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Abstract The first model for 'fast' magnetic field reconnection at speeds comparable with the Alfven 
speed was put forward by Petschek (1964). It involves one shock wave in each quadrant radiating from a 
central diffusion region and leads to a maximum reconnection rate dependent on the electrical conductiv­
ity but typically of order 10" 1 or 10~ 2 of the Alfven speed. Sonnerup (1970) and Yeh and Axford (1970) 
then looked for similarity solutions of the magnetohydrodynamic equations, valid at large distances from 
the diffusion region; by contrast with Petschek's analysis, their models have two waves in each quadrant 
and produce no sub-Alfvenic limit on the reconnection rate. 

Our approach has been, like Yeh and Axford, to look for solutions valid far from the diffusion region, 
but we allow only one wave in each quadrant, since the second is externally generated and so unphysical 
for astrophysical applications. The result is a model which qualitatively supports Petschek's picture; in fact 
it can be regarded as putting Petschek's model on a firm mathematical basis. The differences are that the 
shock waves are curved rather than straight and the maximum reconnection rate is typically a half of what 
Petschek gave. The paper is a summary of a much larger one (Soward and Priest, 1976). 

The basic principles for two-dimensional magnetic field reconnection in a highly 
conducting plasma were established many years ago by Dungey (1953), Sweet (1958) 
and Parker (1963). They consider oppositely-directed magnetic field lines which are 
carried towards one another by a converging plasma flow, as shown in Figure 1. The 
magnetic field is assumed frozen to the plasma, save in a 'diffusion' region of 
dimensions / and L (and L out of the plane of the figure). There the electric current 
density is so large that the field lines can slip through the plasma. They enter the 
diffusion region at a speed vh are reconnected at the neutral point N, where the 
magnetic field strength vanishes, and are carried out of the region with speed v0. The 
outflow magnetic field strength B 0 is less than the inflow strength JB„ so that some of 
the magnetic flux is annihilated in the diffusion region. The corresponding fall in 
magnetic energy appears partly as heat, through ohmic dissipation, and partly as an 
increase in the kinetic energy of the plasma. 

For steady, incompressible flow Sweet and Parker derived the following order of 
magnitude relationships between the input and output parameters: 

where TJ = (^0<r) 1 is the magnetic diffusivity and a the electrical conductivity. The 
first arises because the plasma is accelerated away from N by the magnetic tension 

1. Introduction 

V 0 = V A = Bi/(lJLp) 

Vi = v/l> 
vtL = v0l, 

1/2 (i) 
(ii) 
(in) 

Bumba and Kleczek (eds.), Basic Mechanisms of Solar Activity, 353-366. All Rights Reserved. 
Copyright © 1976 by the IAU. 
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Fig. 1. The overall magnetic configuration for the reconnection process. Oppositely directed magnetic 
fields of strength Be are carried towards a magnetic neutral point with speed ve from an 'external region' 
whose scale length is Le. Surrounding N is a 'diffusion region' with dimensions / and L where the electric 
current density is strong. Subscripts i and o refer to inflow and outflow values at the edge of the diffusion 

region. 

B2//JL and an excess gas pressure of the same order. The second expresses the fact 
that flux is being carried in at the speed with which it diffuses through the plasma. The 
final equation results from the principle of mass conservation. 

For given input values vh BH (i)-(iii) determine v0 and the dimensions of the 
diffusion region. In particular one finds 

L = VAT)/V2 , 

which must be compared with a typical overall dimension Le for variations in the 
magnetic field. If 

then L is much less than Le in value and the diffusion region occupies only a small 
part of the flow. Recent attention has been concentrated on such a situation, which 
we refer to as 'fast' reconnection and which is relevant for most astrophysical and 
geophysical applications. In particular, the object has been to study the 'external' 
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region which surrounds the diffusion region and to determine the maximum allow­
able value of the speed ve with which magnetic flux (of strength Be at a distance Le) 
can be carried towards the neutral point and reconnected. It is necessary to 
distinguish between the flow speeds ve and vh since, as the plasma approaches the 
diffusion region it may well be greatly accelerated. 

In the next section we summarise critically the present fast reconnection models of 
the external region; the plasma is assumed perfectly conducting so the diffusion 
region is regarded as a point at the origin or a line through it. In Section 3 a brief 
account is given of an asymptotic similarity treatment which we have recently 
completed (Soward and Priest, 1976). 

