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LETTER TO THE EDITOR

Dear Editor,
A note on invariance principles for iterated random functions

In this letter, we refer to the papers of Benda (1998) and Wu and Woodroofe (2000). In
each paper, a central limit theorem is proved, one for contractive stochastic dynamical systems
and the other for iterated random functions, which amount to the same mathematical model.
Wu andWoodroofe show that, by slightly strengthening the moment condition on the function
g appearing in Benda’s central limit theorem, the continuity condition on g can be relaxed
essentially. So, for example, the indicator functions of balls are allowed as g. Moreover, using
work by Durrett and Resnick (1978), they prove an invariance principle for the central limit
theorem.

We show that, using work by Heyde and Scott (1973) and Scott (1973), the central results of
Benda (1998) and Wu and Woodroofe (2000) can be easily derived. Moreover, we show that,
along with an invariance principle for the central limit theorem, such a principle also holds for
the law of the iterated logarithm. To illustrate our results, we show that they can be applied to
autoregressive processes with an ARCH(1)-noise sequence.

1. Preliminaries

Throughout, let X be a Polish (i.e. complete and separable) metric space with metric ρ,
endowed with the σ -algebra of its Borel sets. Consider a discrete-parameter strictly stationary
X-valued Markov processX = (Xn)n∈N on an underlying probability space (�,K,P), where
N = {0, 1, 2, . . .} as usual. Let E denote the mean-value operator associated with P. Assume
that X is ergodic as a strictly stationary process, that is, the left-shift transformation on XN is
ergodic for the probability measure PX−1. Note also that, under our assumption on X, there
always exists a strictly stationary process X̃ = (X̃n)n∈Z (whereZ = {. . . ,−1, 0, 1, . . .}) which
extends X into the past, that is, X and X̃ have the same finite-dimensional distributions. See
Lemma 1 of Elton (1990).

Let Q denote the transition probability function of X, and consider the transition operator
of X, denoted by the same letterQ, which is defined by

Qf (x) =
∫

X
Q(x, dy)f (y), x ∈ X,

for any bounded measurable (complex- or real-valued) function f on X.
For any real-valued measurable function g on X, we define

‖g‖ :=
(∫

�

g2(X0) d P

)1/2

=
(∫

X
g2dπ

)1/2

= E1/2 g2,

where π := PX−1
0 , and put gn = g(Xn), S0 = 0, Sn = ∑n

k=1 gk for n ∈ N+ = {1, 2, . . .}.
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Assuming that E g(X0) = ∫
X g dπ = 0, for any n ∈ N+ define the stochastic processes ηCn

and ηDn by

ηCn (t) = 1

σ
√
n
(S�nt� + (nt − �nt�)g�nt�+1), t ∈ [0, 1],

ηDn (t) = 1

σ
√
n
S�nt�, t ∈ [0, 1],

where �·� is the integer-part function and σ 2 a positive number to be precisely defined later.
Clearly, ηCn (t) and η

D
n (t) are random variables on � for any t ∈ [0, 1] and, consequently, ηCn

and ηDn are random variables on � which take values in C (the metric space of real-valued
continuous functions on [0, 1] with the uniform metric) andD (the metric space of real-valued
functions on [0, 1] which are right continuous and have left limits, with the Skorokhod metric)
respectively (see Billingsley (1968)).

We can now state the result of Heyde and Scott (see Heyde and Scott (1973) and Scott
(1973)) in the present special case as follows.

Theorem 1. Assume that theMarkov processX satisfies the conditions above (i.e. is stationary
and ergodic) and that ‖g‖ < ∞,

∫
X g dπ = 0, and∑
n∈N+

‖E(gn | X0)‖ < ∞. (1)

Then the limit limn→∞ E(S2n/n) = σ 2 ≥ 0 exists. If σ > 0, then the measure P η−1
n converges

weakly to the Wiener measure, where ηn stands for either ηCn or ηDn , and the sequence(
ηCn√

2 log log n

)
n≥3

,

viewed as a subset ofC, is a relatively compact set whose derived set coincides P-almost surely
with the set {x ∈ C : x is absolutely continuous, x(0) = 0, and

∫ 1
0 [dx/dt]2 dt ≤ 1}.

