## $C$-NODAL SURFACES OF ORDER THREE

## TIBOR BISZTRICZKY

The problem of describing a surface of order three can be said to originate in the mid-nineteenth century when $A$. Cayley discovered that a non-ruled cubic (algebraic surface of order three) may contain up to twenty-seven lines. Besides a classification of cubics, not much progress was made on the problem until A. Marchaud introduced his theory of synthetic surfaces of order three in [9]. While his theory resulted in a partial classification of a now larger class of surfaces, it was too general to permit a global description. In [1], we added a differentiability condition to Marchaud's definition. This resulted in a partial classification and description of surfaces of order three with exactly one singular point in [2]-[5]. In the present paper, we examine $C$-nodal surfaces and thus complete this survey.

A surface $F$ of order three is $C$-nodal if it is non-ruled, contains exactly one non-differentiable point $v$ and the set of tangents of $F$ at $v$ is a nondegenerate cone of order two; that is, $v$ is the vertex of the cone and any plane, not passing through $v$, intersects the cone in an oval.

The classification (2.4) is based upon the configuration of lines in a surface. In each of the subsequent sections, we describe a class of surfaces with a fixed number $l(v)$ of lines of $F$ through $v$. In particular, we determine the distribution of the three types of differentiable points not lying on any line of the surface. In $3.3,4.6,5.10$ and 6.13 , we present a summary of the results in that section and an algebraic example.

1. Surfaces of order three. Let $P^{3}$ be the real projective three-space. We denote the planes, lines and points of $P^{3}$ by the letters $\alpha, \beta, \ldots$, $L, M, \ldots$ and $p, q, \ldots$ respectively. For a collection of flats $\alpha, L, p, \ldots$, $\langle\alpha, L, p, \ldots\rangle$ denote the flat of $P^{3}$ spanned by them. For a set $\mathscr{M}$ in $P^{3}$, $\langle\mathscr{M}\rangle$ denotes the flat of $P^{3}$ spanned by the points of $\mathscr{M}$.
1.1 A (plane) curve $\Gamma$ is the union of a finite collection of sets $C_{\lambda}(M)$ where the $C_{\lambda}$ 's are continuous maps from a line $M=\left\{m, m^{\prime}, \ldots\right\}$ into a plane $\alpha$.

Let $\bar{C}=C_{\lambda}$. The line $T_{m}=\lim \left\langle\bar{C}(m), \bar{C}\left(m^{\prime}\right)\right\rangle$, as $m^{\prime} \neq m$ tends to $m$, is the tangent of $\bar{C}$ at $m$. Let $\bar{C}$ be differentiable; that is, $T_{m}$ exists and $\left|T_{m} \cap \bar{C}(M)\right|<\infty$ for every $m \in M$. We introduce (cf. [1], 1.3.3) the

[^0]characteristic of $\bar{C}$ at $m$ and the multiplicity with which a line $L \subset \alpha$ meets $\bar{C}$ at $m$. Then $\bar{C}$ is of order $n$ if $n$ is the supremum of the number of points of $M$, counting multiplicities, mapped into collinear points by $\bar{C}$.

If $\bar{C}$ is of order two [three], we denote $\bar{C}(M)$ by $S^{1}\left[F_{*}{ }^{1}\right]$. We note that $S^{1}$ is a Jordan curve. For an exposition on $F_{*^{1}}$, we refer to [1], 1.4 and [8], pp. 1-7. If $\bar{C}(M)$ is a line [point], we consider $\bar{C}$ to have order one [two].
$\Gamma$ is of order $k$ if $k$ is the supremum of the number of points of $\Gamma$, counting order on each $C_{\lambda}$, lying on any line not in $\Gamma$. If $k=1$, then $\Gamma$ is a (straight) line. If $k=2$, then $\Gamma$ is an $S^{1}$ or an isolated point or a pair of distinct lines. If $k=3$, then $\Gamma$ is (i) an $F_{1}{ }^{*}$ or (ii) the disjoint union of an $F_{1}{ }^{*}$ and an $S^{\prime}$ or a point or (iii) the union of a line and a $\Gamma^{\prime}$ of order two. We denote a $\Gamma$ of order three satisfying (i) or (ii) by $F^{1}$.
1.2 A surface of order three, $F$, in $P^{3}$ is a compact, connected set such that every intersection of $F$ with a plane is a curve of order $\leqq 3$ and some plane section is an $F^{1}$.
Let $F$ be a surface of order three, $p \in F$. Let $\alpha$ be a plane through $p$. Then $p$ is regular in $F[\alpha \cap F]$ if there is a line $N$ in $P^{3}[\alpha]$ such that $p \in N$ and $|N \cap F|=3$. Otherwise, $p$ is irregular in $F[\alpha \cap F]$. An $F$ has at most one irregular point and such a point is a cusp, double point or isolated point of some $\alpha \cap F([1], 1.4)$.

A line $T$ is a tangent of $F$ at $p$ if $T$ is the tangent of some $C_{\lambda}$ at $m$; $p=C_{\lambda}(m) \subset C_{\lambda}(M) \subset F$. Let $\tau(p)$ be the set of tangents of $F$ at $p$. Then $p$ is differentiable if $p$ is regular (in $F$ ) and $\tau(p)$ is a plane $\pi(p)$; otherwise, $p$ is singular.

We assume that every regular $p$ is differentiable and $\pi(p)$ depends continuously on $p$.
We denote by $l(p)[l(p, \alpha)]$, the number of lines of $F[\alpha \cap F]$ passing through $p$ and by $l(\alpha)$, the number of lines of $\alpha \cap F$. Clearly $l(\alpha) \leqq 3$. If $\mathscr{M} \subseteq F$ is not a point, we put

$$
l(\mathscr{M})=\left|\left\{L \subset P^{3} \mid L \subset \mathscr{M}\right\}\right| .
$$

Let $p$ be differentiable. Then $p \in T \subset \pi(p)$ implies that either $T \subset F$ or $|T \cap F| \leqq 2$. Thus $l(p)=l(p, \pi(p))$ and $p$ is irregular in $\pi(p) \cap F$. If $l(p)=0$, then $p$ is an isolated point, cusp or double point of $\pi(p) \cap F$ and we call $p$ elliptic, parabolic or hyperbolic respectively. Let $E, I$ and $H$ denote the set of elliptic, parabolic and hyperbolic points of $F$ respectively.

Let $v$ be irregular (singular) in $F$. If $F$ is non-ruled; that is, $l(F)<\infty$, then $v \in T \subset \tau(v)$ if and only if either $v \in T \subset F$ or $T \cap F=\{v\}$. Moreover, $\tau(v)$ is a plane or a union of two distinct planes or a cone of order two; cf. [10].
1.3 Let $\mathscr{A}$ be a closed, connected subset of an $S^{1}$ or an $F_{*^{1}}$. If the end points of $\mathscr{A}$ are distinct [equal], then $\mathscr{A}$ is a subarc [subcurve].

Let $p$ be differentiable. Let $\mathscr{A}(p)$ be the set of all subarcs $\mathscr{A}$ of order two such that $p \in \mathscr{A} \not \subset \pi(p) ;\left\{\mathscr{A}_{1}, \mathscr{A}_{2}\right\} \subset \mathscr{A}(p)$. Then $\mathscr{A}_{1}$ and $\mathscr{A}_{2}$ are $p$-compatible if there is a $\beta \subset P^{3} \backslash\{p\}$ and an open neighbourhood $U(p)$ of $p$ in $P^{3}$ such that $U(p) \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)$ is contained in a closed halfspace of $P^{3}$ bounded by $\pi(p)$ and $\beta$; otherwise, $\mathscr{A}_{1}$ and $\mathscr{A}_{2}$ are $p$-incompatible.
A pair of subarcs $\mathscr{A}$ and $\mathscr{A}^{\prime}$ are compatible [incompatible] if there is a $p \in \mathscr{A} \cap \mathscr{A}^{\prime}$ such that $\left\{\mathscr{A}, \mathscr{A}^{\prime}\right\} \subset \mathscr{A}(p)$ and $\mathscr{A}, \mathscr{A}^{\prime}$ are $p$-compatible [ $p$-incompatible] ([1], 2.5.3).

Let $\mathscr{A}$ be a subarc or a subcurve, either of order two; $\alpha=\langle\mathscr{A}\rangle$. We define

$$
e(\mathscr{A})=\{p \in \alpha \backslash \mathscr{A} \mid p \text { lies on a tangent of } \mathscr{A} \text { at } r \text { for some } r \in \mathscr{A}\}
$$

and $i(\mathscr{A})=\alpha \overline{e(\mathscr{A})}$. We note that $\alpha=i(\mathscr{A}) \cup \mathscr{A} \cup e(\mathscr{A})$ and $\mathscr{A}=S^{1}$ implies that $i\left(S^{1}\right)$ is the open disk in $\left\langle S^{1}\right\rangle$ bounded by $S^{1}$.
1.4 Let $L \subset F$ and $r \in F \backslash L$ such that $\langle L, r\rangle \cap F$ consists of $L$ and an $S^{1}$. We denote this $S^{1}$ by $S^{1}(L, r)$.

Let $p, q, r$ and $s$ be collinear points; $|\{p, q, r, s\}|=4$. We say that $p, q$ separates $r, s$ if neither segment of $\langle p, q\rangle$ bounded by $p$ and $q$ contains both $r$ and $s$; otherwise, $p, q$ does not separate $r, s$. In an obvious manner, we extend these definitions to points on a subcurve; concurrent, coplanar lines and planes through a given line.

Let $\{p, q, r\} \subset \mathscr{A},|\{p, q, r\}|=3$ and $\mathscr{A}$ a subcurve. We denote by $\mathscr{A}(p, q, r)$ the subarc of $\mathscr{A}$ bounded by $p$ and $q$ and containing $r$.

Let $\mathscr{S}_{n}=\{1,2, \ldots, n\}, n$ a positive integer.
Finally we note that when the meaning of a topological statement is clear, we do not indicate the topology (usually relative) involved.
1.5 By way of preparation for the classification and the descriptions, we list the following results.

1. Let $F$ be non-ruled. Then $l(p) \leqq 6$ for any point $p \in F([\mathbf{1 1}])$.
2. If $p_{1}$ and $p_{2}$ are irregular in $F$, then $\left\langle p_{1}, p_{2}\right\rangle \subset F([\mathbf{1}], 2.2 .6)$.
3. Let $\alpha \cap F$ be of order two. Then $\alpha \cap F=L \cup L^{\prime}, L \neq L^{\prime}$ and either $L^{\prime} \subset \pi(p)$ for every regular $p \in L$ or $L \subset \pi(q)$ for every regular $q \in L^{\prime}([\mathbf{1}], 2.2 .3)$.
4. Let $\mathscr{A} \subset \alpha$ be a limit of subcurves or subarcs $\mathscr{A}_{\lambda}$ of order two. Then $|L \cap \mathscr{A}| \neq 3$ for each $L \subset \alpha([\mathbf{1}], 2.4 .4)$.
5 . Let $p_{\lambda}\left[\alpha_{\lambda}\right]$ be a sequence of points [planes] converging to $p[\alpha]$; $p_{\lambda} \in \alpha_{\lambda}$ for each $\lambda$.
a) If $\alpha \cap F$ is not of order two or $\alpha \cap F$ does not contain an isolated point, then $\lim \left(\alpha_{\lambda} \cap F\right)=\alpha \cap F([\mathbf{1}], 2.4 .3)$.
b) If $p_{\lambda}$ is a cusp [isolated point] of $\alpha_{\lambda} \cap F$ for each $\lambda$, then $l(p)=0$ implies that $p$ is cusp [isolated point or cusp] of $\alpha \cap F$ and $\alpha \cap F=$ $L \cup S^{1}$ implies that $L \cap S^{1}=\{p\}$ ([1], 2.4.6 and 2.4.9).
5. If $p$ is regular in $F$ and isolated in $\alpha \cap F$, then $p$ is elliptic and $\alpha=\pi(p)([1], 2.3 .7)$.
6. Let $\mathscr{A}^{\prime} \subset F$ such that $\mathscr{A}^{\prime} \in \mathscr{A}(r)$ for each $r \in \mathscr{A}^{\prime}$. Let $L$ be a line such that $L \not \subset\left\langle\mathscr{A}^{\prime}\right\rangle$ and for each $r \in \mathscr{A}^{\prime}$, there is an $\mathscr{A}_{r} \in \mathscr{A}(r)$ with $L \subset\left\langle\mathscr{A}_{r}\right\rangle$. If $\mathscr{A}_{r}$ depends continuously on $r$, then $\mathscr{A}^{\prime}$ and $\mathscr{A}_{r}$ are either compatible for all $r \in \mathscr{A}^{\prime}$ or incompatible for all $r \in \mathscr{A}^{\prime}([\mathbf{1}], 2.5 .8)$.
7. Let $r$ be regular and $\left\{\mathscr{A}, \mathscr{A}^{\prime}\right\} \subset \mathscr{A}(r)$ such that

$$
r \in \operatorname{int}(\mathscr{A}) \cap \operatorname{int}\left(\mathscr{A}^{\prime}\right) \quad \text { and } \quad r \notin \overline{e(\mathscr{A}) \cap e\left(\mathscr{A}^{\prime}\right)} .
$$

Then $\mathscr{A}$ and $\mathscr{A}^{\prime}$ are incompatible and if $l(r)=0, r$ is hyperbolic ([5], 2.5).
9. Let $p$ be regular in $F, l(p)=0$. Then (i) $p \in E$ if and only if $\mathscr{A}$ and $\mathscr{A}^{\prime}$ are compatible for $\left\{\mathscr{A}^{\prime}, \mathscr{A}^{\prime}\right\} \subset \mathscr{A}(p)$ and (ii) $p \in H$ if and only if there exist incompatible $\mathscr{A}$ and $\mathscr{A}^{\prime}$ in $\mathscr{A}(p)$ such that $p \in \operatorname{int}(\mathscr{A}) \cap$ int $\left(\mathscr{A}^{\prime}\right)$ ([1], 2.5.5 and 2.5.7).
10. Every surface of order three contains a line ([7]).
11. Let $G$ be an open region in $F$ such that $\alpha \cap \bar{G}=\emptyset$ for some $\alpha$, $\mathrm{bd}(F \backslash G)=\mathrm{bd}(G),\langle\mathrm{bd}(G)\rangle$ is a plane and each $r \in G$ is regular. Then $G \cap E \neq \emptyset([6], 3.7)$.
12. Let $F$ be non-ruled. Then $H \neq \emptyset, H$ and $E$ are open and

$$
I=\{p \in \bar{H} \cap \bar{E} \mid l(p)=0 \text { and } p \text { is regular }\}
$$

is nowhere dense in $F([\mathbf{6}], 3.8$ and 3.9).
In view of 12: if we wish to describe an open region $X \subset F$ such that $l(r)=0$ for each $r \in X$, we need only determine if $X \cap E \neq \emptyset$ or $X \subset H$. If $X \cap E \neq \emptyset$ and $X \not \subset E$, then $X \cap H \neq \emptyset$ usually follows by 1.5 .5 b) applied to bd ( $X$ ).
1.6 Let $F$ be a non-ruled surface of order three containing exactly one irregular point $v$. In 1.2, we noted the possibilities for $\tau(v)$. We have already examined the case where $\tau(v)$ is a plane ([3]) and the case where $\tau(v)$ is a pair of planes ([4] and [5]). In this paper, we assume that $\tau(v)$ is a nondegenerate cone of order two.

We note that a cone of order two may degenerate into a line. If $\tau(v)=N$ and $N \cap F=\{v\}$, we call $v$ a peak and $F$ a surface with a peak; cf. [2]. We claim that these are the only non-ruled surfaces of order three containing exactly one irregular point $v$; that is, if $\tau(v)$ is a line $N$, then $N \cap F=\{v\}$.

Suppose $N \subset F$ and let $N \subset \beta$. From 1.2, $v \in L \neq N$ implies that $|L \cap F|=2$. Hence either $\beta \cap F=N \cup N^{\prime}$ where $v \notin N^{\prime}$ or $\beta \cap F$ consists of $N$ and an $S^{1}$ such that $N \cap S^{1}=\{v\}$. Let $p \in N \backslash\{v\}$. Since $\pi(p)$ exists, $N \subset \pi(p)$ and $p$ is irregular in $\pi(p) \cap F$, the preceding implies $\pi(p) \cap F=N \cup N_{p}$ where $N \cap N_{p}=\{p\}$. Then $N_{p} \neq N_{q}$ for $p \neq q$ in $N \backslash\{v\}$ yields that $F$ contains infinitely many lines. Since $F$ is non-ruled, this is a contradiction.

## 2. $C$-nodal surfaces.

2.0 Let $F$ be a surface of order three. A point $v \in F$ is a $C$-node if $v$ is irregular in $F$ and $\tau(v)$ is a nondegenerate cone of order two with vertex ข. $F$ is $C$-nodal if $F$ is non-ruled and has a $C$-node as its only irregular point.

Henceforth $F$ is $C$-nodal with the $C$-node $v$. We denote $\tau(v)$ by $K$. From 1.5.1, $0 \leqq l(v) \leqq 6$.