2. Previous Models of Fast Reconnection 

2.1. PETSCHEK 

The first to set up a qualitative mechanism for fast reconnection was Petschek (1964). 
He noted that, as plasma crosses a slow magnetohydrodynamic shock wave (a finite 
Alfven wave in the incompressible limit), the magnetic field direction rotates towards 
the normal. This fact enabled him to construct a model of the external region with 
one shock in each quadrant of the JC, y plane. The first quadrant is shown in Figure 2a, 
and the configuration in the rest of the JC , y plane can be constructed from it by 
assuming symmetry about both the J C - and y-axes. The wave remains stationary at 
the position OA while plasma and magnetic flux passes through it. In the process, 
magnetic energy is converted into kinetic energy and heat. Both the wave and the 
field lines which have passed through it are assumed to be straight. 

Petschek estimates the magnetic field strength to the right of the diffusion region 
(considered as a straight line rather than a point) by assuming OA to coincide with 
the vertical axis. He then uses Equations (i)-(iii^to link the external region to the 
diffusion region and gives a qualitative argument for expecting the inflow speed ve to 
possess a maximum value. The maximum depends weakly on the magnetic Reynolds 
number R^ = vAeLe/i] and is typically 0.1 or 0.01 times the Alfven speed vAe = 
B e / ( / L t p ) 1 / 2 . In view of the qualitative nature of Petschek's estimate, Roberts and 
Priest (1975) recently attempted to estimate the maximum inflow speed or, loosely 
speaking, 'reconnection rate' more quantitatively. They solve for the magnetic field 
in the region to the right of OA, assuming OA to be inclined at an angle a to the 
vertical. After matching to the diffusion region, they plot the reconnection rate ve as 
a function of a and find that ve does indeed possess a maximum value. Typical ones 
are 0.1 vAe for R^ = 102 and 0.02 vAe for R^ = 106. 

But Petschek's mechanism was not generally accepted. For instance, Sweet and 
Green (1966) and Priest (1972) showed that, if the shock OA is straight, the field 
lines to the left of OA are bowed away from O, rather than being straight as indicated 
in Figure 2a. (However, Vasyliunas (1975) has recently claimed that the resulting 
transition from convex to concave field lines as the plasma leaves the diffusion region 
presents no problem.) Even more doubt on the validity of Petschek's analysis was 
cast by the appearance of the alternative solutions due to Sonnerup (1970) and Yeh 
and Axford (1970). 
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2.2. SONNERUP 

The configuration proposed by Sonnerup (1970) is shown in Figure 2b. There are 
now two discontinuities in each quadrant. They are, however, different in nature. In 
the compressible case, OA becomes a slow magnetohydrodynamic shock-wave, but 
OB becomes an expansion fan. Furthermore, the wave OA is generated at O, 
whereas OB is generated at the corner J5, a fact which makes the model inapplicable 
in detail to astrophysical problems. In spite of this fault, the model proves to be most 
useful because of its simplicity, which arises from the fact that the plasma velocity and 
magnetic field are both uniform in each of the three regions bounded by the x- and 
y-axes, OA and OB. The conservation relations across OA and OB thus enable one 
to relate the values in the three regions analytically. 

The elegance of the model has made it easy for Cowley (1974a, b) to generalize it 
in two ways. Firstly, he includes magnetic field and plasma velocity components 
normal to the plane of Figure 2b and finds that it is possible to choose the inflow and 
outflow values of the normal components arbitrarily and independently. Secondly, 
he is able to construct solutions in which the two inflowing magnetic fields differ in 
magnitude; for a given set of inflow parameters the solution is unique (Priest and 
Cowley, 1975). The generalization to include compressibility has not, however, been 
performed in a self consistent way; the most that has been done so far is a partially 
consistent treatment due to Yeh and Dryer (1973). 

It may be argued that the wave OB represents a lumping together for mathemati­
cal convenience of the magnetohydrodynamic interaction which exists to the right of 
OA in Petschek's mechanism. But, in view of the fact that Sonnerup's model appears 
to yield no upper limit on the reconnection rate, by contrast with Petscheks model, 
such a representation is unlikely to be exact. It is therefore of importance to analyse 
Petschek's mechanism in more detail. 

