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We consider laminar, fully developed, Poiseuille flows of liquid in the Cassie state through
diabatic, parallel-plate microchannels symmetrically textured with isoflux ridges. Via
matched asymptotic expansions, we develop expressions for (apparent hydrodynamic) slip
lengths and Nusselt numbers. Our small parameter (ε) is the pitch of the ridges divided
by the height of the microchannel. When the ridges are oriented parallel to the flow, we
quantify the error in the Nusselt number expressions in the literature and provide a new
closed-form result. It is accurate to O

(
ε2) and valid for any solid (ridge) fraction, whereas

previous ones are accurate to O
(
ε1) and breakdown in the important limit when the solid

fraction approaches zero. When the ridges are oriented transverse to the (periodically fully
developed) flow, the error associated with neglecting inertial effects in the slip length
is shown to be O

(
ε3Re

)
, where Re is the channel-scale Reynolds number based on its

hydraulic diameter. The corresponding Nusselt number expressions’ accuracies are shown
to depend on the Reynolds number, Péclet number and Prandtl number in addition to ε.
Manipulating the solution to the inner temperature problem encountered in the vicinity
of the ridges shows that classic results for the thermal spreading resistance are better
expressed in terms of polylogarithm functions.

Key words: wetting and wicking

1. Introduction

1.1. Background and motivation
Adiabatic, internal flows through microchannels textured with hydrophobic ridges, pillars,
etc. to maintain liquid in the Cassie state for lubrication have received considerable
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attention (Rothstein 2010; Lee, Choi & Kim 2016). Diabatic flows, as discussed by Game
et al. (2018), are also of interest. Applications include liquid cooling of microelectronics,
where, beneficially, lubrication decreases caloric resistance (bulk temperature rise) and,
detrimentally, reduced solid–liquid (interfacial) area increases convective resistance
(surface-to-bulk temperature difference). (Notably, transition from laminar to turbulent
flow does the opposite.) Importantly, Lam, Hodes & Enright (2015) showed that a net
enhancement is likely via judicious texturing of a microchannel with a superhydrophobic
(SH) surface when the coolant is a liquid metal (as of interest to microchannel cooling
per Zhang et al. 2015) and thus the caloric resistance is dominant. It bears mentioning
that the most cited paper in the field of the thermal management of electronics, which
further advancements in computing and telecommunications are highly dependent upon,
is by Tuckerman & Pease (1981). It concerns direct liquid cooling where tiny (and, thus,
very high flow resistance) microchannels (say 300 μm tall by 50 μm wide in cross-section
by 1 cm long) are etched into a silicon chip (say, a microprocessor die).

The key engineering parameters in such microchannel cooling problems are the
Poiseuille number (for caloric resistance) and Nusselt numbers (for convective
resistances). We provide more convenient and accurate closed-form expressions for them
than available in the literature. To be consistent with the literature, we provide the
(dimensionless, apparent hydrodynamic) slip lengths rather than the Poiseuille number.

1.2. Problems
We consider laminar, Poiseuille flow of a liquid in the Cassie state through a parallel-plate
microchannel symmetrically textured with isoflux, no-slip ridges aligned parallel or
transverse to the flow. The flow is, hydrodynamically and thermally, fully developed
(periodically fully developed) for parallel (transverse) ridges. We assume constant
thermophysical properties and ignore viscous dissipation. We further assume that menisci
are flat, shear free and adiabatic and we ignore the effects of the thermocapillary stress
along them. The assumption of a flat meniscus is reasonable in the case of water on a
hydrophobic surface, where the advancing contact angle is approximately 110◦ (Quéré
2005) and thus the maximum protrusion angle into a groove is approximately 20◦. It
also decreases in the streamwise direction due to the pressure gradient in the liquid, with
menisci essentially flat by the outlet. The effects of relaxing this assumption are captured
by Kirk, Hodes & Papageorgiou (2017) in the context of a boundary perturbation; however,
this required a numerical solution of dual-series equations. Our goal here is closed-form
expressions for Nusselt numbers, albeit with slightly less accuracy. We do acknowledge,
however, that, in the case of a liquid metal, the protrusion angle may be large and the
numerical results of Game et al. (2018) should be used to compute the Nusselt number.
We further assume that the triple contact lines are pinned at the tips of the ridges; see,
e.g. experimental evidence of this by Byun et al. (2008). Finally, we note that the adiabatic
meniscus assumption implies that phase change effects along it are neglected. A brief
discussion of thermocapillary and phase change effects along curved menisci is provided
in our Conclusions, and we note that, assuming no phase change, the secondary effect
of heat conduction through the gas phase in the plastron was considered by Ng & Wang
(2014).