From the definition of $K, K$ is the common boundary of two disjoint open regions of $F$. It is clear that exactly one of these regions contains a line not meeting $K$. We denote this region by ext $(K)$ and put int $(K)$ $=P^{3} \backslash$ ext $(K)$. Hence

$$
P^{3}=\operatorname{int}(K) \cup K \cup \operatorname{ext}(K)
$$

Since $K$ is of order two, any plane through $v$ meets $K$ in at most two lines. We note that $K$ is not necessarily differentiable (n.n.d.) and hence $v \notin \alpha$ implies that $\alpha \cap K$ is a (n.n.d.) curve of order two; that is, any line $L \subset \alpha$ meets $\alpha \cap K$ in at most two points but $|L \cap K|=1$ does not imply that $L$ is a tangent of $K$.

### 2.1. Lemma. Let $\beta$ be a plane through v.

1. If $\beta \cap K$ consists of a pair of lines $N_{1}$ and $N_{2}$, then
i) $\left(N_{1} \cup N_{2}\right) \cap F=\{v\}$ implies that $v$ is the double point of $\beta \cap F$,
ii) $N_{1} \cup N_{2} \subset F$ implies that $\beta \cap F$ consists of three non-concurrent lines and
iii) $N_{i} \subset F$ and $N_{j} \cap F=\{v\}$ implies that $\beta \cap F$ consists of $N_{i}$ and $S^{1}$ such that $\left|N_{i} \cap S^{1}\right|=2$ and $N_{j} \cap S^{1}=\{v\} ;\{i, j\} \in \mathscr{S}_{2}$.
2. If $\beta \cap K$ consists of a line $N$, then
i) $N \cap F=\{v\}$ implies that $v$ is the cusp of $\beta \cap F$ and
ii) $N \subset$ Fimplies that $\beta \cap F=N \cup S^{1}$ where $N \cap S^{1}=\{v\}$.
3. If $\beta \cap K=\{v\}$, then $v$ is the isolated point of $\beta \cap F$.

Proof. Since $v \in L \not \subset K$ implies that $|L \cap F|=2$, the assertions 1,2 i) and 3 are immediate.

If $\beta \cap K=N \subset F$, then either $\beta \cap F=N \cup S^{1}, N \cap S^{1}=\{v\}$, or $\beta \cap F=N \cup N^{\prime}, N \notin N^{\prime}$. In the latter case, $\beta=\pi(p)$ for $p \in N \backslash\{v\}$ by 1.5.2 and 1.5.3. Since $l(v) \leqq 6$, there is an $N^{\prime} \subset K$ such that $N^{\prime} \cap F=$ $\{v\}$. By 1 iii),

$$
\left\langle N, N^{\prime}\right\rangle \cap F=N \cup S^{1}
$$

and $N \cap S^{1}$ consists of $v$ and say $p^{\prime} \neq v$. Then $\pi\left(p^{\prime}\right)=\left\langle N, N^{\prime}\right\rangle \neq \beta$, a contradiction.
2.2 If $v$ is the double point of $\beta \cap F$, then $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$ where $\mathscr{L} \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)=\{v\}, \mathscr{A}_{1} \cap \mathscr{A}_{2}=\{v, p\}, p$ is the inflection point of $\beta \cap F,\left\{\mathscr{A}_{1}, \mathscr{A}_{2}\right\} \subset \mathscr{A}(p)$ and $\mathscr{L}$ is a subcurve of order two. We call $\mathscr{L}$
the loop of $\beta \cap F$. We note that any tangent of $\mathscr{L} \backslash\{v\}$ meets $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ and no tangent of $\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right) \backslash\{v\}$ meets $\mathscr{L}$.

If $v$ is the cusp of $\beta \cap F$, then $\beta \cap F=\mathscr{A} \cup \mathscr{A}^{\prime}, \mathscr{A} \cap \mathscr{A}^{\prime}=\{v, p\}$, $p$ is the inflection point of $\beta \cap F$ and $\left\{\mathscr{A}, \mathscr{A}^{\prime}\right\} \subset \mathscr{A}(p)$.
2.3 Lemma. 1. If $\left(L \cup L^{\prime}\right) \cap K=\emptyset$, then $L \cap L^{\prime} \neq \emptyset$.
2. $l(v)=0,2,4$ or 6 .

Proof. 1. Since $\langle L, v\rangle \cap F=L \cup\{v\}$ and $v \notin L^{\prime}$, we have $L \cap L^{\prime} \neq \emptyset$.
2. i) Let $K \cap F=M$ and $M \subset \beta$. From 2.1, $\beta \cap F=M \cup S^{1}$ such that $v \in S^{1}$. If $\beta \cap K=M$, then $M \cap S^{1}=\{v\}$ and we put $\beta=\beta_{v}$ and $S^{1}=S_{v}{ }^{1}$. If $\beta \cap K \neq M$, then $M \cap S^{1}=\{v, p\}, v \neq p$ and we put $\beta=\beta_{p}$ and $S^{1}=S_{p}{ }^{1}$.

By 1.5.4 and 1.5.5, $\lim \beta_{p}=\beta_{q}$ implies that
$\lim S_{p}{ }^{1}=S_{q}{ }^{1}, \lim i\left(S_{p}{ }^{1}\right)=i\left(S_{q}{ }^{1}\right) \quad$ and $\quad \lim e\left(S_{p}{ }^{1}\right)=e\left(S_{q}{ }^{1}\right)$.
Then $\lim \beta_{p}=\beta_{v}$ and $M \cap S_{v}{ }^{1}=\{v\}$ yield that
$\lim \left(M \cap i\left(S_{p}{ }^{1}\right)\right)=\emptyset$.
Let $q \in M \backslash\{v\}$. Then $M \cap S_{q}{ }^{1}=\{v, q\}$ and $v$ and $q$ are the end points of the disjoint open segments $M \cap i\left(S_{q}{ }^{1}\right)$ and $M \cap e\left(S_{q}{ }^{1}\right)$. By the preceding,
$M \cap i\left(S_{q}{ }^{1}\right) \subset M \cap i\left(S_{p}{ }^{1}\right)$ for each $p \in M \cap e\left(S_{q}{ }^{1}\right)$.
Hence as $p$ tends to $v$ in $M \cap e\left(S_{q}{ }^{1}\right)$,
$M \cap i\left(S_{q}{ }^{1}\right) \subset \lim \left(M \cap i\left(S_{p}{ }^{1}\right)\right)$.
This is a contradiction and thus $l(v) \neq 1$.
ii) Let $K \cap F=M_{1} \cup M_{2} \cup M_{3}, l(v)=3$. By 2.1, there is a line $L_{i j} \subset\left\langle M_{i}, M_{j}\right\rangle \cap F$ such that $v \notin L_{i j}, i \neq j$ in $\mathscr{S}_{3}$. Clearly $L_{12}, L_{13}$ and $L_{23}$ are mutually disjoint.

Let $p \in M_{3} \backslash\{v\}$. Then

$$
\alpha_{p}=\left\langle L_{12, p}\right\rangle \neq\left\langle M_{1}, M_{2}\right\rangle
$$

$\alpha_{p} \cap K$ is a (n.n.d.) curve of order two and

$$
\left(\alpha_{p} \cap K\right) \cap F=\left\{L_{12} \cap M_{1}, L_{12} \cap M_{2}, p\right\}
$$

As $L_{12} \cap\left(M_{3} \cup L_{13} \cup L_{23}\right)=\emptyset, l(p)=1$ for $p \in M_{3} \backslash\{v\}$ implies that $\alpha_{p} \cap F=L \cup S^{1}$ such that $K \cap S^{1}=\{p\}$. Put $S^{1}=S_{p}{ }^{1}$. Since $S_{p}{ }^{1}$ and $\alpha_{p} \cap K$ are both curves of order two, it is clear that either $S_{p}{ }^{1} \subset$ int (K) or $S_{p}{ }^{1} \subset \overline{\text { ext }(K)}$. As $S_{p}{ }^{1}$ depends continuously on $p \in M_{3} \backslash\{v\}$, either $S_{p}{ }^{1} \subset$ int (K) for all $p \in M_{3} \backslash\{v\}$ or $S_{p}{ }^{1} \subset \overline{\operatorname{ext}(K)}$ for all $p \in M_{3} \backslash\{v\}$. It is easy to check that this is impossible and thus $l(v) \neq 3$.
iii) Let $K \cap F=\cup M_{i}, i \in \mathscr{S}_{5}$ and $l(v)=5$. Then

$$
\left\langle M_{i}, M_{j}\right\rangle \cap F=M_{i} \cup M_{j} \cup L_{i j}
$$

where $v \notin L_{i j}, i \neq j$ in $\mathscr{S}_{5}$. We note that $L_{i j} \cap L_{k l} \neq \emptyset$ if and only if $\{i, j\} \cap\{k, l\}=\emptyset$ and for $k \notin\{i, j\}, M_{k} \cap L_{i j}=\emptyset$.
Since $L_{13} \cap\left\langle L_{12}, L_{34}\right\rangle \neq \emptyset, L_{13} \cap\left(L_{12} \cup L_{34}\right)=\emptyset$ implies that there is a third line $L^{*} \subset\left\langle L_{12}, L_{34}\right\rangle \cap F$. Clearly $L^{*}$ is not an $L_{i j}$ and $L^{*} \cap$ $L_{i 5}=\emptyset, i \in \mathscr{S}_{4}$. Finally $M_{5} \cap\left(L_{12} \cup L_{34}\right)=\emptyset$ yields that $L^{*} \cap M_{5}$ $\neq \emptyset, L^{*} \neq M_{5}$ and thus $\left\langle M_{5}, L^{*}\right\rangle \cap K=M_{5}$. This contradicts 2.1.2 ii) and hence $l(v) \neq 5$.
2.4 Theorem. Let $F$ be $C$-nodal with the $C$-node $v$. Then $F$ is one of the following types: (1) $l(v)=0$ and $1 \leqq l(F) \leqq 3$; (2) $l(v)=2$ and $4 \leqq l(F)$ $\leqq 5$; (3) $l(v)=4$ and $l(F)=11$ and (4) $l(v)=6$ and $l(F)=21$.
Proof. (1) If $l(v)=0$, then 2.3 .1 implies that the lines of $F$ are coplanar and hence $l(F) \leqq 3$. By 1.5.10, $l(F) \geqq 1$.
(2) If $l(v)=2$, then $l(F) \geqq 3$ from 2.1. Let

$$
K \cap F=M_{1} \cup M_{2} \quad \text { and } \quad v \in L_{12} \subset\left\langle M_{1}, M_{2}\right\rangle \cap F .
$$

From 2.1, any other line of $F$ is disjoint from $K$ and thus meets $L_{12}$. By 2.3.1, such lines are coplanar and thus $l(F) \leqq 5$. For the proof that $l(F)$ $=4$ or 5 , we refer to 4.2 .
(3) Let $K \cap F=\cup M_{i}, i \in \mathscr{S}_{4}$ and $l(v)=4$. Then there is a line $L_{i j} \subset\left\langle M_{i}, M_{j}\right\rangle \cap F$ such that $v \notin L_{i j}$ for $i \neq j$ in $\mathscr{S}_{4}$ and $L_{i j} \cap L_{k l} \neq \emptyset$ if and only if $\{i, j\} \cap\{k, l\}=\emptyset$. We note that these ten lines are the only lines of $F$ meeting $K$.

As in the proof of 2.3 iii), there is a line $L_{0} \subset\left\langle L_{12}, L_{34}\right\rangle \cap F$ such that $L_{0} \cap K=\emptyset$. Suppose $L_{1} \subset F$ such that $L_{1} \neq L_{0}$ and $L_{1} \cap K=\emptyset$. By 2.3.1, $\left\langle L_{0}, L_{1}\right\rangle$ is a plane and hence $K \cap\left(L_{0} \cup L_{1}\right)=\emptyset$ implies there is a line $L_{2} \subset\left\langle L_{0}, L_{1}\right\rangle \cap F$ such that $L_{2} \cap M_{i} \neq \emptyset, i \in \mathscr{S}_{4}$. Then either $l\left(\left\langle L_{2}, v\right\rangle\right) \geqq 4$ or $v \in L_{2}$ and $l(v) \geqq 5$, a contradiction.
(4) Let $K \cap F=\cup M_{i}, i \in \mathscr{S}_{6}$ and $l(v)=6$. Again

$$
\left\langle M_{i}, M_{j}\right\rangle \cap F=M_{i} \cup M_{j} \cup L_{i j}, \quad v \notin L_{i j}(i \neq j)
$$

and $L_{i j} \cap L_{k l} \neq \emptyset$ if and only if $\{i, j\} \cap\{k, l\}=\emptyset$. These twenty-one lines are the only lines of $F$ meeting $K$.

Let $L \subset F$ such that $L \cap K=\emptyset$. Then $L \cap\left\langle M_{i}, M_{j}\right\rangle \neq \emptyset$ and $L \cap\left(M_{i} \cup M_{j}\right)=\emptyset$ imply that $L \cap L_{i j} \neq \emptyset, i \neq j$ in $\mathscr{S}_{6}$. But $L \cap L_{12}$ $\neq \emptyset \neq L \cap L_{34}, L_{56} \subset\left\langle L_{12}, L_{34}\right\rangle \cap F$ and $l\left(\left\langle L_{12}, L_{34}\right\rangle\right)=3$ imply that $L$ is one of $L_{12}, L_{34}$ or $L_{56}$, a contradiction.
3. $F$ with $l(v)=0$.
3.0 Let $F$ be $C$-nodal with the $C$-node $v, l(v)=0$. We recall that

$$
P^{3}=\overline{\operatorname{int}(K)} \cup K \cup \overline{\operatorname{ext}(K)}
$$

and every line meets $\overline{\operatorname{ext}(K)}$. Let $F_{1}=\operatorname{int}(K) \cap F$ and $F_{2}=\operatorname{ext}(K)$ $\cap F$. Then $K \cap F=\{v\}$ implies that $F=F_{1} \cup F_{2} \cup\{v\}$.

Let $v \in N \subset \beta$ such that $N \backslash\{v\} \subset$ int $(K)$. Then $\beta \cap K$ is a pair of distinct lines $N_{1}$ and $N_{2}$ and from 2.1, $v$ is the double point of $\beta \cap F=$ $\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$. Since $N_{1}$ and $N_{2}$ are the tangents of $\beta \cap F$ at $v$, we obtain that either $\mathscr{L} \subset \overline{\text { int }(K)}$ and $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \operatorname{ext}(K)$ or $\mathscr{L} \subset \overline{\operatorname{ext}(K)}$ and $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\text { int }(K)}$. It is well known that every line of $\beta$ meets $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ and hence

$$
\mathscr{L}=\beta \cap \bar{F}_{1} \quad \text { and } \quad \mathscr{A}_{1} \cup \mathscr{A}_{2}=\beta \cap \bar{F}_{2} .
$$

3.1 Theorem. 1. Every point of $F_{1}$ is elliptic.
2. Every line of $F$ is contained in $F_{2}$.

Proof. Clearly 1 implies 2.
Let $r \in F_{1}$. Then $r \neq v, l(v)=0$ and 1.5.2 imply that $v \notin \pi(r)$ and $\pi(r) \cap K$ is a curve of order two. As $r \in F_{1} \subset$ int $(K)$ and $K \cap F=\{v\}$, we obtain that

$$
r \in i(\pi(r) \cap K),(\pi(r) \cap K) \cap F=\emptyset \quad \text { and } \quad l(r)=0 .
$$

It is immediate that $\pi(r) \cap F$ is disconnected and thus $r \in E$.
3.2 Since $F_{1} \subseteq E$, we need only examine $\bar{F}_{2}$ to describe $F$ completely. With slight modifications and $\bar{F}_{1}$ and $v$ identified, the examination of $\bar{F}_{2}$ is a reiteration of the study of 'surfaces of order three with a peak' in [2].
3.3 Summary. Let $F$ be $C$-nodal with the $C$-node $v, l(v)=0$. Then

$$
F=F_{1} \cup\{v\} \cup F_{2}
$$

where $\vec{F}_{i}=F_{i} \cup\{v\}$, every point of $F_{1}$ is elliptic and one of the following holds:

1. $l\left(F_{2}\right)=1$ and every point $p \in F_{2}$ with $l(p)=0$ is hyperbolic.
2. $l\left(F_{2}\right)=2$ or 3 and $F_{2}=F_{2}{ }^{\prime} \cup F_{2}{ }^{*}$ where
i) $F_{2}{ }^{\prime}$ and $F_{2}{ }^{*}$ are disjoint regions with $l(q)>0$ for $q \in \overline{F_{2}{ }^{\prime}} \cap F_{2}{ }^{*}$,
ii) $F_{2}{ }^{\prime}$ is open, v $\in \overline{F_{2}{ }^{\prime}}$ and every point of $F_{2}{ }^{\prime}$ is hyperbolic, and
iii) $F_{2}{ }^{*}$ is closed, contains elliptic, parabolic and hyperbolic points and $l\left(F_{2}{ }^{*}\right)=l\left(F_{2}\right)=l(F)$.

Let $P^{3}$ be suitably coordinatized. The surface in $P^{3}$ defined by

$$
x_{0}{ }^{3}-\left(x_{1}^{2}+x_{2}{ }^{2}-x_{0}^{2}\right) x_{3}=0
$$

satisfies 3.3 .1 with $v \equiv(0,0,0,1)$, line $L \equiv x_{0}=x_{3}=0$ and $K \equiv$ $x_{1}{ }^{2}+x_{2}{ }^{2}-x_{0}{ }^{2}=0$. The surface defined by

$$
x_{0}^{3}+x_{0} x_{1}^{2}-\left(x_{1}^{2}+x_{2}^{2}-x_{0}^{2}\right) x_{3}=0
$$

satisfies 3.3 .2 with $v \equiv(0,0,0,1)$, lines $L_{1} \equiv x_{0}=x_{3}=0, L_{2} \equiv x_{0}-x_{3}$ $=x_{2}+2^{1 / 2} x_{0}=0, L_{3} \equiv x_{0}-x_{3}=x_{2}-2^{1 / 2} x_{0}=0$ and $K \equiv x_{1}{ }^{2}+x_{2}{ }^{2}$ $-x_{0}{ }^{2}=0$. We refer to Figure 1 for a representation of $F$ satisfying 3.3.2.