2.3. YEH AND AXFORD 

Yeh and Axford (1970) adopted a different philosophy to that of Petschek for 
seeking the external region flow. They argue that, on some scale length intermediate 
between the size of the diffusion region and the distance between the magnetic field 
sources, there is no natural scale length and the magnetohydrodynamic variables are 
of self-similar form. They express the plasma velocity v and magnetic induction B in 
terms of a stream function iff and vector potential A defined by 

The equations to be solved for steady, two-dimensional, incompressible flow are 
p ( v . V)v = -V(p + B2/2n) + (B • V)B / j i , ( l a ) 

( l b ) 

( l c ) 

E + V A B = 0 

V B = V v = 0, 
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where p and E are constants. The form for the solution which Yeh and Axford 
assume is 

<A = rg(0), A = rf(0); (2) 
in other words the components of v and B depend on 0 alone. The resulting ordinary 
differential equations for g(0) and f(d) are solved subject to the boundary conditions 

iA = — = 0 on 0 = O , T T / 2 , (3) 

where, as indicated in Figures 2a and 3, we take for convenience the jc-axis as vertical 
and measure 0 from it. The conditions (3) arise from the symmetry assumptions that 
a streamline is traced by the x- and y-axes while the magnetic field lines intersect it 
normally. 

0 
Fig. 3. Different domains for the solution. The discontinuity OA (finite Alfven wave) is situated at 
$ = 0(R), where R = log e (r/l) + ir/(8 Mt)\ it separates the first quadrant into regions I and II. The outer 
solution is valid from 0 = TT/2 down to small values of 6, whereas the inner solution applies for 6/ & 

between zero and some large value. 
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The resulting form for the streamlines and field lines is shown in Figure 2c. They 
are curved, except in the special case of a uniform total pressure (gas plus magnetic), 
when the model reduces to that of Sonnerup. As in Sonnerup's model, there are two 
straight discontinuities and again the wave OB is subject to the criticism of being 
externally generated. More unluckily, however, the model does not work at all, 
because a detailed investigation of the nature of OB (Vasyliunas, 1975) shows it to 
be unphysical; it is not possible to construct a solution which joins the flow on both 
sides except in the special case of Sonnerup's solution. The concept of looking for 
similarity solutions such as (2) is, however, important. 

For reasons given in the previous section, Petschek's mechanism is the only fast 
reconnection model directly relevant to an astrophysical application. But a lingering 
doubt about it remains, because of both the ad-hoc way in which it was constructed 
and the semi-quantitative nature of Petschek's analysis. For these reasons, Soward 
and Priest (1976) have looked for two-dimensional solutions of the steady, incom­
pressible magnetohydrodynamic equations (1) which are asymptotic in form and 
therefore valid at large distances from the diffusion region in the same spirit as Yeh 
and Axford's analysis. (The solutions, it transpires, have the added bonus of 
remaining valid right up to the diffusion region provided that the inflow Alfven Mach 
number Mt = Vi(fjLp)1/2/Bi is much less than unity.) We have asked the question "Just 
what is the distant external region flow for fast reconnection in practice with no 
externally generated discontinuities OB present?" Is it qualitatively like Petschek's 
picture or is there, as suggested by Coppi and Friedland (1971), no need for any 
discontinuities at all? 

There are two curves OA, OB in each quadrant passing through the origin O 
(Figure 2d) along which the normal components of plasma and Alfven velocity are 
the same in magnitude. It does indeed prove possible to construct solutions which are 
continuous across OB, but across OA the tangential components are forced to suffer 
discontinuities. 

We first of all look for similarity solutions more general than (2), namely of the 
form 

where n > 0, so that the inertia forces are negligible as r -> oo. But due to the singular 
behaviour of iff and A at OB we find similar difficulties at OB to those unearthed by 
Vasyliunas in Yeh and Axford's case. The difficulties, however, become less severe in 
the limit as n approaches zero. This leads us to search instead for solutions close to (2) 
in form but containing a weak (logarithmic) dependence on r. Specifically, we put 

3. An Asymptotic Similarity Solution for Fast Reconnection 

* = rl-ng{6), A = r 1 + 7 W , 

+ = rg(R, 6), A = rf(R, 6), (4) 

where 
R=loge(r/L) + R{ o (5) 
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and 

G = R-1/2Go(Z) + R-3/2(Gu(£) loge R + d(£)) + 

(8) 

Again, having substituted for i/r and A in (1) and equated the coefficients of powers of 
R, we find a series of ordinary differential equations in £ for the unknown functions 
F<„ Fn, Fi, G0, Gn, Gi They are solved for 0<£<oo, subject to the boundary 
conditions 

G = dF/di; = 0 at £ = 0. (9) 

and J R 0 is a constant, chosen for convenience (to make B = Bt when r = l) as 
7r/(8M)-l0gcM, 

Series solutions for / and g of the following form are then assumed: 

f = R1/2fo(e) + R-l/2(fn(e)\ogeR^f1(6))^ ..., 
g = R-1/2go(0) + R-3/2(gn(0)logeR + gl(0))+ .... 

