the Péclet numbers utH0/D
and usH0/εD are both order unity or smaller, noting that the diffusivity D increases with
M.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.201.
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Appendix A. Lagrangian model for a cylinder evaporating from the top

As alluded to in § 2, the displacement equation bears a resemblance to the governing
equations of classical (Kirchhoff–Love) plate theory (Landau & Lifshitz 1986). The drying
cylinder, with polymer fraction that varies only in the vertical direction, can be viewed as
a stack of thin discs, each of which has a uniform polymer fraction φi and deforms as a
plate under a load, as illustrated in figure 9. The loading here on an individual plate is set
by considering the forces on the system arising from the stress tensor introduced in Part 1.
Given that we can solve (5.36) with appropriate boundary conditions (as described above)
to supply the leading-order polymer fraction field φC(z, t), it is shown that this ‘naïve’
Lagrangian approach provides a physical basis for the displacement formulation that we
have derived, showing the equivalence between classical plate theory and our displacement
formulation in this special case.

The key assumption of our model, that deviatoric strains are small, is equivalent to
stating that swelling and drying are locally isotropic at leading order: that is, in a given
Lagrangian slice where the axial polymer fraction φC is φi, the Cauchy strain tensor
is approximately equal to [1 − (φi/φ0)

1/3]I . In the fully swollen state, in which each
Lagrangian layer is swollen with φ = φ0, the slices have radii ai = a0 and thickness hi =
h0. Now, assume that each layer contracts isotropically and seek the order-ε correction to
the displacement that results from matching adjacent layers. To begin, the leading-order
isotropic shrinkage implies that

ai = (φi/φ0)
−1/3 a0 and hi = (φi/φ0)

−1/3 h0. (A1a,b)

Now realise that differential drying leads to differential shrinkage, as shown in figure 9(b).
The intermediate situation pictured here is unphysical since there are discontinuities in
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a0

ai hi

h0

(a) (b) (c)

a0

ai

Figure 9. (a) The division of the fully swollen hydrogel into Lagrangian reference slices of thickness h0,
all with uniform radius a0. In time, these slices shrink isotropically to new thicknesses hi and new radii ai,
as illustrated in (b), but in order for radial strains to match between slices, this requires the individual thin
elements to bend, as illustrated in (c).

the radial strain. The only way to prevent such discontinuities is if the layers bend under
loading to match their neighbours, introducing the concavity and convexity seen on the
top and bottom surfaces, respectively, in figure 2. This curvature is shown in figure 9(c),
illustrating how it accommodates the differential drying.

In order to describe the deflection of a thin, linear elastic, plate under loading, we
appeal to Kirchhoff–Love plate theory. Assuming that the deflection leads to a radial
displacement γ and a vertical displacement ζ , the assumptions of classical plate theory
can be applied to this displacement field γ r̂ + ζ ẑ. These assumptions underpin a number
of theories and have been well-described in the literature (see, for example, Timoshenko
& Woinowsky-Krieger 1959; Landau & Lifshitz 1986). Start by introducing a coordinate
system centred on the midpoint of the plate, with radial coordinate r and vertical
coordinate (aligned with the axis of the cylinder) zp. Firstly, there are no midplane strains,
which gives γ = 0 along the centre of the layer zp = ζ(r, 0). Secondly, the assumption
that normals to the midplane of the plate remain normal to this plane under deformation
imposes ∂γ /∂r + ∂ζ/∂zp = 0. Finally, the equation of equilibrium gives

∇4ζ = −Q/𝔇, (A2)

where Q is the load, and 𝔇 is the bending stiffness. The load in this case is equal to the
force exerted normal to the plate, and is therefore given by ∂σzz/∂z = 0. Therefore, in
the absence of shear stresses at leading order, Q = 0, representing an elastic plate under
so-called pure bending. Thus the value of ζ(r) can be deduced to be a biharmonic function
(a special case of the Michell solution; Michell 1899). Imposing regularity conditions at
r = 0, this solution must take the form

ζ(r) = W + Vr2, (A3)

for some constants W and V to be determined from boundary conditions. This equation
represents a deflection of the plate with curvature 2V . Now, applying the condition that
normal elements remain normal, γ (r, zp) = −2Vzp, using γ (r, 0) = 0 to set the arbitrary
constant.
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Matching the radial strains at the interface between slice i and slice i + 1, using the
leading-order isotropic displacement field, gives

1 − (φi/φ0)
1/3 − Vihi = 1 − (φi+1/φ0)

1/3 + Vi+1hi+1. (A4)

We collect these terms and write hi and hi+1 in terms of φi and φi+1:

2h0

[(
φi+1

φ0

)1/3

Vi+1 +
(

φi

φ0

)1/3

Vi

]
= (φi+1/φ0)

1/3 − (φi/φ0)
1/3 . (A5)

Finally, taking the limit h0 → 0 gives the value of V and hence

ζ = W + 1
2

∂

∂z

(
φ

φ0

)1/3

r2. (A6)

Since the expression for γ above gives γ ∼ hiV � 1, we find

ξ =
[

1 −
(

φ

φ0

)1/3
]

r + O(ε2a0), (A7)

η =
∫ z

0
1 −

(
φ

φ0

)1/3

du + 1
2

∂

∂z

(
φ

φ0

)1/3

r2 + C(z) + O(ε2a0), (A8)

again with an undetermined C(z) of order εa0, given by W at the position z. Notice here
that the displacement field that we have derived satisfies (4.3) up to terms of order ε2.
This can be interpreted as the superposition of a leading-order swelling displacement
with an elastic displacement of order εa0. Though entirely equivalent to the displacement
formulation derived above, this alternative approach supplies a physical justification for
the curvature terms in the displacement field.
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