Figure 1
4. $F$ with $l(v)=2$.
4.0 Let $F$ be $C$-nodal with $C$-node $v, l(v)=2$ and $K \cap F=M_{1} \cup M_{2}$. Then $\left\langle M_{1}, M_{2}\right\rangle \cap F$ contains a line $L_{12}, v \notin L_{12}$ and (cf. the proof of 2.4) there are at most two other lines in $F$, neither of which meets $K$. We note that for $p \in L_{12} \backslash K, \pi(p) \cap K$ is a (n.n.d.) curve of order two meeting $F$ at exactly $M_{1} \cap L_{12}$ and $M_{2} \cap L_{12}$. Therefore $l(p)=1$ for all $p \in L_{12}$〇int $(K)$.
4.1 Lemma. 1. Let $p \in L_{12} \cap \operatorname{int}(K)$. Then $l(\pi(p))=1$.
2. Let $p \in L_{12} \backslash K$ such that $\pi(p) \cap F=L_{12} \cup S^{1}$. Then $p \in \operatorname{int}(K)$ if and only if $S^{1} \subset$ int $(K)$.
3. There exists a $p_{0} \in L_{12} \cap$ int $(K)$ and a $p_{1} \in L_{12} \cap$ ext $(K)$ such that $\pi\left(p_{0}\right) \cap F=\pi\left(p_{1}\right) \cap F=L_{12}$.
4. Let $v$ be the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$. Then $\mathscr{L} \subset$ $\overline{\text { int }(K)}$ if and only if $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\operatorname{ext}(K)}$ if and only if $\beta \cap L_{12} \subset$ ext ( $K$ ).

Proof. 1. If $l(\pi(p))>1$, then $l(p)=1$ and $p$ irregular in $F$ imply that $l(\pi(p))=2$. Let $\pi(p) \cap F=L_{12} \cup L, p \notin L$. By 1.5.3, $L \subset \pi(p)$ yields that

$$
L \subset \pi\left(L_{12} \cap M_{1}\right) \cap F=M_{1} \cup M_{2} \cup L_{12}
$$

a contradiction.
2. This is immediate since $p \in L_{12} \cap S^{1}$ and $S^{1} \cap K=\emptyset$.
3. Clearly 1.5 .5 and $l\left(\left\langle M_{1}, M_{2}\right\rangle\right)=3$ imply that there exist $p^{\prime}$ close to say $M_{1} \cap L_{12}$ in both $L_{12} \cap \overline{\text { int }(K)}$ and $L_{12} \cap \overline{\text { ext (K) }}$ such that $\pi\left(p^{\prime}\right) \cap F$ consists of $L_{12}$ and $S^{1}$. Now 1.5.5 and 2 yield 3 .
4. Apply 2 and 3.
4.2 Theorem. There exist lines $L_{1}$ and $L_{2}$ in $F$ such that

$$
\left(L_{1} \cup L_{2}\right) \cap K=\emptyset .
$$

Proof. Let $v$ be the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}, \beta \cap L_{12}$ $=\{\bar{p}\} \subset \operatorname{int}(K)$. Then $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\operatorname{int}(K)}$ and $\mathscr{L} \subset \overline{\operatorname{ext}(K)}$ by 4.1.4. From 2.2, there exists an $\bar{r} \in \mathscr{L} \backslash\{v\}$ such that $\bar{p} \in \pi(\tilde{r})$ and thus $\bar{p} \in e(\mathscr{L})$. Let $p^{*} \in L_{12}$ such that $\left\langle p^{*}, \tilde{r}\right\rangle \cap K=\emptyset$. Then $p^{*} \in \operatorname{ext}(K), \alpha=\left\langle v, p^{*}, r\right\rangle$ is a plane, $\alpha \cap K=\{v\}$ and $v$ is the isolated point of $\alpha \cap F$.

Let $H_{1}$ and $H_{2}$ be the closed half-planes of $\beta$ determined by $\langle\bar{r}, v\rangle$ and $\langle\bar{r}, \bar{p}\rangle$. Then $\langle\bar{r}, v\rangle \cap \mathscr{L}=\{\bar{r}, v\}$ and $\langle\bar{r}, \bar{p}\rangle \cap \mathscr{L}=\{\bar{r}\}$ yield that $\mathscr{L}_{1}=$ $H_{1} \cap \mathscr{L}$ and $\mathscr{L}_{2}=H_{2} \cap \mathscr{L}$ are subarcs such that

$$
\mathscr{L}_{1} \cup \mathscr{L}_{2}=\mathscr{L} \quad \text { and } \quad \mathscr{L}_{1} \cap \mathscr{L}_{2}=\{v, \tilde{r}\} .
$$

Let $\bar{p} \in N \subset \beta$ such that $|N \cap \mathscr{L}|=2$. Then $v \notin N$ and $\left|N \cap \mathscr{L}_{i}\right|=1$, $i \in \mathscr{S}_{2}$. Since the lines of $F$ not meeting $K$ are coplanar by 2.3.1, we obtain that, except for at most one plane, $\left\langle L_{12}, N\right\rangle \cap F$ consists of $L_{12}$ and a curve $S_{N}{ }^{1}$ of order two such that $S_{N}{ }^{1} \cap \mathscr{L}_{i}=N \cap \mathscr{L}_{i}, i \in \mathscr{S}_{2}$. Let $N \cap\langle v, \tilde{r}\rangle=n$. Clearly $n \in i(\mathscr{L})$ and thus $\bar{p} \in e(\mathscr{L})$ implies that $\bar{p}, n$ separates $N \cap \mathscr{L}_{1}, N \cap \mathscr{L}_{2}$. Finally we note that $\lim N=\langle\bar{p}, v\rangle$ implies that $\lim n=v$ and in particular $\lim \left\langle p^{*}, n\right\rangle=\left\langle p^{*}, v\right\rangle$.

Let $N=\langle\bar{p}, n\rangle$ be arbitrarily close to $\langle\bar{p}, v\rangle$. Since $v$ is the isolated point of $\alpha \cap F,\left\langle p^{*}, n\right\rangle$ arbitrarily close to $\left\langle p^{*}, v\right\rangle$ implies that

$$
\left\langle p^{*}, n\right\rangle \cap F=\left\{p^{*}\right\} .
$$

Then $\left|\left\langle p^{*}, n\right\rangle \cap S_{N}{ }^{1}\right| \leqq 1$ and the preceding yield that $n \in e\left(S_{N}{ }^{1}\right)$ and $\bar{p} \in i\left(S_{N}{ }^{1}\right)$. As $\bar{p} \in e(\mathscr{L})$ and $\left|\mathscr{L} \cap S_{N}{ }^{1}\right|=2$, we obtain that

$$
e(\mathscr{L}) \cap e\left(S_{N}\right)=\emptyset
$$

and thus $\mathscr{L}$ and $S_{N}$ are incompatible by 1.5.8.
If $l\left(\left\langle L_{12}, N\right\rangle\right)>1$ for some $N \subset \beta$ through $\bar{p}$, then 4.2. Hence we may assume that $\bar{p} \in N \subset \beta$ and $|N \cap \mathscr{L}|=2$ imply that

$$
\left\langle L_{12}, N\right\rangle \cap F=L_{12} \cup S_{N^{1}} .
$$

Then the preceding and 1.5 .7 yield that $\bar{p} \in i\left(S_{N}{ }^{1}\right)$ for all such $N$. Since $\bar{p} \in \pi(\tilde{r})$, we obtain that

$$
\begin{aligned}
& \left\langle L_{12}, \tilde{r}\right\rangle \cap F=L_{12} \cup\{\bar{r}\} \quad \text { or } \\
& \left\langle L_{12}, \tilde{r}\right\rangle \cap F=L_{12} \cup S^{1}
\end{aligned}
$$

where $\bar{p} \in e\left(S^{1}\right)$ or $l(\bar{r})>0$. Ciearly, each of the first two cases contradicts the continuity of the plane sections of $F$ through $L_{12}$ and thus $l(\tilde{r})>0$. (If $l(\tilde{r})=1$, then either $L_{1}=L_{2}$ or $L_{1} \cap L_{2} \neq\{\tilde{r}\}$.)
4.3 Let int $(K) \cap F=F_{1}$ and ext $(K) \cap F=F_{2}$. Then $K \cap F=$ $M_{1} \cup M_{2}$ implies that

$$
\begin{aligned}
\bar{F}_{1}= & F_{1} \cup M_{1} \cup M_{2}, \quad \bar{F}_{2}=F_{2} \cup M_{1} \cup M_{2}, \\
& L_{1} \cup L_{2} \subset F_{2}, \quad \bar{F}_{1} \cap \bar{F}_{2}=M_{1} \cup M_{2} \quad \text { and } \\
F= & F_{1} \cup F_{2} \cup M_{1} \cup M_{2} .
\end{aligned}
$$

By 4.1.3, there is a $p_{0} \in F_{1}$ such that $\pi\left(p_{0}\right) \cap F=L_{12}$ and thus $F_{1} \backslash L_{12}$ consists of two open disjoint regions, say $F_{11}$ and $F_{12}$. Clearly

$$
F_{1}=F_{11} \cup F_{12} \cup\left(F_{1} \cap L_{12}\right) \text { and } \bar{F}_{11} \cap \bar{F}_{12}=\overline{\left(F_{1} \cap L_{12}\right)} \cup\{v\} .
$$

If $L_{1} \neq L_{2}$, let $\mathscr{P}_{1}$ and $\mathscr{P}_{2}$ be the open half-spaces of $P^{3}$ determined by $\left\langle L_{1}, v\right\rangle$ and $\left\langle L_{2}, v\right\rangle$. We assume that $K \backslash\{v\} \subset \mathscr{P}_{1}$ and let $\mathscr{P}_{1} \cap F_{2}=F_{21}$, $\mathscr{P}_{2} \cap F_{2}=F_{22}$. Then
$\operatorname{bd}\left(F_{21}\right)=M_{1} \cup M_{2} \cup L_{1} \cup L_{2} \quad$ and $\quad b d\left(F_{22}\right)=L_{1} \cup L_{2}$.
If $L_{1}=L_{2}=L$, let $F_{21}=F_{2} \backslash L$ and $F_{22}=\emptyset$. In either case,
$F_{2}=F_{21} \cup F_{22} \cup L_{1} \cup L_{2}$.
4.4 Theorem. $F_{1 i} \cap E \neq \emptyset$ and $v \in \overline{F_{1 i} \cap E}, i \in \mathscr{S}_{2}$.

Proof. Let $N \subset K$ such that $N \cap F=\{v\}$. Since $K$ is a cone of order two, there is a plane $\gamma$ through $N$ such that $\gamma \cap K=N$ and $\gamma$ is the limit of a sequence of planes $\beta_{\lambda}$ such that $v$ is the double point of $\beta_{\lambda} \cap F=$ $\mathscr{L}_{\lambda} \cup \mathscr{A}_{1, \lambda} \cup \mathscr{A}_{2, \lambda}$ for each $\lambda$. Since $\gamma \cap L_{12} \subset$ ext ( $K$ ), we may assume that
$\beta_{\lambda} \cap L_{12} \subset \operatorname{ext}(K)$ for each $\lambda$.
Then $\mathscr{L}_{\lambda} \subset F_{11} \cup F_{12} \cup\{v\}$ for each $\lambda$ by 4.1.4. Finally as $F_{11} \cap F_{12}=\emptyset$, we may assume that
$\mathscr{L}_{\lambda} \subset F_{11} \cup\{v\}$ for each $\lambda$.
From 2.1, $v$ is the cusp of $\gamma \cap F=\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \operatorname{ext}(K) \cup\{v\}$. Hence $\lim \beta_{\lambda}=\gamma, 1.5 .5$ a) and 1.5 .4 imply that

$$
\lim \left(\mathscr{A}_{1, \lambda} \cup \mathscr{A}_{2, \lambda}\right)=\mathscr{A}_{1} \cup \mathscr{A}_{2} \text { and } \lim \mathscr{L}_{\lambda}=\{v\} .
$$

We note that $F_{11}$ is a bounded open region satisfying 1.5.11. Thus for each $\lambda, \mathscr{L}_{\lambda}$ is the boundary of an open region $F_{11}\left(\mathscr{L}_{\lambda}\right) \subset F_{11}$ satisfying 1.5.11. Since $\lim \mathscr{L}_{\lambda}=\{v\}$ implies that $\lim \overline{F_{11}\left(\mathscr{L}_{\lambda}\right)}=\{v\}$, we obtain that $v \in \overline{F_{11} \cap E}$.

The preceding argument is symmetric in $F_{11}$ and $F_{12}$.
4.5 Theorem. 1. If $F_{22} \neq \emptyset$, then $F_{22} \cap E \neq \emptyset$.
2. Every $r \in F_{21}$ such that $l(r)=0$ is hyperbolic.

Proof. 1. We recall that $F_{22} \neq \emptyset$ implies that $L_{1} \neq L_{2}$. If $L_{1} \cap L_{2} \cap L_{12}$ $=\emptyset$, then $F_{22} \backslash L_{12}$ clearly consists of two open, disjoint triangular regions satisfying 1.5.11.

If $\left|L_{1} \cap L_{2} \cap L_{12}\right|=1$, then bd $\left(F_{22}\right)=L_{1} \cup L_{2}$ yields that, for $r \in F_{22}, l(r)=0$ and $\left\langle L_{12}, r\right\rangle \cap F_{22}$ consists of either the isolated point $r$ (hence $r \in E$ ) or an $S^{1}$ disjoint from $L_{12}$. In the latter case, 4.1.3 and the continuity of the plane section of $F_{22}$ through $L_{12}$ imply that there is an $r^{\prime} \in F_{22}$ such that

$$
\left\langle L_{12}, r^{\prime}\right\rangle \cap F=L_{12} \cup\left\{r^{\prime}\right\}
$$

2. Let $r \in F_{21}, l(r)=0$. Since $\langle v, p, r\rangle$ is a plane for $p \in L_{12} \cap$ int $(K)$, we may assume that $r \in \beta=\langle v, \bar{p}, \bar{r}\rangle$; cf. the proof of 4.2. Then $\{r, \bar{r}\} \subset$ $\mathscr{L}$. Since $l(r)=0$ and $\bar{p} \in \pi(\bar{r})$, either $r=\bar{r}$ or

$$
\left\langle L_{12}, r\right\rangle \cap F=L_{12} \cup S_{N}^{1}
$$

where $N=\langle\bar{p}, r\rangle,|N \cap \mathscr{L}|=2$ and $r \in \mathscr{L} \cap S_{N}{ }^{1}$.
If $F_{22}=\emptyset$, then $L_{1}=L_{2}=L$ and $\left\langle L_{12}, L\right\rangle \cap F=L_{12} \cup L$. As $\bar{p} \in \pi(\bar{r})$, 1.5.3 implies that $L \cap \mathscr{L}=\{\bar{r}\}$ and $r \neq \bar{r}$. If $F_{22} \neq \emptyset$, then $v \in \bar{F}_{21} \backslash \bar{F}_{22}$ implies that $\bar{F}_{21} \cap \mathscr{L}$ is the subarc containing $v$ and bounded by $L_{1} \cap \mathscr{L}$ and $L_{2} \cap \mathscr{L}$. Clearly

$$
\left|\left\langle\bar{p}, r^{\prime}\right\rangle \cap \mathscr{L}\right|=2 \text { for } \bar{r} \in\left(\bar{F}_{21} \cap \mathscr{L}\right) \backslash\{v\}
$$

and thus $\bar{p} \in \pi(\bar{r})$ implies that $\bar{r} \in F_{22} \cap \mathscr{L}$ and $r \neq \bar{r}$. It now readily follows from the proof of 4.2 that $\mathscr{L}$ and $S_{N}{ }^{1}$ are incompatible and thus $r \in H$ by 1.5.9.
4.6 Summary. Let $F$ be $C$-nodal with $l(v)=2$. Then

$$
F=F_{11} \cup F_{12} \cup F_{21} \cup F_{22} \cup M_{1} \cup M_{2} \cup L_{1} \cup L_{2} \cup L_{12}
$$

where

$$
K \cap F=M_{1} \cup M_{2}, L_{12} \subset\left\langle M_{1}, M_{2}\right\rangle,\left(L_{1} \cup L_{2}\right) \cap C=\emptyset
$$

and the $F_{i j}$ 's are open, disjoint regions described in 4.3 such that
i) $F_{11}, F_{12}$ and a non-empty $F_{22}$ contain elliptic points,
ii) every $r \in F_{21}$ such that $l(r)=0$ is hyperbolic and
iii) $F_{22}=\emptyset$ if and only if $L_{1}=L_{2}$.