The largest powers of JR are determined to be + \ and - \ in order to make both the 
product fg of order unity (see lb) and the Lorentz force to dominate the inertial term 
in (la). Having substituted into (1) we derive ordinary differential equations for the 
unknown functions of 0,/o,/n,/i, go, giu gu • • • > by equating the coefficients of 
powers of R in (1) to zero. The equations are then solved for 0 < 0 < TT/2 subject to 
the conditions 

g = df/d0 = O at 0 = T T / 2 (7) 

which result from (3). But the resulting solutions are found not to obey the remaining 
boundary conditions, namely 

g = df/dO = 0 at 0 = 0. 

The form (4) and (5) is therefore not valid right down to 0 = 0; it represents only an 
'outer' solution, as indicated diagrammatically in Figure 3. 

The 'inner' solution, which holds for small values of 0, is constructed by changing 
the variable from 0 to 

£=O/0(R), 
where 

0(R) =&oR-l + (0u log, R + &X)R~2 + ... 

is, at this stage, just a typical small value of 0. We write as the inner solution 

i/, = rG(R,£), A = rF(R,£), 

where 

F=R-1/2Fo(£) + R-3/2(Fu(t)logeR + F1(Z))+ ... 
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Finally, certain free parameters in the inner and outer asymptotic expansions (6) and 
(8) are determined after 'matching' the expansions by means of the conditions 

lim g = lim G 

and (10) 

lim / = lim / 

to all orders. 
The details of the above procedure for determining the inner and outer expansions 

are in practice far from simple and are given by Soward and Priest (1976). To lowest 
order we find Equation (1) for the outer region becomes 

$k+f = 0 

T°d6 g o d 0 ' 
with solution, subject to the boundary conditions (7), 

/ o = - a s i n 0 , go = a - 1 cos 0, (11) 
where a is a constant. 

In the inner region, on the other hand, (1) reduces to 

( G ^ ) ^ # = 0 , (12) 
d£ 

d£ d£ 
which are to be solved for £ > 0 subject to the boundary conditions 

G o = dF o/d£ = 0 at £ = 0, 

resulting from (9). Near £ = 0, the solution of (12) is 
G0 = const x £ 

but it cannot hold for all values of f since it is not possible to match it to the solution 
(11) in the sense of (10). It can be seen that the most general continuous solution of 
(12) is a linear function of £ with changes in gradient at the places where GQ = FQ and 
G 0 = - F 0 , which correspond to the Alfven curves OA and OB, respectively. 
Without loss of generality, we assume the curve £ = 1 to be situated where G0 = Fa, so 
that, as indicated in Figure 3, OA is given by 0 = 0(R). Furthermore, we suppose 
that F0 and GQ do suffer changes in gradient at £ = 1 but not at the curve where 
G0 = -F0, since a discontinuity at OA is generated from O and so acceptable but 
one at OB is generated from some external point B and so is not acceptable on 
physical grounds. The resulting lowest order inner region solution of (12) and (13), 

https://doi.org/10.1017/S0074180900008305 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900008305


O N F A S T M A G N E T I C F I E L D R E C O N N E C T I O N 363 

which is capable of being matched to (11), is then 
F 0 = V6>0, G0=VGU in I I (0<£<1) , 
Fo=y/0o(2-€), G0=J&0 in I ( f > l ) . 

Finally, the matching condition (10) implies that 

The next order terms in the asymptotic expansions (6) and (8) are found in a 
straightforward manner and the matching condition leads to a value for 0O of 7r/8, SO 
that to lowest order the discontinuity OA is located at 

O = 0 = <7r/(8R). 