1.3. Scope
The assumption that multi-dimensional effects due to the ridges on the velocity and
temperature fields are confined to an ‘inner region’ near them has been the basis for many
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analyses of internal liquid flows in the Cassie state when the microchannel height is large
compared with the ridge pitch. This allows the use of solutions for semi-infinite domains
for the inner region because it is small compared with the ‘outer region’, where the velocity
field becomes, asymptotically, unidirectional and one-dimensional and the temperature
field is two-dimensional. Correspondingly, the flow is governed by Laplace’s equation and
the Stokes equations in the inner region for parallel and transverse ridges, respectively, and
by the same one-dimensional Poisson equation in both outer ones. In turn, asymptotically,
the temperature field (heat transfer) in both cases is governed by Laplace’s equation in the
inner region and by the same two-term advection–diffusion equation in the outer one. We
formally quantify the validity of these assumptions through the use of matched asymptotic
expansions. Specifically, only assuming that the ridge pitch, 2d, is small compared with
the microchannel height, 2H, we scale the effects of relevant hydrodynamic and thermal
phenomena in the two regions with respect to the small parameter ε = d/H and, in the
case of transverse ridges, the Reynolds number (Re) and Péclet number (Pe). Significantly,
unlike in most studies, we provide the error terms for our slip lengths and Nusselt numbers.
Also, we provide a new closed-form (mean) Nusselt number expression accurate to O(ε2)
for parallel ridges and one with its accuracy dependent upon the Reynolds number, Péclet
number and Prandtl number, in addition to ε, for transverse ridges. Both of these results
remain valid as the solid fraction approaches zero, a significant advancement. We also
show that a classic spreading resistance formula for our inner thermal problem can be
better expressed in terms of polylogarithm (special) functions. Our results are compared
against exact solutions in the literature when they are available.

2. Parallel ridges

A schematic of the (dimensional) geometry of the parallel-ridge problem is shown in
figure 1(a), where a left-handed coordinate system is used. The unidirectional and fully
developed flow in the z-direction is driven by a prescribed pressure gradient, dp/dz, a
negative constant. The problem is symmetric in the x-direction and the width of the
meniscus is 2a and that of the ridges is 2(d − a). Our domain extends from x = 0 to
x = d and from y = 0 to y = H, the channel centreline, on account of symmetries. Vapour
and/or non-condensable gas may be present in the cavity between the ridges, but we ignore
it.

2.1. Hydrodynamic problem
The dimensional form of the streamwise-momentum equation is

∂2w
∂x2 + ∂2w

∂y2 = 1
μ

dp
dz

, (2.1)

where w is the streamwise velocity and μ is the dynamic viscosity of the liquid. The
shear-free and no-slip boundary conditions along the meniscus and solid–liquid interface,
respectively, and symmetry ones elsewhere on the domain manifest themselves as

∂w
∂y

= 0 at y = 0 for 0 < x < a (2.2)

w = 0 at y = 0 for a < x < d (2.3)

∂w
∂y

= 0 at y = H for 0 < x < d (2.4)
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Figure 1. Schematic of the dimensional geometry of the parallel-ridge problem (a) and the corresponding
dimensionless geometry (b). The (planar) domain is shown in grey. A (constant) streamwise-pressure gradient
is imposed along the z-direction.

∂w
∂x

= 0 at x = 0 and x = d for 0 < y < H, (2.5)

respectively. We non-dimensionalize lengths by H and indicate that a quantity is
non-dimensional by placing a tilde over it. The dimensionless geometry of the problem
is shown in figure 1(b). We non-dimensionalize w by (−dp/dz)H2/(2μ). Then

∂2w̃
∂ x̃2 + ∂2w̃

∂ ỹ2 = −2, (2.6)

subject to

∂w̃
∂ ỹ

= 0 at ỹ = 0 for 0 < x̃ < δε (2.7)

w̃ = 0 at ỹ = 0 for δε < x̃ < ε (2.8)

∂w̃
∂ ỹ

= 0 at ỹ = 1 for 0 < x̃ < ε (2.9)

∂w̃
∂ x̃

= 0 at x̃ = 0 and x̃ = ε for 0 < ỹ < 1, (2.10)

where δ = a/d is the cavity fraction.
We resolve the velocity field using a matched asymptotic expansion for ε � 1 in

reference to figure 2(a). The outer region occupies the majority of the domain and it will
be shown that, asymptotically, the velocity field there is one-dimensional and parabolic.
The spatially periodic portion of the velocity field on account of the ridges is shown to be
confined to an inner region in the domain where ỹ is of comparable scale to the ridge pitch.