We refer to Figure 2 for a representation of $F$. The surface in $P^{3}$ defined by

$$
x_{0}\left(x_{1}^{2}+x_{2}^{2}\right)+x_{3}\left(x_{0}^{2}+x_{1} x_{2}\right)=0
$$

satisfies 4.6 with $M_{1} \equiv x_{0}=x_{1}=0, M_{2} \equiv x_{0}=x_{2}=0, L_{12} \equiv x_{0}=x_{3}$ $=0, L_{1} \equiv x_{3}=-2 x_{0}=2^{1 / 2}\left(x_{1}-x_{2}\right), L_{2} \equiv x_{3}=-2 x_{0}=2^{1 / 2}\left(x_{2}-x_{1}\right)$ and $K \equiv x_{0}{ }^{2}+x_{1} x_{2}=0$.


Figure 2
5. $F$ with $l(v)=4$ and $l(F)=11$.
5.0 Let $F$ be $C$-nodal with the $C$-node $v, l(F)=l(v)+7=11$. Let $K \cap F=\cup M_{i}, i \in \mathscr{S}_{4}$. Then (cf. the proof of 2.4(3)) the other lines of $F$ are $L_{12}, L_{13}, L_{14}, L_{23}, L_{24}, L_{34}$ and $L_{0}$. Since $L_{0} \cap K=\emptyset, L_{i j} \subset$ $\left\langle M_{i}, M_{j}\right\rangle$ implies that $L_{0} \cap L_{i j}$ is a point $q_{i j} ; i \neq j$ in $\mathscr{S}_{4}$.

We assume that the line $\left\langle M_{1}, M_{3}\right\rangle \cap\left\langle M_{2}, M_{4}\right\rangle \subset$ int $(K) \cup\{v\}$. As $K$ is a cone of order two, this implies that $\left\langle M_{1}, M_{3}\right\rangle$ separates $K$ into two disjoint regions, one of which contains $M_{2} \backslash\{v\}$ and the other $M_{4} \backslash\{v\}$. More simply, $M_{1}, M_{3}$ separates $M_{2}, M_{4}$ in $K$. Then

$$
\begin{aligned}
& \left\{p_{0}\right\}=L_{13} \cap L_{24} \subset \operatorname{int}(K) \quad \text { and } \\
& \left(L_{12} \cap L_{34}\right) \cup\left(L_{14} \cap L_{23}\right) \subset \operatorname{ext}(K)
\end{aligned}
$$

Let $\mathscr{P}_{1}$ and $\mathscr{P}_{2}$ be the closed half-spaces of $P^{3}$ determined by $\left\langle M_{1}, M_{3}\right\rangle$
and $\left\langle M_{2}, M_{4}\right\rangle$. Then

$$
\left\langle M_{1}, M_{3}\right\rangle \cap\left\langle M_{2}, M_{4}\right\rangle \subset \operatorname{int}(K) \cup\{v\}
$$

implies that say
$L_{12} \cap L_{34} \subset \mathscr{P}_{1} \quad$ and $\quad L_{14} \cap L_{23} \subset \mathscr{P}_{2}$.
Then

1. $\mathscr{P}_{1} \cap\left(L_{14} \cup L_{23}\right)=\overline{\operatorname{int}(K)} \cap\left(L_{14} \cup L_{23}\right) \quad$ and
2. $\mathscr{P}_{2} \cap\left(L_{12} \cup L_{34}\right)=\overline{\text { int }(K)} \cap\left(L_{12} \cup L_{34}\right)$.

Finally $L_{0} \subset$ ext ( $K$ ) yields that
3. $\left\{q_{12}, q_{34}\right\} \subset \mathscr{P}_{1}$ and $\left\{q_{14}, q_{23}\right\} \subset \mathscr{P}_{2}$.

Let $\mathscr{Q}_{1}$ and $\mathscr{Q}_{2}$ be the closed half-spaces of $P^{3}$ determined by $\left\langle L_{0}, v\right\rangle$ and $\left\langle L_{0}, L_{13}, L_{24}\right\rangle$. We assume that $\left\langle L_{0}, L_{14}, L_{23}\right\rangle \subset \mathscr{Q}_{1}$. Then $M_{1}, M_{3}$ separates $M_{2}, M_{4}$ in $K$ and the continuity of the plane sections of $F$ through say $M_{1}$ imply that $M_{1} \cap L_{13},\{v\}$ separates $M_{1} \cap L_{12}, M_{1} \cap L_{14}$ and thus $\left\langle L_{0}, L_{12}, L_{34}\right\rangle \subset \mathscr{Q}_{2}$. Clearly $\left\langle L_{14}, L_{23}\right\rangle\left[\left\langle L_{12}, L_{34}\right\rangle\right]$ decomposes $\mathscr{Q}_{1}\left[\mathscr{Q}_{2}\right]$ into two closed "quarter-spaces", say $\mathscr{Q}_{11}$ and $\mathscr{Q}_{12}$ [ $\mathscr{Q}_{21}$ and $\mathscr{Q}_{22}$ ]. We assume that $\mathscr{Q}_{11} \cap \mathscr{Q}_{22}=\left\langle L_{0}, v\right\rangle$ and hence $\mathscr{Q}_{12} \cap \mathscr{Q}_{21}=\left\langle L_{13}, L_{24}\right\rangle$.

Finally let $\mathscr{P}_{i j k}=\mathscr{P}_{i} \cap \mathscr{Q}_{i j},\{i, j, k\} \subseteq \mathscr{S}_{2}$. Then

$$
P^{3}=\overline{\operatorname{int}(K)} \cup \overline{\operatorname{ext}(K)}=\cup \mathscr{P}_{i j k}
$$

implies that

$$
F=(F \cap \overline{\operatorname{ext}(K)}) \cup\left(\cup\left(F \cap \overline{\operatorname{int}(K)} \cap \mathscr{P}_{i j k}\right)\right),\{i, j, k\} \subseteq \mathscr{S}_{\mathbf{2}}
$$

5.1 Let $\beta \subset \mathscr{P}_{i}, l(\beta)=0$ and $i \in \mathscr{S}_{2}$. Then $\left\langle v, p_{0}\right\rangle \subset \beta$ and from 2.1, $v$ is the double point of

$$
\beta \cap F=\mathscr{L}_{\beta} \cup \mathscr{A}_{1, \beta} \cup \mathscr{A}_{2, \beta}
$$

Since $\pi\left(p_{0}\right) \cap F=L_{13} \cup L_{24} \cup L_{0}$ and $L_{0} \subset \operatorname{ext}(K), \beta \cap \pi\left(p_{0}\right)$ meets both int $(K) \cap F$ and ext $(K) \cap F$. Thus

$$
\mathscr{L}_{\beta} \subset \overline{\operatorname{int}(K)} \quad \text { and } \quad \mathscr{A}_{1, \beta} \cup \mathscr{A}_{2, \beta} \subset \overline{\operatorname{ext}(K)}
$$

as in 4.1.4.
As $\left\langle L_{0}, v\right\rangle \cap \mathscr{L}_{\beta}=\{v\}$ and $\left\langle L_{13}, L_{24}\right\rangle \cap \mathscr{L}_{\beta}=\left\{p_{0}\right\}$, this implies that either $\mathscr{L}_{\beta} \subset \mathscr{Q}_{1}$ and $\mathscr{A}_{1, \beta} \cup \mathscr{A}_{2, \beta} \subset \mathscr{Q}_{2}$ or $\mathscr{L}_{\beta} \subset \mathscr{Q}_{2}$ and $\mathscr{A}_{1, \beta} \cup \mathscr{A}_{2, \beta} \subset$ $\mathscr{Q}_{1}$. Then continuity of $\beta \cap F$ for $\beta \subset \mathscr{P}_{i}$ clearly yields that either $\mathscr{L}_{\beta} \subset \mathscr{Q}_{1}$ for all such $\beta \subset \mathscr{P}_{i}$ or $\mathscr{L}_{\beta} \subset \mathscr{Q}_{2}$ for all such $\beta \subset \mathrm{P}_{i}$.
5.2 Lemma. 1. Let $\beta \cap F=\mathscr{L}_{\beta} \cup \mathscr{A}_{1, \beta} \cup \mathscr{A}_{2, \beta},\left\langle v, p_{0}\right\rangle \subset \beta$. Then $\beta \subset \mathscr{P}_{1}$ if and only if $\mathscr{L} \subset \mathscr{Q}_{1}$.
2. Let $\beta_{1}=\left\langle v, p_{0}, L_{12} \cap L_{34}\right\rangle$ and $\beta_{2}=\left\langle v, p_{0}, L_{14} \cap L_{23}\right\rangle$. Then v is the double point of $\beta_{i} \cap F$ and $\beta_{i} \cap F \subset \mathscr{Q}_{i} \cap \mathscr{Q}_{j j},\{i, j\}=\mathscr{S}_{2}$.

Proof. 1. Since $\mathscr{L}_{\beta} \subset \overline{\text { int }(K)},\left\langle L_{14}, L_{23}\right\rangle \subset \mathscr{Q}_{1}$ and $\left\langle L_{12}, L_{34}\right\rangle \subset \mathscr{Q}_{2}$, the result follows from 5.0.1 and 5.0.2.
2. Clearly $v$ is the double point of $\beta_{1} \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$ and $\{q\}=L_{12} \cap L_{34} \subset \mathscr{P}_{1}$ implies that $\beta_{1} \subset \mathscr{P}_{1}, \mathscr{L} \subset \mathscr{Q}_{1}$ and $q \in \mathscr{A}_{1} \cup \mathscr{A}_{2}$ $\subset \mathscr{Q}_{2}$. Since $\pi(q)=\left\langle L_{12}, L_{34}, L_{0}\right\rangle$, either $q \in L_{0}$ and $q=q_{12}=q_{34}$ is the inflection point of $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ or $q \notin L_{0}$ and $\beta_{1} \cap L_{0} \subset \pi(q)$. In either case, bd $\left(\mathscr{Q}_{22}\right)=\left\langle L_{0}, v\right\rangle \cup\left\langle L_{12}, L_{34}\right\rangle$ and $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ a curve of order three readily yield that $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \mathscr{Q}_{22}$.

By a similar argument we obtain that $\beta_{2} \cap F \subset \mathscr{Q}_{2} \cup \mathscr{Q}_{11}$.
5.3 Lemma. Let $L_{0} \subset \alpha \neq\left\langle L_{0}, v\right\rangle, l(\alpha)=1$.

1. $\alpha \cap F$ consists of $L_{0}$ and a curve $S_{\alpha}{ }^{1}$ of order two.
2. If $\lim \alpha=\left\langle L_{i j}, L_{k l}\right\rangle\left[\left\langle L_{0}, v\right\rangle\right]$, then

$$
\lim S_{\alpha}{ }^{1}=L_{i j} \cup L_{k l}[\{v\}] ; \quad \mathscr{S}_{4}=\{i, j, k, l\} .
$$

3. If $\alpha \subset \mathscr{Q}_{11} \cup \mathscr{Q}_{22}$, then $\alpha \cap\left\langle v, p_{0}\right\rangle \subset i\left(S_{\alpha}{ }^{1}\right)$.
4. If $\alpha \subset \mathscr{Q}_{12} \cup \mathscr{Q}_{21}$, then $\left\{q_{13}, q_{24}\right\} \subset i\left(S_{\alpha}{ }^{1}\right)$.
5. If $\alpha \subset \mathscr{Q}_{12}\left[\mathscr{Q}_{21}\right]$, then $i\left(S_{\alpha}{ }^{1}\right)$ contains $L_{0} \cap \mathscr{P}_{1}\left[L_{0} \cap \mathscr{P}_{2}\right]$.

Proof. 1. This is immediate since $L_{0} \cap K=\emptyset$ and $\alpha \cap M_{i} \neq \emptyset$ for $i \in \mathscr{S}_{4}$. We note that $\alpha \cap M_{i} \subset S_{\alpha}{ }^{1}, q_{i j} \notin S_{\alpha}{ }^{1}, \alpha \cap M_{1}$ and $\alpha \cap M_{3}$ separate $\alpha \cap\left\langle v, p_{0}\right\rangle$ and $\left\{q_{13}\right\}$ and $\alpha \cap M_{2}, \alpha \cap M_{4}$ separates $\alpha \cap$ $\left\langle v, p_{0}\right\rangle,\left\{q_{24}\right\}$.
2. Since

$$
\begin{aligned}
& \left\langle L_{i j}, L_{k l}\right\rangle \cap F=L_{i j} \cup L_{k l} \cup L_{0}, \\
& \left\langle L_{\mathrm{c}}, v\right\rangle \cap F=L_{0} \cup\{v\}, v \notin L_{0}
\end{aligned}
$$

and $v \in M_{i}$ for $i \in \mathscr{S}_{4}$, the result follows by 1.5.4 and 1.5.5 a).
3. Let $\alpha \subset \mathscr{Q}_{i i}$. Since $v \notin L_{0}, 2$ implies that $L_{0} \cap S^{1}=\emptyset$ for $\alpha$ sufficiently close to $\left\langle L_{0}, v\right\rangle$. Since $S_{\alpha}{ }^{1}$ depends continuously on $\alpha \subset \mathscr{Q}_{i 1}$ and $q_{13} \notin S_{\alpha}{ }^{1}$, we obtain that $q_{13} \in L_{0} \subset e\left(S_{\alpha}{ }^{1}\right)$ for $\alpha \subset \mathscr{Q}_{i i}$. From the proof of 1 , it follows that

$$
\alpha \cap\left\langle v, p_{0}\right\rangle \subset i\left(S_{\alpha}{ }^{1}\right) .
$$

4. Let $\alpha \in \mathscr{Q}_{i j},\{i, j\}=\mathscr{S}_{2}$. From 5.2.2, $v$ is the double point of $\beta_{j} \cap F \subset \mathscr{Q}_{j} \cup \mathscr{Q}_{\mathfrak{t} 1}$. Hence $\alpha \in \mathscr{Q}_{j} \cup \mathscr{Q}_{i i}$ implies that

$$
\alpha \cap\left(\beta_{j} \cap F\right)=\beta_{j} \cap L_{0} .
$$

But

$$
\alpha \cap\left(\beta_{j} \cap F\right)=\beta_{j} \cap(\alpha \cap F)=\beta_{j} \cap\left(L_{0} \cup S_{\alpha}{ }^{1}\right)
$$

yields that $\left|\left(\beta_{j} \cap \alpha\right) \cap S_{\alpha}{ }^{1}\right| \leqq 1$. Thus

$$
\left\langle v, p_{0}\right\rangle \cap \alpha \subset \beta_{j} \cap \alpha \subset e\left(S_{\alpha}^{1}\right) \quad \text { and } \quad\left\{q_{13}, q_{24}\right\} \subset i\left(S_{\alpha}^{1}\right)
$$

5. Since
$\operatorname{bd}\left(\mathscr{Q}_{12}\right)=\left\langle L_{13}, L_{24}\right\rangle \cup\left\langle L_{14}, L_{23}\right\rangle \quad$ and
$\operatorname{bd}\left(\mathscr{Q}_{21}\right)=\left\langle L_{13}, L_{24}\right\rangle \cup\left\langle L_{12}, L_{34}\right\rangle$,
the result follows by 4,2 and 5.0 .3 .
5.4 Let $i+j \equiv 1(\bmod 2), \mathscr{S}_{4}=\{i, j, k, l\}$. Then $L_{i j}$ is met by $M_{i}$, $M_{j}, L_{k l}$ and $L_{0}$ in ext $(K)$. Let $\mathscr{R}_{i j}$ and $\mathscr{R}_{i j}{ }^{*}$ be the closed half-spaces of $P^{3}$ determined by $\left\langle M_{i}, M_{j}\right\rangle$ and $\left\langle L_{0}, L_{k l}\right\rangle$. We assume that $\pi\left(q^{\prime}\right) \subset$ $\mathscr{R}_{i j}$ for some $q^{\prime} \in L_{i j} \cap$ int $(K)$.
5.5 Lemma. Let $L_{i j} \subset \gamma, l(\gamma)=1, i+j \equiv 1(\bmod 2)$ and $\mathscr{S}_{4}=$ $\{i, j, k, l\}$.
6. $\gamma \cap F$ consists of $L_{i j}$ and a curve $S_{\gamma}{ }^{1}$ of order two.
7. If $\lim \gamma=\left\langle M_{i}, M_{j}\right\rangle\left[\left\langle L_{0}, L_{k}\right\rangle\right]$, then

$$
\lim S_{\gamma}{ }^{1}=M_{i} \cup M_{j}\left[L_{0} \cup L_{k l}\right]
$$

3. If $\gamma \subset \mathscr{R}_{i j}$, then

$$
L_{i j} \cap\left(M_{i} \cup M_{j} \cup L_{k l} \cup L_{0}\right) \subset e\left(S_{\gamma}^{1}\right)
$$

Proof. 1. This is immediate since $\gamma \cap M_{k} \neq \emptyset \neq \gamma \cap M_{l}$.
2. cf. the proof of 5.3.2.
3. Let $\bar{\gamma}=\pi(\bar{q}), \bar{q} \in L_{i j} \cap$ int $(K)$. From $5.0, l(\bar{q})=1$ and thus $l(\bar{\gamma})=1, \bar{\gamma} \cap F=L_{i j} \cup S_{\bar{\gamma}}{ }^{1}, \bar{q} \in S_{\bar{\gamma}}{ }^{1}$ and $S_{\bar{\gamma}}{ }^{1} \cap\left(M_{i} \cup M_{j}\right)=\emptyset$. Since $S_{\bar{\gamma}}{ }^{1} \cap K=\bar{\gamma} \cup\left(M_{k} \cup M_{l}\right)$ and $S_{\bar{\gamma}}{ }^{1}$ and $\bar{\gamma} \cap K$ are both curves of order two, we obtain that either

$$
L_{i j} \cap S_{\bar{\gamma}^{1}}=\{\bar{q}\} \quad \text { or } \quad\left|\left(L_{i j} \cap \operatorname{int}(K)\right) \cap S_{\bar{\gamma}^{1}}\right|=2 .
$$

It is easy to check that both cases occur and hence we assume that $L_{i j} \cap S_{\bar{\gamma}}{ }^{1}=\{\bar{q}\}$, Then

$$
L_{i j} \subset \frac{0}{e\left(S_{\bar{\gamma}^{1}}\right)}
$$

Let $\gamma=\left\langle S_{\gamma}{ }^{1}\right\rangle$ range between $\bar{\gamma}$ and $\left\langle M_{i}, M_{i}\right\rangle$. Then $S_{\gamma}{ }^{1}$ depending continuously on $\gamma$,

$$
\begin{aligned}
& L_{i j} \cap S_{\bar{\gamma}^{1}}=\{\bar{q}\} \subset \operatorname{int}(K), \\
& L_{i j} \cap \operatorname{ext}(K) \subset e\left(S_{\bar{\gamma}^{1}}\right)
\end{aligned}
$$

and 2 imply that

$$
\left|\left(L_{i j} \cap \operatorname{int}(K)\right) \cap S_{\gamma}{ }^{1}\right|=2
$$

(thus $\gamma=\pi(q)$ for $\left.q \in L_{i j} \cap \operatorname{int}(K) \cap S_{\gamma}{ }^{1}\right)$ and
$L_{i j} \cap \operatorname{ext}(K) \subset e\left(S_{\gamma}{ }^{1}\right)$.
Finally $\pi\left(q^{\prime}\right) \subset \mathscr{R}_{i j}$ for some $q^{\prime} \in L_{i j} \cap \operatorname{int}(K)$ and bd $\left(\mathscr{R}_{i j}\right)=\left\langle M_{i}, M_{j}\right\rangle$ $\cup\left\langle L_{0}, L_{k}\right\rangle$ imply that $\gamma \subset \mathscr{R}_{i j}$.