At this order, however, a weak singularity in the behaviour of Fx(f) and Gi(£) near 
| = 1 appears. In order to find a continuous transition through OA, it proves 
necessary to determine the inner and outer expansions to the next highest order (to 
terms of order R~5/2, for instance, in F and G) and to take account of finite 
conductivity effects near OA. The reader is referred to Soward and Priest (1976) for 
the details. It suffices here to state that having written B' = BB^lM^1/2, v' = 
VVi we find that the lowest order contributions to each of the components of 
plasma velocity and magnetic induction are 

B ; = - ( 8 K / 7 R ) 1 / 2 , B'y = (7rJ? /2 ) - 1 / 2 (7R / 2 -^ ) , J . ^ ^ 
v'x= -W2)l/2R~V2W-e), v' = -(8R/irr1/2, 

and 
B'x= - ( i r l ? / 2 R 1 / 2 l o g e [ ( l + £ ) / ( l - # ] , B ; = - (8 U / i r ) " 1 ' 2 , ) 

v'x = (8 R/v)1/2, t / y =-( i r /32) 1 / 2 inll 

xR- 3 / 2 {log e [(l + £) / ( l -£)]-£}. 
The dominant components are thus Bx, vy in I and vx in II. The form for the resulting 
field lines and streamlines is shown in Figure 2d, where the curve OB, through which 
there is a continuous transition, is shown dotted. The position of OB has been 
exaggerated; both OB and OA are in fact situated close to Ox in the inner region. 
Also it should be noted that the curvature of the magnetic field lines in II allays the 
fears of Green and Sweet (1966) and Priest (1972) that Petschek's mechanism would 
not work. 

Now, from (14), the inflow speed on the y-axis a distance L E from the origin is 

V^V&RM/TTY112 (15) 

where, according to (5), the value of R at r = L E is 

RE = TT/(8 M)+log € [JU/(LM)]. (16) 
Further, the inflow and outflow speeds vt and vQ, indicated on Figure 1, are related to 
ve by 

viBi = v0B0 = veBe (17) 
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due to the constancy of the electric field. Equations (i), (ii), (iii), (15), (16), (17) may 
therefore be combined to yield the following relation between the Alfven Mach 
numbers Mt = vi(iip)1/2/Bi and Me = ve(/xpr2/Be on the y-axes at distances / and 
L6, respectively, from the neutral point: 

77 7T 
8Me 8 Mt 

+ 5 l O g , (RLMMe), (18) 

where R^ = LevAe/ r\ is the magnetic Reynolds number based on the external 
conditions and vAe = Be(p,p)~1/2 is the Alfven speed. Equation (18) is strictly valid 
only where Aij« 1, since, otherwise, the external region solution does not hold right 
down to the diffusion region. Nevertheless, we have sketched the solution in Figure 4 

Fig. 4. The external Alfven Mach number Me is plotted against the inflow Alfven Mach number M, for 
various values of the magnetic Reynolds number JR^ = vAeLJi\. The maximum values of M e, namely 

Me m a x , are located at the intersection of the curves with the broken line. 

for values of Mt right up to unity. Me, plotted as a function of Mt alone, possesses a 
maximum value Me m a x , which occurs at Mt = ?r/4, and which is sketched as a function 
of the magnetic Reynolds number in Figure 5. Memax decreases from 0.2, when 
Rme = 10 to 0.02 when Rme = 106 and, as can be seen from the figure, is somewhat 
less than the value derived from Petschek's original analysis. 
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2.0 4.0 6.0 8.0 10.0 

L °A10 R m e 

Fig. 5. Memax from our analysis as a function of R^. For comparison the corresponding value from 
Petschek's simpler analysis is also shown. 

In conclusion, Petschek's mechanism has been shown to be the only workable 
model for fast reconnection in practice. It now has a sound mathematical basis. 
Reconnection can occur at any rate up to typically a tenth or a hundredth of the 
Alfven speed, depending on the magnetic Reynolds number. By contrast with 
Petschek's original analysis, the shocks, magnetic field lines and streamlines are all in 
general curved in the manner indicated by Figure 2d. 
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DISCUSSION 

Gilman: How is your magnetic Reynolds number defined? 
Priest: R^ = vAeLefi0a (see text), but one could just as easily express the results in terms of a magnetic 

Reynolds number based on ve rather than vAe. 
Smith: It seems to me that your results will be applicable to crude models of a solar flare only if the 

conductivity a is taken as a turbulent conductivity so that Rm is reduced from 10 6 , a number typical of the 
nonturbulent corona. 

Priest: The reconnection model works whether you take a Coulomb or a turbulent value for a. For a 
flare, there is probably an initial stage with the Coulomb value, which is then triggered to a main phase with 
the turbulent value. In each case (and for any astrophysical application), one needs to determine whether 
some additional consideration gives rise to an upper limit on Me which is less than Me m a x . For instance, 
one may require that the width / of the diffusion region be greater than a collision mean-free path or an ion 
gyroradius. Whether this is a stringent limitation or not in practice depends crucially on how high in the 
solar atmosphere the reconnection is taking place. 
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