Note that, since
E(gn | X0) = Qng(X0) P -a.s., n ∈ N+,

the condition (1) amounts to ∑
n∈N+

‖Qng‖ < ∞.

2. Two invariance principles for iterated random functions

On an underlying probability space (�,K,P0), we consider an X-valued Markov process
X = (Xn)n∈N given by an iterated random function, i.e. by means of the recursive equation
Xn = F(Xn−1, θn), n ∈ N+. We adopt here the notation and definitions from Wu and
Woodroofe (2000). As is mentioned there and shown by Diaconis and Freedman (1999), under
the conditions ∫

�

log(Lθ )H(dθ) < 0, (2)

∫
�

LαθH(dθ) < ∞, (3)

∫
�

ρα(x0, F (x0, θ))H(dθ) < ∞ (4)
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for some α > 0 and x0 ∈ X (hence for all x0 ∈ X), there is a unique stationary distribution π
for X, and the strictly stationary process obtained by letting X0 have distribution π is ergodic.
Let P denote the probability measure on (�,K) for which PX−1

0 = π . Finally, let � be the
collection of nondecreasing concave functions ψ : [0,∞) → [0,∞) such that ψ(t) > 0 for
t > 0 and ∫ 1

0
t−1

√
ψ(t) dt < ∞.

For ψ ∈ �, x ∈ X, and any real-valued measurable function g on X with ‖g‖ < ∞, define

K(g,ψ, x) = sup
{x′:0<d(x,x′)<1}

|g(x′)− g(x)|√
ψ(d(x, x′))

and

κ(g, ψ) =
(∫

X
K2(g, ψ, x)π(dx)

)1/2

.

Theorem 2. Assume that (2), (3), and (4) hold and let π be the stationary distribution forX. If
g is a real-valued measurable function on X with

∫
X g dπ = 0 and

∫
X|g|p dπ < ∞ for some

p > 2, and there is a ψ ∈ � for which κ(g, ψ) < ∞, then the conclusions of Theorem 1 all
hold.

Proof. Under the same assumptions, Wu and Woodroofe (2000) showed that the series∑
n∈N+ ‖Qng‖ is convergent. Hence, h = ∑

n∈N+ Q
ng converges in L2

π (X) and, moreover,

the term σ 2 occurring in Theorem 1 is equal to ‖h‖2 − ‖Qh‖2.
Remark 1. The condition κ(g, ψ) < ∞ is related to similar conditions considered by Lasota
and Yorke (1994) (see also Szarek (1997)). In particular, it holds if g is a Lipschitz function.
Moreover, Wu and Woodroofe (2000, Theorem 3) showed that this condition holds if g is the
indicator function of a ball.

Remark 2. The conclusions of Theorem 2 still hold under a probability P0 which corresponds
to either an initial distribution ν � π (see Billingsley (1968, Chapter 3)) or to one concentrated
at x0 ∈ X for all x0 ∈ X not belonging to an exceptional set of P-measure equal to 0 (see
Durrett and Resnick (1978)). Clearly, for the iterated logarithm case this is obvious.

Remark 3. The convergence of the series
∑
n∈N+ ‖Qng‖ can be easily shown in the casewhere

g is a bounded Lipschitz function. See Herkenrath et al. (2003).

3. An application

In addition to the applications which are discussed by Wu and Woodroofe (2000), we refer
to autoregressive processes with an ARCH(1)-noise sequence (εn)n∈N+ , which are described
by the iterated random function

Xn = F(Xn−1, εn) = αXn−1 +
√
α0 + α1X

2
n−1εn, n ∈ N+.

Here X = � = R, ρ(x, x′) = |x − x′| for x, x′ ∈ R, α ≥ 0, α0 > 0, α1 > 0 are real
parameters, and (εn)n∈N+ stands for (θn)n∈N+ ; see e.g. Borkovec and Klüppelberg (2001). In
Herkenrath et al. (2003) it is shown that, if the common distribution H of the εn, n ∈ N+, has
a finite first absolute moment, i.e. E(|ε1|) = ∫

R
|ε|H(dε) < ∞, and E(log(α+ √

α1|ε1|)) < 0,
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then the conditions (2), (3), and (4) hold with α = 1 so that a unique stationary distribution π
for (Xn)n∈N should exist.

Theorem 2 therefore holds for such time series with appropriate functions g.
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