Let $\gamma=\left\langle S_{\gamma}{ }^{1}\right\rangle$ range between $\bar{\gamma}$ and $\left\langle L_{0}, L_{k l}\right\rangle$. Then the preceding and $\bar{\gamma} \subset \mathscr{R}_{i j}$ imply that $\gamma \subset \mathscr{R}_{i j}, \gamma \neq \pi(q)$ for any $q \in L_{i j} \cap \operatorname{int}(K)$ and thus

$$
L_{i j} \cap \operatorname{int}(K) \cap S_{\gamma}{ }^{1}=\emptyset .
$$

Then $S_{\gamma}{ }^{1}$ depending continuously on $\gamma$ and 2 readily imply that either

$$
L_{i j} \cap S_{\gamma}{ }^{1}=\emptyset \quad \text { or } \quad L_{i j} \cap S_{\gamma}^{1} \subset L_{i j}^{*}
$$

the open segment of $L_{i j} \cap$ ext $(K)$ bounded by $L_{0} \cap L_{i j}$ and $L_{k l} \cap L_{i j}$, and $L_{i j} \backslash L_{i j}{ }^{*} \subset e\left(S_{\gamma}{ }^{1}\right)$. Clearly, $l(q)=1$ for each $q \in L_{i j}{ }^{*}$ and thus 3 .
5.6 We recall that

$$
F=(F \cap \overline{\operatorname{ext}(K)}) \cup\left(\cup\left(F \cap \overline{\operatorname{int}(K)} \cap \mathscr{P}_{i j k}\right)\right)
$$

where $\mathscr{P}_{i j k}=\mathscr{P}_{i} \cap \mathscr{Q}_{j k}$ and $\{i, j, k\} \subseteq \mathscr{S}_{2}$. In this subsection we analyse $F \cap \operatorname{int}(K)$ and in $5.7, F \cap \frac{\operatorname{ext}(K)}{}$.

Let $\beta \subset \mathscr{P}_{i}, l(\beta)=0$ and $\mathscr{S}_{2}=\{i, j\}$. From 5.1 and $5.2, v$ is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$,

$$
\begin{aligned}
& \mathscr{L} \subset \overline{\operatorname{int}(K)} \cap \mathscr{P}_{i} \cap \mathscr{Q}_{i} \text { and } \\
& \mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\operatorname{ext}(K)} \cap \mathscr{P}_{i} \cap \mathscr{Q}_{j}
\end{aligned}
$$

Thus we obtain that

1. $l(r)>0$ for $r \in F \cap \overline{\operatorname{int}(K)} \cap\left(\mathscr{P}_{121} \cup \mathscr{P}_{122} \cup \mathscr{P}_{211} \cup \mathscr{P}_{212}\right)$.

Let $i=1$. Then $\mathscr{L}=\beta \cap \operatorname{int}(K) \cap \mathscr{P}_{1} \cap \mathscr{Q}_{1}, 5.0 .1$ and 5.0 .2 imply that

$$
\mathscr{L} \cap\left(L_{12} \cup L_{34}\right)=\emptyset \quad \text { and } \quad \mathscr{L} \cap L_{14} \neq \emptyset \neq \mathscr{L} \cap L_{23}
$$

As $\mathscr{Q}_{1}=\mathscr{Q}_{11} \cup \mathscr{Q}_{12}$ and $\mathscr{Q}_{11} \cap \mathscr{Q}_{12}=\left\langle L_{14}, L_{23}\right\rangle, v \in \mathscr{Q}_{11}$ and $p_{0} \in \mathscr{Q}_{12}$ yield that (cf. 1.4)

$$
\begin{aligned}
\mathscr{L}=\mathscr{L}\left(v, \mathscr{L} \cap L_{14}, p_{0}\right) \cup \mathscr{L}(v, \mathscr{L} \cap & \left.L_{23}, p_{0}\right) \\
& =\left(\mathscr{Q}_{11} \cap \mathscr{L}\right) \cup\left(\mathscr{Q}_{12} \cap \mathscr{L}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathscr{Q}_{11} \cap \mathscr{L}=\mathscr{L}\left(\mathscr{L} \cap L_{14}, v, \mathscr{L}\right.\left.\cap L_{23}\right) \quad \text { and } \\
& \mathscr{Q}_{12} \cap \mathscr{L}=\mathscr{L}\left(\mathscr{L} \cap L_{14}, p_{0}, \mathscr{L} \cap L_{23}\right) .
\end{aligned}
$$

Since bd $\left(\mathscr{P}_{1}\right)=\left\langle M_{1}, M_{3}\right\rangle \cup\left\langle M_{2}, M_{4}\right\rangle$ and $L_{14} \cap L_{23} \subset \operatorname{ext}(K) \cap \mathscr{P}_{2}$,
the preceding readily implies that
2. $F \cap \overline{\text { int }(K)} \cap \mathscr{P}_{111}=\bar{G}_{14} \cup \bar{G}_{23}$
where $G_{14}$ and $G_{23}$ are non-empty, open triangular regions such that $l(r)=0$ for $r \in G_{14} \cup G_{23}, \bar{G}_{14} \cap \bar{G}_{23}=\{v\}$ and say
$\operatorname{bd}\left(G_{14}\right) \subset M_{1} \cup M_{4} \cup L_{14}$ and $\quad b d\left(G_{23}\right) \subset M_{2} \cup M_{3} \cup L_{23}$.
The preceding argument is symmetric in $\mathscr{P}_{1}$ and $\mathscr{P}_{2}$ and thus,
3. $F \cap \overline{\text { int }(K)} \cap \mathscr{P}_{222}=\bar{G}_{12} \cup \bar{G}_{34}$
where $G_{12}$ and $G_{34}$ are non-empty, open triangular regions such that $l(r)=0$ for $r \in G_{12} \cup G_{34}, \bar{G}_{12} \cap \bar{G}_{34}=\{v\}$ and say
bd $\left(G_{12}\right) \subset M_{1} \cup M_{2} \cup L_{12} \quad$ and $\quad b d\left(G_{34}\right) \subset M_{3} \cup M_{4} \cup L_{34}$.
We note that there are similar decompositions for both $F \cap \overline{\text { int }(K)}$ $\cap \mathscr{P}_{112}$ and $F \cap \overline{\operatorname{int}(K)} \cap \mathscr{P}_{221}$. Since we do not need them, we simply let
4. $F \cap \overline{\text { int }(K)} \cap\left(\mathscr{P}_{112} \cup \mathscr{P}_{221}\right)=\widetilde{F}$.
5.7 As in 5.0, we obtain that $L_{0}, L_{12}$ and $L_{34}\left[L_{0}, L_{14}\right.$ and $\left.L_{23}\right]$ are either concurrent or determine (cf. Figure 3) an open triangular region $G_{1}\left[G_{2}\right]$ in ext $(K)$. We note that $G_{i} \subset \mathscr{P}_{i}, G_{i}$ satisfies 1.5 .11 and hence $G_{i} \cap E \neq \emptyset ; i \in \mathscr{S}_{2}$.

Let $G_{1}=\emptyset\left[G_{2}=\emptyset\right]$ if $L_{0}, L_{12}$ and $L_{34}\left[L_{0}, L_{14}\right.$ and $\left.L_{23}\right]$ are concurrent and, in any case, put

$$
\left.F^{*}=(\overline{\operatorname{ext}(K}) \cap F\right) \backslash\left(G_{1} \cup G_{2}\right)
$$

From the proof of 5.2 .2 , we recall that

$$
\beta_{i} \cap(\overline{\operatorname{ext}(K)} \cap F) \subset \mathscr{Q}_{j j}, \quad\{i, j\}=\mathscr{S}_{2}
$$

Hence $\beta_{i} \cap G_{i} \subset \beta_{i} \cap \overline{\operatorname{ext}(K)} \cap F$ and $l(r)=0$ for $r \in G_{i}$ imply that $G_{1} \subset \mathscr{Q}_{22}$ and $G_{2} \subset \mathscr{Q}_{11}$.
5.8 Theorem. $F \cap \overline{\text { int }(K)}=\bar{G}_{12} \cup \bar{G}_{14} \cup \bar{G}_{23} \cup \bar{G}_{34} \cup \tilde{F}$ where 1. $G_{i j} \cap E \neq \emptyset$ and $v \in \bar{G}_{i j} \cap E$ for each $G_{i j}$ and
2. every $r \in \widetilde{F}$ such that $l(r)=0$ is hyperbolic.

Proof. 1. cf. the proof of 4.4.
2. Let $r_{0} \in \widetilde{F}, l\left(r_{0}\right)=0$. By 5.6.4,

$$
r_{0} \in \mathscr{P}_{i i j}=\mathscr{P}_{i} \cap \mathscr{Q}_{i j}, \mathscr{S}_{2}=\{i, j\} .
$$

Then $v$ is the double point of $\left\langle v, p_{0}, r_{0}\right\rangle \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$ and

$$
\left\{p_{0}, r_{0}\right\} \subset \mathscr{L} \subset \overline{\operatorname{int}(K)} \cap \mathscr{P}_{i} \cap \mathscr{Q}_{1}
$$



Figure 3

Let $\left\langle v, p_{0}\right\rangle \subset \beta \subset \mathscr{P}_{j}, l(\beta)=0$. Again $v$ is the double point of $\beta \cap F$ $=\mathscr{L}_{\beta} \cup \mathscr{A}_{1, \beta} \cup \mathscr{A}_{2, \beta}$ but

$$
\mathscr{L}_{\beta} \subset \overline{\operatorname{int}(K)} \cap \mathscr{P}_{j} \cap \mathscr{Q}_{j}
$$

Since $\left\{v, p_{0}\right\}=\mathscr{L} \cap \mathscr{L}_{\beta}$,

$$
\mathscr{Q}_{i} \cap \mathscr{Q}_{j}=\left\langle L_{0}, v\right\rangle \cup\left\langle L_{0}, p_{0}\right\rangle
$$

implies that $e(\mathscr{L}) \cap e\left(\mathscr{L}_{\beta}\right)=\emptyset$ and thus $\mathscr{L}$ and $\mathscr{L}_{\beta}$ are incompatible by 1.5.8.

Since $\left\{p_{0}, r_{0}\right\} \subset \mathscr{L} \cap \mathscr{Q}_{i j}$, it is clear that $l\left(r^{\prime}\right)=0$ for each $r^{\prime}$ in the
interior of the subarc $\mathscr{A} \subset \mathscr{L} \cap \mathscr{Q}_{i j}$ bounded by $p_{0}$ and $r_{0}$. Let

$$
\beta^{\prime}=\left\langle v, \beta \cap L_{0}, r^{\prime}\right\rangle, r^{\prime} \in \mathscr{A} \backslash\left\{p_{0}\right\} .
$$

Since $\beta \cap L_{0} \subset$ ext $(K)$ and $r^{\prime} \in \operatorname{int}(K), l\left(r^{\prime}\right)=0$ and 2.1 yield that $v$ is the double point of $\beta^{\prime} \cap F=\mathscr{L}^{\prime} \cup \mathscr{A}_{1}^{\prime} \cup \mathscr{A}_{2}^{\prime}$ for each $r^{\prime}$. As $\lim r^{\prime}=p_{0}$ implies that $\lim \beta^{\prime}=\beta, 1.5 .4$ and 1.5 .5 a) yield that $\lim \mathscr{L}^{\prime}=\mathscr{L}_{\beta}$. Then $\mathscr{L}_{\beta} \subset \operatorname{int}(K), \mathscr{L}_{\beta}$ and $\mathscr{A} p_{0}$-incompatible and 1.5 .7 imply that $\mathscr{L}^{\prime} \subset$ int $(K)$ and $\mathscr{L}^{\prime}$ and $\mathscr{A}$ are $r^{\prime}$-incompatible for each $r^{\prime} \in \mathscr{A} \backslash\left\{p_{0}\right\}$. Hence $r_{0} \in \mathscr{A} \subset H$ by 1.5 .9 ii$)$.
5.9 Theorem. Let $r \in F^{*}$ such that $l(r)=0$. Then $r$ is hyperbolic.

Proof. Since $P^{3}=\mathscr{P}_{1} \cup \mathscr{P}_{2}$, we assume that $r \in \mathscr{P}_{1}$ say. Then

$$
\beta=\left\langle v, p_{0}, r\right\rangle \subset \mathscr{P}_{1}
$$

$v$ is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$ and

$$
r \in \mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\operatorname{ext}(K)} \cap \mathscr{Q}_{2}
$$

From 5.7, we note that

$$
\beta \cap G_{1} \subset \mathscr{A}_{1} \cup \mathscr{A}_{2} \text { and } \beta \cap G_{2}=\emptyset .
$$

Let $\alpha=\left\langle L_{0}, r\right\rangle$. By 5.3.1,

$$
\alpha \cap F=L_{0} \cup S_{\alpha}{ }^{1}
$$

where $r \in S_{\alpha}{ }^{1}$ and either $\alpha \subset \mathscr{Q}_{22}$ or $\alpha \subset \mathscr{Q}_{21}$.
i) $\alpha \subset \mathscr{Q}_{22}$.

Then $\alpha \cap\left\langle v, p_{0}\right\rangle \subset i\left(S_{\alpha}{ }^{1}\right)$ by 5.3.3. Clearly

$$
\alpha \cap\left\langle v, p_{0}\right\rangle \subset e\left(\mathscr{A}_{1}\right) \cup e\left(\mathscr{A}_{2}\right)
$$

and thus if $r \in \operatorname{int}\left(\mathscr{A}_{i}\right)$ for $i \in \mathscr{S}_{2}$, then $S_{\alpha}{ }^{1}$ and $\mathscr{A}_{i}$ satisfy 1.5.8 and $r \in H$.

Let $r^{*}$ be the inflection point of $\mathscr{A}_{1} \cup \mathscr{A}_{2}$. Then

$$
\mathscr{A}_{1} \cap \mathscr{A}_{2}=\left\{v, r^{*}\right\} .
$$

If $\beta=\beta_{1}$ and $G_{1}=\emptyset$, then $r^{*}=q_{12}=q_{34}$ (cf. the proof of 5.2.2) and $r^{*} \neq r$. Let $\beta \neq \beta_{1}$ or $G_{1} \neq \emptyset$. Then either

$$
\left|\left\langle L_{0}, L_{12}, L_{34}\right\rangle \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)\right|=3
$$

or

$$
\left|\left\langle L_{0}, L_{12}, L_{34}\right\rangle=\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)\right|=2
$$

and

$$
\left\langle L_{0}, L_{12}, L_{34}\right\rangle=\pi\left(r^{\prime}\right) \quad \text { for some } r^{\prime} \in \mathscr{A}_{1} \cup \mathscr{A}_{2} .
$$

As $\mathscr{A}_{1}$ and $\mathscr{A}_{2}$ are curves of order two, this implies that both $\mathscr{A}_{1}$ and $\mathscr{A}_{2}$
meet $\left\langle L_{0}, L_{12}, L_{34}\right\rangle$. It is easy to check that $r^{*} \in \mathscr{A}_{1} \cap \mathscr{A}_{2}$ yields that either $r^{*} \in \mathscr{Q}_{21}$ or $r^{*} \in G_{1} \subset \mathscr{Q}_{22}$. Thus $r^{*} \neq r$.
ii) $\alpha \subset \mathscr{Q}_{21}$.