Our analysis follows that of Hodes et al. (2017), but both sides rather than one side of
the microchannel are textured and thermocapillary stresses along menisci are absent. The
extents of the rectangular domain are made independent of the small parameter by working
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T̃ ∼ T̃ ( ỹ ) + e.s.t.

∼  –2 + e.s.t.

Outer region
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Figure 2. Depiction of matched asymptotic expansions for flow (a) and temperature (b) problems, where
‘e.s.t.’ denotes exponentially small term.

in terms of X = x̃/ε such that the problem becomes

1
ε2

∂2w̃
∂X2 + ∂2w̃

∂ ỹ2 = −2, (2.11)

subject to

∂w̃
∂ ỹ

= 0 at ỹ = 0 for 0 < X < δ (2.12)

w̃ = 0 at ỹ = 0 for δ < X < 1 (2.13)

∂w̃
∂ ỹ

= 0 at ỹ = 1 for 0 < X < 1 (2.14)

∂w̃
∂X

= 0 at X = 0 and X = 1 for 0 < ỹ < 1. (2.15)

2.1.1. Outer region
The outer region of the domain is where X = O(1), ỹ = ord(1), i.e. strictly of order unity
as ε → 0. It is sufficiently far from the mixed boundary condition imposed at ỹ = 0 that
the velocity field is one-dimensional, i.e. w̃ = w̃(ỹ), as justified henceforth. Equation (2.11)
reduces, to leading order, to ∂2w̃/∂X2 = 0. Integrating, satisfying the symmetry boundary
condition in X and integrating again shows that, to leading order, w̃ = w̃(ỹ). Thus, the
∂2w̃/∂ ỹ2 and −2 terms in (2.11) balance, implying that w̃ = O(1). We thus, as an ansatz,
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expand the velocity as a regular power series in ε as per

w̃ =
∞∑

n=0

εnw̃n + e.s.t., ε → 0, (2.16)

where w̃n = O(1) for all n � 0 and e.s.t. denotes exponentially small terms that are smaller
than any algebraic order of ε. We do not attempt to solve for these terms, and only include
them for error quantification. Substituting (2.16) into (2.11) yields an equation at each
(algebraic) order in ε as per

O
(
ε−2
)

:
∂2w̃0

∂X2 = 0 (2.17)

O
(
ε−1
)

:
∂2w̃1

∂X2 = 0 (2.18)

O
(
ε0
)

:
∂2w̃2

∂X2 + ∂2w̃0

∂ ỹ2 = −2 (2.19)

O
(
εn) :

∂2w̃n+2

∂X2 + ∂2w̃n

∂ ỹ2 = 0, n � 1. (2.20)

The symmetry conditions at X = 0, 1 apply to all orders of w̃. Integrating the O(ε−1)
problem and applying them shows that w̃1, like w̃0, is purely a function of ỹ. The O(ε0)
problem shows that ∂2w̃2/∂X2 is purely a function of ỹ and, on account of the symmetry
conditions, so is w̃2. By induction in n, the remaining problems show that w̃n = w̃n(ỹ) for
n � 0. Thus, (2.19)–(2.20) collapse to

d2w̃0

dỹ2 = −2 (2.21)

d2w̃n

dỹ2 = 0, n � 1. (2.22)

Integrating and applying the symmetry condition at the channel centreline as per (2.14)
yields

w̃0
(
ŷ
) = −ỹ2 + 2ỹ + C0, (2.23)

w̃n (ỹ) = Cn, (2.24)

where Cn are constants. Thus the solution to the outer problem is

w̃ ∼ −ỹ2 + 2ỹ + C (ε) + e.s.t., (2.25)

where

C (ε) =
∞∑

n=0

Cnε
n. (2.26)

We turn to the inner problem to satisfy the mixed boundary condition at the composite
interface, i.e. the meniscus and the solid–liquid interface.
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2.1.2. Inner region
The inner region of the domain is where x̃ ∼ ỹ = O(ε), i.e. they are on the scale of the
pitch of the ridges, as ε → 0. This is sufficiently close to the mixed boundary condition
imposed at ỹ = 0 that the velocity field is two-dimensional, i.e. w̃ = w̃(x̃, ỹ). Our stretched
coordinates are X = x̃/ε, Y = ỹ/ε such that the inner region corresponds to X ∼ Y = O(1)

as ε → 0 as per figure 2(a). Since the X and Y scales are of the same order, the viscous
stress (Laplacian) terms are of the same order in the momentum equation. The velocity
scale for the inner problem follows from the outer solution as ỹ is decreased to O(ε).
Substituting ỹ = εY into (2.25) yields

w̃ ∼ −ε2Y2 + 2εY + C (ε) + e.s.t. (2.27)

