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Modern transmission electron microscopes are capable of recording and storing unprecedented amounts 

of data, which conventional analysis methods are ill-equipped to deal with. However, recent advances in 

computing power and the birth of ‘big data’ have given rise to a wealth of new statistical techniques to fill 

the gap. One family of these techniques is data clustering, which we apply to scanning precession electron 

diffraction (SPED) data. 

 

SPED involves scanning a double-rocking electron beam across the sample and recording a PED pattern 

at each position. Previous work on the resultant four-dimensional datasets has focused on the use of virtual 

dark-field imaging [1] or pattern-matching approaches [2], enabling microscale analysis of local 

crystallography, such as strain, misorientation, or atomic ordering. However, such methods underutilise 

the available data and suffer in cases of where distinct microstructural components overlap. More recent 

work has extended such efforts, exploiting redundancy in the data by employing non-negative matrix 

factorisation (NMF) [3], successfully examining the three-dimensional characteristics of a volume of 

material [4]. However, NMF and similar statistical decompositions prove to be limited when there is 

overlap in the diffraction signal from two structural elements, such as at a low-angle tilt boundaries. It is 

also often unclear how many decomposition components to use. 

 

Data points from parts of the sample which produce similar diffraction patterns lie close together, when 

represented as points in high-dimensional space, and lie further from dissimilar parts of the sample. 

Algorithmically identifying these groups of points via data clustering produces a segmentation of 

structurally similar parts of the sample with little prior knowledge, and the geometrical centre of the groups 

can be understood as a prototypical signal, or basis diffraction pattern.  A signal may be composed 

combinations of basis patterns, so the unambiguous assignment of a given pattern to a cluster centre, 

known as hard clustering, is inappropriate here – instead fuzzy clustering, in which each data point has a 

‘membership’ to each centre, is used. This approach must typically be performed in a reduced-

dimensionality space to avoid the so-called ‘curse of dimensionality’. 

 

Figure 1 presents a SPED simulation of a gallium arsenide Σ3 twin boundary produced using a multislice 

method. The boundary was rotated 30° about a <100> zone axis so that the twins overlapped in projection. 

As the NMF algorithm attempts to model features in terms of reducing significance it produces ‘pseudo-

subtractive’ artefacts in the representative features to efficiently describe the data, and thus the 

localisations are somewhat misleading. The method presented instead involves reducing the 

dimensionality of the data using singular value decomposition (SVD) which preserves data structure, and 

then clustering using a probabilistic approach. The data clustering focuses on the end members in the data, 

rather than the variation, and so the derived patterns and localisations match the originals more closely. 

 

Figure 2 shows a cluster analysis of an experimental SPED dataset collected from the ‘cloudy zone’ of an 

iron-nickel meteorite [5]. NMF identifies a unique matrix phase, but the learnt component pattern is not 

physical, as there is too much signal overlap with the tetrataenite precipitates. The cluster analysis 
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identifies the same matrix component, but the superlattice peaks in the matrix phase are now much clearer. 

This result corresponds well with predictions for the hitherto-unobserved Fe7Ni structure. 

 

Cluster analysis is well-suited to SPED data and it has proved to be particularly useful in cases of where 

structural similarity leads to common diffracting vectors, such as for coherent phases. Used in conjunction 

with other methods, it provides a powerful, quick, and reliable extension to a researcher’s toolbox [6]. 
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Figure 1. NMF and cluster analysis of a simulated dataset. Left: representative features. Centre: 

localisations. Right: the clustered patterns in a low-dimensional projection. 

 

Figure 2. NMF and cluster analysis of an ordered matrix phase in tetrataenite. Left: NMF localisations 

and representative features. The bottom pair of images represent an ordered matrix phase. Centre: clusters 

in a low-dimensional projection. Right: cluster localisations and representative features. The bottom pair 

are the same ordered phase. 

117Microsc. Microanal. 23 (Suppl 1), 2017

https://doi.org/10.1017/S143192761700126X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761700126X