Then

$$
\left\{q_{14}, q_{23}\right\} \subset L_{0} \cap \mathscr{P}_{2} \subset i\left(S_{\alpha}^{1}\right)
$$

by 5.0.3 and 5.3.5. Let $\gamma_{1}=\left\langle L_{14}, r\right\rangle$ and $\gamma_{2}=\left\langle L_{23}, r\right\rangle$. Then

$$
\gamma_{1} \cap F=L_{14} \cap S_{14}{ }^{1} \quad \text { and } \quad \gamma_{2} \cap F=L_{23} \cup S_{23}{ }^{1}
$$

where $r \in S_{14}{ }^{1} \cap S_{23}{ }^{1}$ by 5.5.1. We claim that either $\gamma_{1} \subset \mathscr{R}_{14}$ or $\gamma_{2} \subset \mathscr{R}_{23}$ and thus either $q_{14} \in e\left(S_{14}{ }^{1}\right)$ or $q_{23} \in e\left(S_{23}{ }^{1}\right)$ by 5.5 .3 . Then 1.5 .8 yields that $r \in H$.

Let $\beta \cap L_{0}=\left\{r_{0}\right\}$ and $\beta \cap L_{i j}=\left\{r_{i j}\right\}, i \neq j$ in $\mathscr{S}_{4}$. Then

$$
\left\{r_{14}, r_{23}\right\} \subset \mathscr{L} \subset \overline{\text { int }(K)} \text { and }\left\{r_{0}, r_{12}, r_{34}\right\} \subset \mathscr{A}_{1} \cup \mathscr{A}_{2}
$$

by 5.0 .1 and 5.0.2. From 5.4, $\beta \cap \mathscr{R}_{14}\left[\beta \cap \mathscr{R}_{23}\right]$ is the closed half-plane of $\beta$, determined by $\left\langle r_{14}, v\right\rangle$ and $\left\langle r_{14}, r_{23}, r_{0}\right\rangle\left[\left\langle r_{23}, v\right\rangle\right.$ and $\left.\left\langle r_{23}, r_{14}, r_{0}\right\rangle\right]$, containing $\beta \cap \pi\left(r_{14}\right)\left[\beta \cap \pi\left(r_{23}\right)\right]$. Since $\left\{r_{14}, r_{23}\right\} \subset \mathscr{L}, 2.2$ yields that both $\beta \cap \pi\left(r_{14}\right)$ and $\beta \cap \pi\left(r_{23}\right)$ meet $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ and thus $\mathscr{R}_{14} \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)$ and $\mathscr{R}_{23} \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)$ are subarcs of $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ bounded by $v$ and $r_{0}$. Then either

$$
\begin{aligned}
& \mathscr{R}_{14} \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)=\mathscr{R}_{24} \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right) \text { or } \\
& r \in \mathscr{A}_{1} \cup \mathscr{A}_{2}=\left(\mathscr{R}_{14} \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)\right) \cup\left(\mathscr{R}_{23} \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right)\right) \\
& \subset \mathscr{R}_{14} \cup \mathscr{R}_{23} .
\end{aligned}
$$

Since each point of $\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right) \backslash\{v\}$ lies on the tangent of exactly one point of $\mathscr{L} \backslash\{v\}, r_{0} \in \beta \cap \pi\left(p_{0}\right)$ and $p_{0} \in \mathscr{L}$ imply that a subarc of $\mathscr{A}_{1} \cup$ $\mathscr{A}_{2}$, bounded by $v$ and $r_{0}$, is met by the tangents of exactly one subarc of $\mathscr{L}$, bounded by $v$ and $p_{0}$. From 5.6,

$$
\mathscr{L}=\mathscr{L}\left(v, r_{14}, p_{0}\right) \cup \mathscr{L}\left(v, r_{23}, p_{0}\right)
$$

and hence

$$
\mathscr{R}_{14} \cap\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right) \cap \mathscr{R}_{23}=\left\{v, r_{0}\right\} .
$$

The preceding argument is symmetric in $\mathscr{P}_{1}$ and $\mathscr{P}_{2}$.
5.10 Summary. Let F be a C-nodal surface satisfying 5.0. Then

$$
F=\bar{G}_{12} \cup \bar{G}_{14} \cup \bar{G}_{23} \cup \bar{G}_{34} \cup \bar{G}_{1} \cup \bar{G}_{2} \cup \widetilde{F} \cup F^{*}
$$

where $G_{i j}, G_{\lambda}, \widetilde{F}$ and $F^{*}$ are described in 5.6 and 5.7, every $r \in \widetilde{F} \cup F^{*}$ such that $l(r)=0$ is hyperbolic, $v \in \overline{G_{i j} \cap E}$ and $G_{\lambda} \cap E \neq \emptyset$ if $G_{\lambda} \neq \emptyset$.

The surface in $P^{3}$ defined by

$$
x_{0}\left(x_{1}^{2}-x_{2}^{2}\right)+x_{3}\left(x_{0}^{2}+x_{1} x_{2}\right)=0
$$

satisfies 5.10 with $M_{1} \equiv x_{0}=x_{1}=0, M_{2} \equiv x_{0}=x_{2}=0, M_{3} \equiv x_{0}-x_{1}$ $=x_{1}+x_{2}=0, M_{4} \equiv x_{0}+x_{1}=x_{1}+x_{2}=0, L_{12} \equiv x_{0}=x_{3}=0$, $L_{13} \equiv x_{0}-x_{1}=x_{1}-x_{2}+x_{3}=0, L_{14} \equiv x_{0}+x_{1}=x_{1}-x_{2}-x_{3}=0$, $L_{23} \equiv x_{0}+x_{2}=x_{1}-x_{2}-x_{3}=0, L_{24} \equiv x_{0}-x_{2}=x_{1}-x_{2}+x_{3}=0$, $L_{34} \equiv x_{1}+x_{2}=x_{3}=0, L_{0} \equiv x_{1}-x_{2}=x_{3}=0$ and $K \equiv x_{0}{ }^{2}+x_{1} x_{2}=0$.
6. $F$ with $l(v)=6$ and $l(F)=21$. Let $\lambda \equiv i+j(\bmod 6), i \neq j$ in $\mathscr{S}_{6}$. Then $\lambda \in \mathscr{S}_{6}$ and $\mathscr{S}_{6}=\{i, i+1, \ldots, i+5\}$. For the sake of generality, we also assume that $\mathscr{S}_{6}=\{i, j, k, l, m, n\}$.
6.0 Let $F$ be $C$-nodal with the $C$-node $v, l(F)=l(v)+15=21$. Let $K \cap F=\bigcup M_{i}, i \in \mathscr{S}_{6}$. The other fifteen lines of $F$ are $L_{i j}, i \neq j$ in $\mathscr{S}_{6}$, with the properties listed in the proof of 2.4 (4). We note that $L_{i j} \subset \alpha$ and $l(\alpha)=3$ imply that $\alpha$ is $\left\langle M_{i}, M_{j}\right\rangle,\left\langle L_{k l}, L_{m n}\right\rangle,\left\langle L_{k m}, L_{l_{n}}\right\rangle$ or $\left\langle L_{k n}, L_{l m}\right\rangle$.

We label the lines of $F$ through $v$ cyclically; that is, $M_{i}, M_{i+2}$ separates (cf. 5.0) $M_{i+1}$ from each of $M_{i+3}, M_{i+4}$ and $M_{i+5}, i \in \mathscr{S}_{6}$. Then

1. no line of $F$ meets int $(K) \cap L_{i, i+1}$,
2. exactly $L_{i+1, i+3}, L_{i+1, i+4}$ and $L_{i+1, i+5}$ meet int $(K) \cap L_{i, i+2}$ and
3. exactly $L_{i+1, i+4}, L_{i+1, i+5}, L_{i+2, i+4}$ and $L_{i+2, i+5}$ meet int $(K) \cap L_{i, i+3}$.
6.1 In this subsection, we determine the configuration of the twenty-one lines of $F$.

Let $\alpha$ be a plane through $M_{i}, i \in \mathscr{S}_{6}$. From 2.1, either $\alpha \cap K=M_{i}$ or $\alpha=\pi(p)$ for some $p \in M_{i} \backslash\{v\}$. Since $\pi(p)$ depends continuously on $p \in M_{i} \backslash\{v\}$ and the lines of $F$ through $v$ are labelled cyclically, we obtain that $M_{i} \backslash\{v\}$ meets $L_{i, i+\lambda}$ in the sequence

1. $L_{i, i+1}, L_{i, i+2}, L_{i, i+3}, L_{i, i+4}, L_{i, i+5} ;$
that is, $M_{i} \cap L_{i, \lambda}, M_{i} \cap L_{i, \lambda+2}$ separates $M_{i} \cap L_{i, \lambda+1},\{v\}$.
We can determine (as in 5.0) for any $L_{i j}$, the separation of the planes $\alpha$ through $L_{i j}$ with $l(\alpha)=3$. For example, $(i, j)=(1,4)$ implies that $\left\langle M_{1}, M_{4}\right\rangle,\left\langle L_{25}, L_{36}\right\rangle$ separates $\left\langle L_{23}, L_{56}\right\rangle,\left\langle L_{26}, L_{35}\right\rangle$.

Finally we wish to determine the sequence in which $L_{i j}$ meets the lines of $F$. Since

$$
L_{i, i+4}=L_{i+4,(i+4)+2} \quad \text { and } \quad L_{i, i+5}=L_{i+5,(i+5)+1}
$$

we need only consider the intersection points of $L_{i, i+1}, L_{i, i+2}$ and $L_{i, i+3}$, $i \in \mathscr{S}_{6}$. We note that it is not always possible to determine a precise sequence and in such cases we indicate the uncertainty by ( ). From 6.0, we obtain that lines of $F$ meet
2. $L_{i, i+1}$ in the sequence

$$
M_{i}, M_{i+1}, L_{i+2, i+3}, L_{i+2, i+4},\left(L_{i+3, i+4}, L_{i+2, i+5}\right), L_{i+3, i+5}, L_{i+4, i+5}
$$

3. $L_{1, i+2}$ in the sequence

$$
M_{i}, L_{i+1, i+5}, L_{i+1, i+4}, L_{i+1, i+3}, M_{i+2}, L_{i+3, i+4}, L_{i+3, i+5}, L_{i+4, i+5}
$$

4. $L_{i, i+3}$ in the sequence

$$
M_{i}, L_{i+1, i+5},\left(L_{i+1, i+4}, L_{i+2, i+5}\right), L_{i+2, i+4}, M_{i+3},\left(L_{i+1, i+2}, L_{i+4, i+5}\right)
$$

We observe that as each uncertainty involves only a pair of points, it does not affect the configuration; cf. Figure 4.


Figure 4
6.2 By 6.0.3 and 6.1.4, $L_{14}, L_{25}$ and $L_{36}$ are either concurrent or determine an open triangular region $G_{0}$ in int $(K) \cap F$. It is easy to check that a non-empty $G_{0}$ satisfies 1.5 .11 and hence contains elliptic points.

If $G_{0}=\emptyset$, let $\Delta=L_{14} \cap L_{25} \cap L_{36}=\left\{p_{0}\right\}$. If $G_{0} \neq \emptyset$, let $\Delta=$ bd $\left(G_{0}\right)$ and $p_{0} \in G_{0}$. Let $\left\langle v, p_{0}\right\rangle \subset \beta, l(\beta)=0$. Then $p_{0} \in$ int $(K)$ and 2.1 yield that $v$ is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$.

If $\Delta=\left\{p_{0}\right\}$, then clearly $p_{0}$ is the inflection point of $\beta \cap F, p_{0} \in \mathscr{A}_{1}$ $\cup \mathscr{A}_{2} \subset$ int $(K)(c f .3 .0)$ and $\mathscr{L} \subset \overline{\operatorname{ext}(K)}$. If $\Delta=\mathrm{bd}\left(G_{0}\right)$, then

$$
p_{0} \in G_{0} \quad \text { and } \quad \Delta \subset \text { int }(K) \cap\left\langle L_{14}, L_{25}, L_{36}\right\rangle
$$

imply that either $|\beta \cap \Delta|=3$ or $\beta \cap \Delta=\{p, q\}$ where $p \neq q$ and $\left\langle L_{14}, L_{25}, L_{36}\right\rangle$ is either $\pi(p)$ or $\pi(q)$. Since $\mathscr{L}$ is of order two, either case implies that

$$
p_{0} \in \mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\operatorname{int}(K)} \text { and } \mathscr{L} \subset \overline{\operatorname{ext}(K)}
$$

In view of the preceding and for the sake of simplicity, we assume in our arguments that $\Delta=\left\{p_{0}\right\}$.
6.3 Lemma. Let $\left\langle v, p_{0}\right\rangle \subset \beta, l(\beta)=0$. Then $v$ is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}, p_{0} \in \mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\operatorname{int}(K)}$ and $\mathscr{L} \subset \overline{\operatorname{ext}(K)}$.
6.4 Let $\mathscr{P}_{i}$ be the closed half-space of $P^{3}$ determined by $\left\langle M_{i+1}, M_{i+4}\right\rangle$ and $\left\langle M_{i+2}, M_{i+5}\right\rangle$ such that

$$
\left\langle M_{i} M_{i+3}\right\rangle \cap \mathscr{P}_{i}=\left\langle v, p_{0}\right\rangle, \quad i \in \mathscr{S}_{3} .
$$

Then $P^{3}=\mathscr{P}_{1} \cup \mathscr{P}_{2} \cup \mathscr{P}_{3}$ and int $\left(\mathscr{P}_{i}\right) \cap \operatorname{int}\left(\mathscr{P}_{j}\right)=\emptyset$ for $i \neq j$.
Let $\mathscr{R}_{i}$ and $\mathscr{R}_{i}{ }^{*}$ be the closed half-spaces of $P^{3}$ determined by

$$
\alpha_{0}=\left\langle L_{14}, L_{25}, L_{36}\right\rangle \quad \text { and } \quad\left\langle M_{i}, M_{i+3}\right\rangle, i \in \mathscr{S}_{3} .
$$

Let $\beta \subset \mathscr{P}_{i}, l(\beta)=0$ and $i \in \mathscr{S}_{3}$. Then $v$ is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}, p_{0}$ is the inflection point of $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\text { int }(K)}$ and $\mathscr{L} \subset \overline{\operatorname{ext}(K)}$ by 6.3 . Since $\left\langle v, p_{0}\right\rangle$ supports both $\mathscr{L}$ and $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ at $v,\left\langle v, p_{0}\right\rangle$ cuts $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ at $p_{0}$ (cf. [1], 1.3.1) and $\alpha_{0} \cap \mathscr{L}=\emptyset$, we obtain that either i) $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \mathscr{R}_{j}$ and $\mathscr{L} \subset \mathscr{R}_{j}{ }^{*}$ or ii) $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \mathscr{R}_{j}{ }^{*}$ and $\mathscr{L} \subset \mathscr{R}_{j} ; j \in \mathscr{S}_{3}$. The continuity of $\beta \cap F$ for $\beta \subset \mathscr{P}_{i}$ implies that either i) holds for all such $\beta$ or ii) holds for all such $\beta$. Let

1. $\mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \mathscr{R}_{i}$ and $\mathscr{L} \subset \mathscr{R}_{i}{ }^{*}, i \in \mathscr{S}_{3}$.

Then by the preceding,
2. $\mathscr{P}_{i} \cap \operatorname{int}(K) \cap F \subset \mathscr{R}_{i}$ and $\mathscr{P}_{i} \cap \operatorname{ext}(K) \cap F \subset \mathscr{R}_{i}{ }^{*}, i \in \mathscr{S}_{3}$.

We now examine the relationship among $\mathscr{P}_{i}, \mathscr{R}_{j}$ and $\mathscr{R}_{j}{ }^{*}, j \in \mathscr{S}_{3} \backslash\{i\}$. Let $L \subset \alpha_{0}$ such that $L \cap K=\emptyset$ and $|L \cap F|=3$. Then $l(\langle L, v\rangle)=0$, $v$ is the isolated point of $\langle L, v\rangle \cap F=F^{1} \cup\{v\}$ and $F^{1} \subset$ ext $(K)$. We
note that

$$
\begin{aligned}
& F^{1}=\left(\mathscr{P}_{1} \cap F^{1}\right) \cup\left(\mathscr{P}_{2} \cap F^{1}\right) \cup\left(\mathscr{P}_{3} \cap F^{1}\right), \\
& \mathscr{P}_{i} \cap \mathscr{P}_{j} \cap F^{1} \subset L
\end{aligned}
$$

and $L$ cuts $F^{1}$ at each point of intersection. By $2, \mathscr{P}_{j} \cap F^{1} \subset \mathscr{R}_{j}{ }^{*}$ and thus

$$
\mathscr{P}_{i} \cap F^{1} \subset \mathscr{R}_{j} .
$$

Then by ii),
3. $\mathscr{P}_{i} \cap \operatorname{int}(K) \cap F \subset \mathscr{R}_{j}{ }^{*}$ and $\mathscr{P}_{i} \cap \operatorname{ext}(K) \cap F \subset \mathscr{R}_{j}, \quad j \in \mathscr{S}_{3} \backslash\{i\}$.
As in 6.1, we note that $\alpha_{0},\left\langle M_{i}, M_{i+3}\right\rangle$ separates $\left\langle L_{i+1, i+2}, L_{i+4, i+5}\right\rangle$, $\left\langle L_{i+1, i+5}, L_{i+2, i+4}\right\rangle$. From the definition of $\mathscr{P}_{i}$, we observe that
4. $\mathscr{P}_{i} \cap\left(L_{i+1, i+2} \cup L_{i+4, i+5}\right)=\overline{\operatorname{int}(K)} \cap\left(L_{i+1, i+2} \cup L_{i+4, i+5}\right)$.

Then $\beta \cap L_{i j} \neq \emptyset$ and 2 imply that
5. $\left\langle L_{i+1, i+2}, L_{i+4, i+5}\right\rangle \subset \mathscr{R}_{i}$ and

$$
\left\langle L_{i+1, i+5}, L_{i+2, i+4}\right\rangle \subset \mathscr{R}_{i}{ }^{*}, \quad i \in \mathscr{S}_{3} .
$$

Let $\mathscr{R}_{i 1}$ and $\mathscr{R}_{i 2}\left[\mathscr{R}_{{ }_{i 1}{ }^{*}}\right.$ and $\mathscr{R}_{i 2}{ }^{*}$ ] be the closed quarter-spaces of $\mathscr{R}_{i}\left[\mathscr{R}_{i}{ }^{*}\right]$ determined by $\left\langle L_{i+1, i+2}, L_{i+4, i+5}\right\rangle\left[\left\langle L_{i+1, i+5}, L_{i+2, i+4}\right\rangle\right], i \in \mathscr{S}_{3}$. We assume that

$$
\mathscr{R}_{i 1} \cap \mathscr{R}_{i_{1}{ }^{*}}=\left\langle M_{i}, M_{i+3}\right\rangle \quad \text { and } \quad \mathscr{R}_{i 2} \cap \mathscr{R}_{i 2}{ }^{*}=\alpha_{0}, \quad i \in \mathscr{S}_{3} .
$$

Then 6.1.1 implies that iii) int ( $\left.\mathscr{R}_{i 1}\right) \cap M_{j}$ is an open line-segment, bounded by $v$ and $M_{j} \cap L_{j, j+1}$, and not intersected by any other line of $F$; $j \in \mathscr{S}_{6} \backslash\{i, i+3\}$ and $i \in \mathscr{S}_{3}$.

Finally, let $\mathscr{Q}_{j}$ and $\mathscr{Q}_{j}{ }^{*}$ be the closed half-spaces of $P^{3}$ determined by $\left\langle M_{j}, M_{j+1}\right\rangle$ and $\left\langle M_{j}, M_{j+5}\right\rangle$ such that

$$
\mathscr{Q}_{j} \cap\left(M_{j+2} \cup M_{j+3} \cup M_{j+4}\right)=\{v\}, \quad j \in \mathscr{S}_{6} .
$$

6.5 Lemma. Let $L_{i, i+3} \subset \alpha, l(\alpha)=1$ and $i \in \mathscr{S}_{3}$.

1. $\alpha \cap F$ consists of $L_{i, i+3}$ and a curve $S_{\alpha}{ }^{1}$ of order two.
2. If $\lim \alpha=\left\langle L_{j k}, L_{l m}\right\rangle\left[\left\langle M_{i}, M_{i+3}\right\rangle\right]$, then $\lim S_{\alpha}{ }^{1}=L_{j k} \cup L_{l m}$ $\left[M_{i} \cup M_{i+3}\right] ; \mathscr{S}_{6}=\{i, i+3, j, k, l, m\}$.
3. If $\alpha \subset \mathscr{R}_{i 1}$, then $L_{i, i+3} \cap \overline{\operatorname{int}(K)} \subset i\left(S_{\alpha}{ }^{1}\right)$.
4. If $\alpha \subset \mathscr{R}_{i 2}$, then $L_{i, i+3} \cap \overline{\operatorname{int}(K)} \subset e\left(S_{\alpha}{ }^{1}\right)$.
5. If $\alpha \subset \mathscr{R}_{i 2}{ }^{*}$, then $L_{i, i+3} \cap \overline{\operatorname{ext}(K)} \subset i\left(S_{\alpha}{ }^{1}\right)$ and $p_{0} \in e\left(S_{\alpha}{ }^{1}\right)$.
6. If $\alpha \subset \mathscr{R}_{i 1}{ }^{*}$, then $L_{i, i+3} \cap \overline{\operatorname{ext}(K)} \subset e\left(S_{\alpha}{ }^{1}\right)$ and $p_{0} \in i\left(S_{\alpha}{ }^{1}\right)$.

Proof. 1 and 2 are immediate. It is easy to check that $S_{\alpha}{ }^{1} \cap K=\alpha$ $\cap\left(M_{i+1} \cup M_{i+2} \cup M_{i+4} \cup M_{i+5}\right), 2$, and 6.1.4 imply 3 to 6 .
6.6 Lemma. Let $M_{j} \subset \gamma \subset \mathscr{Q}_{j}, l(\gamma)=1$ and $j \in \mathscr{S}_{6}$. Then $\gamma \cap F$ consists of $M_{j}$ and a curve $S_{\gamma}{ }^{1}$ of order two, $v \in M_{j} \cap S_{\gamma}{ }^{1}$ and

$$
M_{j} \cap L_{j k} \subset e\left(S_{\gamma}^{1}\right), \quad k \in \mathscr{S}_{6} \backslash\{j\}
$$

Proof. Clearly $\gamma \cap K=M_{j}$ or $\gamma \cap K=M_{j} \cup N$ where $N \cap K=\{v\}$ and thus $\gamma \cap F=M_{j} \cup S_{\gamma}{ }^{1}$ from 2.1. We note that $\gamma \cap K=M_{j}$ yields that $M_{j} \cap S_{\gamma}{ }^{1}=\{v\}$ and $M_{j} \subset e\left(S_{\gamma}{ }^{1}\right)$.

Since $K$ is a (n.n.d.) cone, there exist planes $\gamma_{1}$ and $\gamma_{2}$ in $\mathscr{Q}_{j}$ such that the closest subspace $\mathscr{Q}_{j}{ }^{\prime} \subset \mathscr{Q}_{j}$, bounded by $\gamma_{1}$ and $\gamma_{2}$, contains all $\gamma$ with $\gamma \cap K=M_{j}$. If $\gamma_{1}=\gamma_{2}$, then $\mathscr{Q}_{j}^{\prime}=\gamma_{1}$.

Let $\gamma$ tend to $\gamma_{1}\left[\gamma_{2}\right]$ in $\mathscr{Q}_{j} \backslash \mathscr{Q}_{j}{ }^{\prime}$. Then
$\lim S_{\gamma}{ }^{1}=S_{\gamma_{1}}{ }^{1}\left[S_{\gamma_{2}}{ }^{1}\right]$ and $\lim \left(M_{j} \cap S_{\gamma}{ }^{1}\right)=\{v\}$.
Thus $M_{j} \backslash\{v\} \subset e\left(S_{\gamma_{1}}{ }^{1}\right) \cap e\left(S_{\gamma_{2}}{ }^{1}\right)$ implies that $M_{j} \cap L_{j k} \subset e\left(S_{\gamma}{ }^{1}\right)$ for $\gamma$ sufficiently close to $\gamma_{1}\left[\gamma_{2}\right]$ and $k \in \mathscr{S}_{6} \backslash\{j\}$. Since $S_{\gamma}{ }^{1}$ depends continuously on $\gamma, M_{j} \cap L_{j k} \not \subset S_{\gamma}{ }^{1}$ implies the lemma.
6.7 Let $i \in \mathscr{S}_{3}$ and $\mathscr{S}_{i}{ }^{*}=\mathscr{S}_{6} \backslash\{i, i+3\}$. From 6.4.2,

$$
\mathscr{P}_{i} \cap \operatorname{int}(K) \cap F \subset \mathscr{R}_{i}=\mathscr{R}_{i 1} \cup \mathscr{R}_{i 2}
$$

and thus

$$
\overline{\mathscr{P}_{i} \cap \operatorname{int}(K) \cap F}=F_{i}{ }^{\prime} \cup F_{i}
$$

where

$$
\begin{aligned}
F_{i}^{\prime}=\mathscr{P}_{i} \cap \mathscr{R}_{i 1} \cap \overline{\operatorname{int}(K)} \cap F \quad \text { and } \\
\quad F_{i}=\mathscr{P}_{i} \cap \mathscr{R}_{i 2} \cap \overline{\operatorname{int}(K)} \cap F .
\end{aligned}
$$

Clearly both $F_{i}{ }^{\prime}$ and $F_{i}$ are non-empty. From 6.1 and 6.4,

$$
\begin{array}{r}
\operatorname{bd}\left(F_{i}\right)=\left(\mathscr{P}_{i} \cap\left(L_{i+1, i+2} \cup L_{i+4, i+5}\right)\right) \\
\cup\left(\operatorname{int}(K) \cap\left(L_{i+1, i+4} \cup L_{i+2, i+5}\right)\right)
\end{array}
$$

$$
\cup\left(\mathscr{R}_{i 2} \cap\left(\cup M_{j}\right)\right), \quad j \in \mathscr{S}_{i}^{*}
$$

and

$$
\operatorname{bd}\left(F_{i}^{\prime}\right)=\left(\mathscr{P}_{i} \cap\left(L_{i+1, i+2} \cup L_{i+4, i+5}\right)\right) \cup\left(\mathscr{R}_{i 1} \cap\left(\cup M_{j}\right)\right)
$$

$$
j \in \mathscr{S}_{i}^{*} .
$$

From 6.0.1 and 6.4. iii), the six line segments in bd ( $F_{i}{ }^{\prime}$ ) determine two triangles with the common point $v$ such that

$$
\operatorname{int}\left(F_{i}{ }^{\prime}\right)=G_{i} \cup G_{i}{ }^{\prime},
$$

$G_{i}$ and $G_{i}{ }^{\prime}$ are open triangular regions, say
$\operatorname{bd}\left(G_{i}\right)=\left(\mathscr{P}_{i} \cap L_{i+1, i+2}\right) \cup\left(\mathscr{R}_{i 1} \cap\left(M_{i+1} \cup M_{i+2}\right)\right)$,
$\mathrm{bd}\left(G_{i}{ }^{\prime}\right)=\left(\mathscr{P}_{i} \cap L_{i+4, i+5}\right) \cup\left(\mathscr{R}_{i 1} \cap\left(M_{i+4} \cup M_{i+5}\right)\right)$ and

$$
\overline{G_{i}} \cap \overline{G_{i}^{\prime}}=\{v\} .
$$

6.8 Theorem. For $i \in \mathscr{S}_{3}$,

$$
\overline{\mathscr{P}_{i} \cap \operatorname{int}(K) \cap F}=\overline{G_{i}} \cup \overline{G_{i}^{\prime}} \cup F_{i}
$$

where

1. $G_{i} \cap E \neq \emptyset \neq G_{i}{ }^{\prime} \cap E$ and $v \in\left(\overline{G_{i} \cap E}\right) \cap\left(\overline{G_{i}{ }^{\prime} \cap E}\right)$ and
2. every $r \in F_{i}$ such that $l(r)=0$ is hyperbolic.

Proof. 1. Let $r \in G_{i} \cup G_{i}{ }^{\prime}$ and $\langle v, r\rangle \subset \delta$. Clearly both $G_{i}$ and $G_{i}{ }^{\prime}$ satisfy 1.5.11 and thus $l(r)=l(\delta)=0$. We choose $\delta$ so that

$$
\delta \cap\left(L_{i+1, i+2} \cup L_{i+4, i+5}\right) \subset \operatorname{ext}(K) .
$$

Then $r \in \operatorname{int}(K)$ and 2.1 imply that $v$ is the double point of $\delta \cap F$ $=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$ and $\mathrm{bd}\left(G_{i}\right) \cup \mathrm{bd}\left(G_{i}{ }^{\prime}\right) \subset \overline{\operatorname{int}(K)}$ implies that

$$
\delta \cap\left(\operatorname{bd}\left(G_{i}\right) \cup \operatorname{bd}\left(G_{i}^{\prime}\right)\right)=\{v\} .
$$

Since every line of $\delta$ meets $\mathscr{A}_{1} \cup \mathscr{A}_{2}$, we obtain that

$$
r \in \mathscr{L} \subset G_{i} \cup G_{i}^{\prime} \cup\{v\} .
$$

We now argue as in the proof of 4.4.
2. Let $r \in F_{i}, l(r)=0$. Then $r \in \mathscr{R}_{i 2}$ and 6.5 .4 imply that $p_{0} \in e\left(S_{\alpha}{ }^{1}\right)$, $\alpha=\left\langle L_{i, i+3}, r\right\rangle$. Let $\beta=\left\langle v, p_{0}, r\right\rangle$. Then $l(r)=0$ and 6.3 yield that $v$ is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$ and $r \in \mathscr{A}_{1} \cup \mathscr{A}_{2}$. Since $\mathscr{A}_{1} \cap \mathscr{A}_{2}=\left\{v, p_{0}\right\}, r \in \mathscr{A}_{1}$ say. Let $\mathscr{A}_{1}^{\prime} \subset \mathscr{A}_{1}$ be a subarc such that $r \in \operatorname{int}\left(\mathscr{A}_{1}{ }^{\prime}\right), p_{0} \in \mathscr{A}_{1}{ }^{\prime}$ and $S_{\alpha}{ }^{1} \cap \mathscr{A}_{1}{ }^{\prime}=\{r\}$. As $\mathscr{A}_{1}$ is of order two,

$$
p_{0} \in i\left(\mathscr{A}_{1} \backslash\left\{p_{0}\right\}\right) \subset i\left(\mathscr{A}_{1}^{\prime}\right)
$$

It is immediate that $r \in \overline{e\left(\mathscr{A}_{\mathrm{i}}{ }^{\prime}\right) \cap e\left(S_{\alpha}{ }^{1}\right)}$ and thus $r \cap H$ by 1.5.8.
We refer to Figure 5 for a representation of

$$
\overline{\operatorname{int}(K)} \cap F=\cup\left(\overline{G_{i}} \cup \overline{G_{i}^{\prime}} \cup F_{i}\right), \quad i \in \mathscr{S}_{3} .
$$

6.9 Henceforth, we assume that $i \in \mathscr{S}_{3}=\{i, j, k\}, j \equiv i+1(\bmod 3)$ and $k \equiv i+2(\bmod 3)$. As in $6.2,6.0 .3$ and 6.1.4 imply that $L_{i, i+3}$, $L_{i+1, i+2}$ and $L_{i+4, i+5}$ are either concurrent or determine an open, triangular region $G_{i}{ }^{*} \subset$ ext $(K) \cap F$ satisfying 1.5.11. In the former case, we set $G_{i}{ }^{*}=\emptyset$.

From 6.4, $L_{i, i+3} \subset \mathscr{P}_{j} \cap \mathscr{P}_{k}$ and thus $G_{i}{ }^{*} \subset \mathscr{P}_{j} \cup \mathscr{P}_{k}$ and $G_{i}{ }^{*} \cap \mathscr{P}_{i}$ $=\emptyset$ since

$$
\left\langle L_{i+1, i+2}, L_{i+4, i+5}\right\rangle \subset \mathscr{R}_{i} \backslash \mathscr{R}_{i}{ }^{*}, G_{i}{ }^{*} \subset \mathscr{R}_{i} \text { and } G_{i}{ }^{*} \cap \mathscr{R}_{i}{ }^{*}=\emptyset .
$$

Finally

$$
\mathscr{P}_{i} \cap \operatorname{ext}(K) \cap F \subset \mathscr{R}_{i}{ }^{*}=\mathscr{R}_{i 1}{ }^{*} \cup \mathscr{R}_{i 2}{ }^{*} \quad \text { and } \quad \alpha_{0} \subset \mathscr{R}_{i 2}{ }^{*} \backslash \mathscr{R}_{i 1}{ }^{*}
$$ imply that $G_{j}{ }^{*} \cup G_{k}{ }^{*} \subset \mathscr{R}_{i 2}{ }^{*}$.



Figure 5

From 6.4, 2 and 3,

$$
\mathscr{P}_{i} \cap \operatorname{ext}(K) \cap F \subset \mathscr{R}_{i}{ }^{*} \cap \mathscr{R}_{j} \cap \mathscr{R}_{k}
$$

Let

$$
F_{i}^{*}=\mathscr{P}_{i} \cap\left(\mathscr{R}_{i 1} * \cup \mathscr{R}_{j 1} \cup \mathscr{R}_{k 1} \cup \mathscr{Q}_{i} \cup \mathscr{Q}_{i+3}\right) \cap \overline{\operatorname{ext}(K)} \cap F
$$

and

$$
\widetilde{F}_{i}=\mathscr{P}_{i} \cap\left(\mathscr{R}_{i 2}{ }^{*} \cap \mathscr{R}_{j 2} \cap \mathscr{R}_{k 2} \cap \mathscr{Q}_{i}^{*} \cap \mathscr{Q}_{i+3}{ }^{*}\right) \cap \overline{\operatorname{ext}(K)} \cap F
$$

Then

$$
\begin{aligned}
& \overline{\mathscr{P}_{i} \cap \operatorname{ext}(K)} \cap F=F_{i}{ }^{*} \cup \widetilde{F}_{i} \quad \text { and } \\
& \overline{\operatorname{ext}(K)} \cap F=\cup\left(F_{i}{ }^{*} \cup \widetilde{F}_{i}\right), \quad i \in \mathscr{S}_{3} .
\end{aligned}
$$

6.10 Theorem. For $i \in \mathscr{S}_{3}$, every $r \in F_{i}{ }^{*}$ such that $l(r)=0$ is hyperbolic and $\left(G_{j}{ }^{*} \cup G_{k}{ }^{*}\right) \cap F_{i}{ }^{*}=\emptyset$.

Proof. Let $r \in F_{i}{ }^{*}, l(r)=0$ and $\beta=\left\langle v, p_{0}, r\right\rangle$. Then $v$ is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}, p_{0} \in \mathscr{A}_{1} \cup \mathscr{A}_{2} \subset \overline{\operatorname{int}(K)}, r \in \mathscr{L} \subset$ $\overline{\operatorname{ext}(K)}$ and $p_{0} \in e(\mathscr{L})$.

If $r \in \mathscr{R}_{i 1}{ }^{*} \cup \mathscr{R}_{j 1} \cup \mathscr{R}_{k 1}$, then

$$
p_{0} \in i\left(S^{1}\left(L_{i, i+3}, r\right)\right) \cup i\left(S^{1}\left(L_{j, j+3}, r\right)\right) \cup i\left(S^{1}\left(L_{k, k+3}, r\right)\right)
$$

by $6.5,5$ and 3 . As in the proof of $6.8 .2, p_{0} \in e(\mathscr{L})$ implies that $r \in H$. If $r \notin \mathscr{R}_{i 1}{ }^{*} \cup \mathscr{R}_{j 1} \cup \mathscr{R}_{k 1}$, then

$$
r \in \mathscr{R}_{i 2}{ }^{*} \cap\left(\mathscr{Q}_{i} \cup \mathscr{Q}_{i+3}\right) .
$$

From 6.6.5 and 6.6,

$$
L_{i, i+3} \cap\left(M_{i} \cup M_{i+3}\right) \subset i\left(S^{1}\left(L_{i, i+3}, r\right)\right)
$$

and

$$
M_{i} \cap L_{i, i+3} \subset e\left(S^{1}\left(M_{i}, r\right)\right) \quad \text { or } \quad M_{i+3} \cap L_{i, i+3} \subset e\left(S^{1}\left(M_{i+3}, r\right)\right) .
$$

Then

$$
r \notin \overline{e\left(S^{1}\left(L_{i, i+3}, r\right)\right) \cap e\left(S^{1}\left(M_{i}, r\right)\right)}
$$

or

$$
r \notin \overline{e\left(S^{1}\left(L_{i, i+3}, r\right)\right) \cap e\left(S^{1}\left(M_{i+3}, r\right)\right)},
$$

and $r \in H$ by 1.5.8.
Since $G_{j}{ }^{*} \cup G_{k}{ }^{*} \neq \emptyset$ implies that $\left(G_{j}{ }^{*} \cup G_{k}{ }^{*}\right) \cap E \neq \emptyset$,

$$
\left(G_{j}{ }^{*} \cup G_{k}{ }^{*}\right) \cap F_{i}{ }^{*}=\emptyset
$$

6.11 Let $r \in \mathscr{P}_{i} \cap \operatorname{ext}(K) \cap F, l(r)=0$ and $\beta=\left\langle v, p_{0}, r\right\rangle$. Then $v$ is the double point of $\beta \cap F=\mathscr{L}_{\beta} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$ and

$$
r \in \mathscr{L}_{\beta}=\beta \cap \mathscr{R}_{i}{ }^{*} \cap \mathscr{R}_{j} \cap \mathscr{R}_{k} \cap \overline{\operatorname{ext}(K)} \cap F .
$$

Let $\beta \cap L_{m n}$ be the point $r_{m n},\{m, n\} \subset \mathscr{S}_{6}$. Then $\mathscr{L}_{\beta} \subset \mathscr{R}_{i}{ }^{*} \cap \mathscr{R}_{j} \cap \mathscr{R}_{k}$ and 6.4 imply that

$$
r_{i+1, i+5}, r_{i+2, i+4}, r_{i+2, i+3}\left(=r_{j+1, j+2}\right), r_{i, i+5}, r_{i+3, i+4}, r_{i, i+1}
$$

are the only $r_{m n}$ in $\mathscr{L}_{\beta}$ and

1. $\left\{p_{0}\right\}=\left\langle r_{i+1, i+5}, r_{i+2, i+4}\right\rangle \cap\left\langle r_{i, i+5}, r_{i+2, i+3}\right\rangle \cap\left\langle r_{i, i+1}, r_{i+3, i+4}\right\rangle$.

We note that $r_{m n} \neq r_{\lambda \mu}$ if $\{m, n\} \cap\{\lambda, \mu\} \neq \emptyset$ and from the definition of $\mathscr{P}_{i}$, there exists a $\beta^{*} \subset \mathscr{P}_{i}$ such that $l\left(\beta^{*}\right)=0$ and

$$
r_{i+1, i+5}=r_{i+2, i+4}=r^{*}
$$

Let $r_{m n} \neq r_{\lambda \mu}$ in $\mathscr{L}_{\beta}$. We denote by $\mathscr{L}_{\beta}(m, n ; \lambda, \mu)$ the subarc of $\mathscr{L}_{\beta} \backslash\{v\}$ bounded by $r_{m n}$ and $r_{\lambda \mu}$. Hence $v \notin \mathscr{L}_{\beta}(m, n ; \lambda, \mu)$. From 1 and $r^{*}=r_{i+1, i+5}$ $=r_{i+2, i+4}$, we obtain that

$$
\text { 2. } r^{*} \in \mathscr{L}_{\beta^{*}}(i, i+5 ; i+2, i+3) \cap \mathscr{L}_{\beta^{*}}(i, i+1 ; i+3, i+4)
$$

Let $r \in \widetilde{F}_{i}$. Then

$$
r \in \mathscr{R}_{i 2}{ }^{*} \cap \mathscr{R}_{j 2} \cap \mathscr{R}_{k 2} \cap \mathscr{Q}_{i}{ }^{*} \cap \mathscr{Q}_{i+3^{*}}{ }^{*} .
$$

Since bd $\left(\mathscr{R}_{i 2}{ }^{*}\right)=\alpha_{0} \cup\left\langle L_{i+1, i+5}, L_{i+2, i+4}\right\rangle, r \in \mathscr{R}_{i 2}{ }^{*}$ implies that
3. $r \in \mathscr{L}_{\beta}(i+1, i+5 ; i+2, i+4)$.

Similarly $r \in \mathscr{R}_{j_{2}} \cap \mathscr{R}_{k^{2}}$ implies that
4. $r \in \mathscr{L}_{\beta}(i, i+5 ; i+2, i+3) \cap \mathscr{L}_{\beta}(i, i+1 ; i+3, i+4)$.

From the definition of $\mathscr{Q}_{i}{ }^{*}$ and $\mathscr{P}_{i}$, we obtain that $\beta \cap K \subset \mathscr{Q}_{i}{ }^{*}$, $\mathscr{Q}_{i}{ }^{*} \cap \mathscr{L}_{\beta}$ is the subarc of $\mathscr{L}_{\beta}$, bounded by $r_{i, i+1}$ and $r_{i, i+5}$, containing $v$ and

$$
\mathscr{Q}_{i} \cap \mathscr{L}_{\beta}=\mathscr{L}_{\beta}(i, i+1 ; i, i+5) .
$$

Similarly

$$
\mathscr{Q}_{i+3} \cap \mathscr{L}_{\beta}=\mathscr{L}_{\beta}(i+2, i+3 ; i+3, i+4) .
$$

Hence

$$
\text { 5. } r \notin \mathscr{L}_{\beta}(i, i+1 ; i, i+5) \cup \mathscr{L}_{\beta}(i+2, i+3 ; i+3, i+4) \text {. }
$$

Finally, the cyclical labelling in 6.0 implies that
6. $r_{i+1, i+5} \in \mathscr{L}_{\beta}(i, i+1 ; i, i+5)$ and

$$
r_{i+2, i+4} \in \mathscr{L}_{\beta}(i+2, i+3 ; i+3, i+4)
$$

The preceding readily yields that

$$
\begin{array}{r}
r \in \mathscr{L}_{\beta}(i, i+5 ; i+2, i+3) \subset \mathscr{L}_{\beta}(i+1, i+5 ; i+2, i+4) \\
\subset \mathscr{L}_{\beta}(i, i+1 ; i+3 ; i+4)
\end{array}
$$

or

$$
\begin{array}{r}
r \in \mathscr{L}_{\beta}(i, i+1 ; i+3, i+4) \subset \mathscr{L}_{\beta}(i+1, i+5 ; i+2, i+4) \\
\subset \mathscr{L}_{\beta}(i, i+5 ; i+2, i+3) .
\end{array}
$$

More precisely, $r_{m n}$ and $r \in \widetilde{F}_{i}$ are contained in $\mathscr{L}_{\beta} \backslash\{v\} \subset \mathscr{P}_{i}$ in the sequence

$$
\text { 7. } r_{i, i+1}, r_{i+1, i+5}, r_{i, i+5}, r, r_{i+2, i+3}, r_{i+2, i+4}, r_{i+3, i+4}
$$

or
8. $r_{i, i+5}, r_{i+1, i+5}, r_{i, i+1}, r, r_{i+3, i+4}, r_{i+2, i+4}, r_{i+2, i+3}$.
6.12 Theorem. $\mathscr{P}_{i} \cap\left(G_{j}{ }^{*} \cup G_{k}{ }^{*}\right)=\left\{r \in \widetilde{F}_{i} \mid l(r)=0\right\}, \mathscr{S}_{3}=\{i, j, k\}$.

Proof. From 6.9 and 6.10,

$$
\mathscr{P}_{i} \cap\left(G_{j}^{*} \cup G_{k}^{*}\right) \subseteq\left\{r \in \widetilde{F}_{i} \mid l(r)=0\right\} .
$$

Let $r^{\prime} \in \widetilde{F}_{i}, l\left(r^{\prime}\right)=0$ and $\beta^{\prime}=\left\langle v, p_{0}, r^{\prime}\right\rangle$. Then $v$ is the double point of $\beta^{\prime} \cap F=\mathscr{L}^{\prime} \cup \mathscr{A}_{1}^{\prime} \cup \mathscr{A}_{2}^{\prime}$ and the sequence in $\mathscr{L}^{\prime} \backslash\{v\}$ is say 6.11.7:
a) $r_{i, i+1}, r_{i+1, i+5}, r_{i, i+5}, r^{\prime}, r_{i+2, i+3}, r_{i+2, i+4}, r_{i+3, i+4}$.

If $\mathscr{P}_{i} \cap G_{j}{ }^{*}=\emptyset$, then
$L_{i, i+5} \cap L_{i+2, i+3} \not \subset$ int $\left(\mathscr{P}_{i}\right)$ and
$r_{i, i+5} \neq r_{i+2, i+3}$ for all $\beta \subset \mathscr{P}_{i}$ such that $l(\beta)=0$.
Since $\left\{r_{i, i+5}, r_{i+2, i+3}\right\} \subset \mathscr{L}^{\prime}(i+1, i+5 ; i+2, i+4), 6.11 .2$ and the continuity of $\mathscr{L}_{\beta}$ for $\beta \subset \mathscr{P}_{i}$ imply that this is a contradiction.

Let $\bar{r} \in \mathscr{P}_{i} \cap G_{j}{ }^{*}$ and $\bar{\beta}=\left\langle v, p_{0}, \bar{r}\right\rangle$. Again, $v$ is the double point of $\bar{\beta} \cap F=\mathscr{L}_{\bar{\beta}} \cup \mathscr{A}_{1} \cup \mathscr{A}_{2}$. Then $l(r)=0$ for
$r \in G_{j}{ }^{*}, G_{j}{ }^{*} \subset \widetilde{F}_{i}$ and
$\operatorname{bd}\left(G_{j}{ }^{*}\right) \subset L_{i+1, i+4} \cup L_{i, i+5} \cup L_{i+2, i+3}$
imply that the sequence in $\mathscr{L}_{\bar{\beta}} \backslash\{v\}$ is 6.11.7:
b) $r_{i, i+1}, r_{i+1, i+5}, r_{i, i+5}, \bar{r}, r_{i+2, i+3}, \because_{i+2, i+4}, r_{i+3, i+4}$.

By the continuity of $\mathscr{L}_{\beta}$ for $\beta \subset \mathscr{P}_{i}$, a) and b) imply that $r^{\prime} \in G_{j}{ }^{*}$.
From 6.12,

$$
\bar{G}_{1} * \cup \bar{G}_{2} * \cup \bar{G}_{3} * \subseteq \widetilde{F}_{1} \cup \widetilde{F}_{2} \cup \widetilde{F}_{3}
$$

It is immediate that $\widetilde{F}_{i} \subset F_{i}{ }^{*}$ if int $\left(\widetilde{F}_{i}\right)=\emptyset$ and thus

$$
\overline{\operatorname{ext}(K)} \cap F=\cup\left(\bar{G}_{i}{ }^{*} \cup F_{i}{ }^{*}\right), \quad i \in \mathscr{S}_{3}
$$

6.13 Summary. Let $F$ be a $C$-nodal surface satisfying 6.0. Then

$$
F=\left(\cup\left(\bar{G}_{i} \cup \bar{G}_{i}^{\prime} \cup \bar{G}_{i}^{*} \cup F_{i} \cup F_{i}^{*}\right)\right) \cup G_{0}, \quad i \in \mathscr{S}_{3}
$$

where

1. $G_{0}, G_{i}, G_{i}{ }^{\prime}, G_{i}{ }^{*}, F_{i}$ and $F_{i}{ }^{*}$ are defined in 6.2, 6.7 and 6.9,
2. every $r \in F_{i} \cup F_{i}{ }^{*}$ such that $l(r)=0$ is hyperbolic,
3. $v \in \overline{G \cap E}$ if $G \neq \emptyset$ and $G=G_{i}$ or $G_{i}{ }^{\prime}$, and
4. $G \cap E \neq \emptyset$ if $G \neq \emptyset$ and $G=G_{0}$ or $G_{i}{ }^{*}$.

We refer to Figure 6 for a representation of a $C$-nodal surface with twenty-one lines. The surface in $P^{3}$ defined by

$$
x_{0}\left(4 x_{1}+x_{2}\right)\left(x_{1}+x_{2}\right)+x_{3}\left(x_{0}^{2}+x_{1} x_{2}\right)=0
$$



Figure 6
satisfies 6.13 with $M_{1} \equiv x_{0}=x_{1}=0, M_{2} \equiv x_{0}=x_{2}=0, M_{3} \equiv x_{1}+x_{2}$
$=x_{0}+x_{1}=0, M_{4} \equiv x_{1}+x_{2}=x_{0}+x_{2}=0, M_{5} \equiv 4 x_{1}+x_{2}=x_{0}$
$+2 x_{1}=0, M_{6} \equiv 4 x_{1}+x_{2}=x_{0}-2 x_{1}=0, L_{12} \equiv x_{0}=x_{3}=0, L_{13} \equiv x_{0}$
$+x_{1}=4 x_{1}+x_{2}-x_{3}=0, L_{14} \equiv x_{0}-x_{1}=4 x_{1}+x_{2}+x_{3}=0$,
$L_{15} \equiv x_{0}+2 x_{1}=2 x_{1}+2 x_{2}-x_{3}=0, L_{16} \equiv x_{0}-2 x_{1}=2 x_{1}+2 x_{2}$
$+x_{3}=0, L_{23} \equiv x_{0}-x_{2}=4 x_{1}+x_{2}+x_{3}=0, L_{24} \equiv x_{0}+x_{2}=4 x_{1}$
$+x_{2}-x_{3}=0, L_{25} \equiv 2 x_{0}-x_{2}=2 x_{1}+2 x_{2}+x_{3}=0, L_{26} \equiv 2 x_{0}+x_{2}$
$=2 x_{1}+2 x_{2}-x_{3}=0, L_{34} \equiv x_{1}+x_{2}=x_{3}=0, L_{35} \equiv x_{3}+9 x_{0}=3 x_{0}$
$+2 x_{1}-x_{2}=0, L_{36} \equiv x_{0}+x_{3}=x_{0}+2 x_{1}+x_{2}=0, L_{45} \equiv x_{0}+x_{3}$
$=x_{0}-2 x_{1}-x_{2}=0, L_{46} \equiv x_{3}+9 x_{0}=3 x_{0}-2 x_{1}+x_{2}=0, L_{56} \equiv 4 x_{1}$
$+x_{2}=x_{3}=0$ and $K \equiv x_{0}{ }^{2}+x_{1} x_{2}=0$.

## References

1. T. Bisztriczky, Surfaces of order three with a peak. I, J. of Geometry 11 (1978), 55-83.
2. ——Surfaces of order three with a peak. II, J. of Geometry 11 (1978), 110-138.
3.     - Uniplanar surfaces of order three, Geometriae Dedicata 8 (1979), 259-277.
4. -_Biplanar surfaces of order three, Can. J. Math. 31 (1979), 396-418.
5.     - Biplanar surfaces of order three. II, Can. J. Math. 32 (1980), 839-866.
6. --On surfaces of order three, Can. Math. Bull. 22 (1979), 351-355.
7. -_On the lines of a surface of order three, Math. Ann. 243 (1979), 191-195.
8. O. Haupt and H. Künneth, Geometrische Ordnungen (Springer, Berlin, Heidelberg, New York, 1967).
9. A. Marchaud, Sur les surfaces du troisième ordre de la géométrie finie, J. Math. Pure Appl. 18 (1939), 323-362.
10. -Sur les propriêtés différentielles du premier ordre des surfaces simples de Jordan et quelques applications, Ann. Ec. Norm. Sup. 63 (1947), 81-108.
11.     - Sur les courbes et surfaces du troisième ordre en géométrie finie, Bull. $\mathrm{Cl} . \mathrm{Sci}$. Acad. Roy. Belgique 49 (1963), 555-575.

University of Calgary,
Calgary, Alberta


[^0]:    Received May 18, 1981 and in revised form April 28, 1982.