Hence, when C(ε) = O(1), i.e. C0 /= 0 as required by (2.11), w̃ = O(1) in the inner region.
Expressing the inner velocity field as w̃ = W(X, Y), the problem becomes

∂2W
∂X2 + ∂2W

∂Y2 = −2ε2, (2.28)

subject to

∂W
∂Y

= 0 at Y = 0 for 0 < X < δ (2.29)

W = 0 at Y = 0 for δ < X < 1 (2.30)

W ∼ −ε2Y2 + 2εY + C(ε) + e.s.t. as Y → ∞ for 0 < X < 1 (2.31)

∂W
∂X

= 0 at X = 0 and X = 1 for Y > 0, (2.32)

where (2.31) is the (Van Dyke) matching condition. Note that the condition is written as
an infinite series here (since C(ε) is (2.26)) and the inner solution W has not yet been
expanded in ε, but the matching can be done up to a finite number of terms in the usual
way – see Appendix A. Expressing W as

W = −ε2Y2 + 2εŴ, (2.33)

Ŵ must satisfy

∇2Ŵ = 0, (2.34)

subject to

∂Ŵ
∂Y

= 0 at Y = 0 for 0 < X < δ (2.35)

Ŵ = 0 at Y = 0 for δ < X < 1 (2.36)

Ŵ ∼ Y + C (ε)

2ε
+ e.s.t. as Y → ∞ (2.37)

∂Ŵ
∂X

= 0 at X = 0 and X = 1 for 0 < Y < ∞. (2.38)

This Ŵ problem is the superposition of a one-dimensional linear-shear flow over a smooth
surface and a perturbation to it which accommodates a mixed boundary condition and
manifests itself with a constant mean velocity over the width of the domain. It has been
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solved using a conformal map by Philip (1972a,b). The solution up to the exponentially
small error in the matching condition is

Ŵ = Im

{
2
π

cos−1

[
cos
(
πΘ‖/2

)
cos (πδ/2)

]}
+ e.s.t., (2.39)

where Θ‖ = X + iY , and

Ŵ ∼ Y + λ+ e.s.t. as Y → ∞, (2.40)

where

λ = 2
π

ln[sec (δπ/2)]. (2.41)

It follows that
C (ε) = 2ελ (2.42)

and the inner and outer solutions are

W ∼

W1︷ ︸︸ ︷
2 Im

{
2
π

cos−1

[
cos
(
πΘ‖/2

)
cos (πδ/2)

]}
ε +

W2︷ ︸︸ ︷
(−Y2) ε2 + e.s.t. (2.43)

w̃ ∼
w̃0︷ ︸︸ ︷

−ỹ2 + 2ỹ +
w̃1︷︸︸︷
2λ ε + e.s.t., (2.44)

respectively. Note that we did not have to expand W (or Ŵ) in powers of ε to arrive
at the above inner solution and it has been checked that matching order by order (as in
Appendix A) gives the same result.

2.1.3. Composite solution
The solutions for the inner and outer regions are in agreement in the overlap region, where
the outer one keeps its form. Therefore, the inner solution, (2.43), which is accurate to all
algebraic orders in ε, is uniformly valid throughout the domain, i.e. it is the composite
solution as per, in outer variables,

w̃comp ∼ −ỹ2 + 2ε Im
{

2
π

cos−1
[

cos (π (x̃/ε + iỹ/ε) /2)

cos (πδ/2)

]}
+ e.s.t. (2.45)

2.1.4. Slip length
The slip length quantifies the flow enhancement provided by texturing a microchannel with
a SH surface(s). It is related to the one-dimensional (Navier-slip) problem, which does not
resolve the local velocity field in the inner region, and is governed by

d2w̃1d

dỹ2 = −2, (2.46)

where w̃1d is the dimensionless velocity averaged over a ridge period. It is subject to the
symmetry condition at ỹ = 1 and a Navier-slip boundary condition on the SH surface
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as per

w̃1d,ỹ=0 = b̃
dw̃1d

dỹ

∣∣∣∣
ỹ=0

, (2.47)

where

b̃ = b
h
, (2.48)

is the dimensionless slip length. It follows that

w̃1d = −ỹ2 + 2ỹ + 2b̃, (2.49)

and its mean value is
¯̃w1d = 2b̃ + 2

3 . (2.50)

Following Lauga & Stone (2003), we compute the slip length by equating the mean
velocities from the composite and one-dimensional (Navier-slip) velocity profiles. As with
the flow configurations resolved by Philip (1972a,b), the velocity field for our configuration
is the sum of that for a one-dimensional, Poiseuille flow in a microchannel with smooth
walls and a velocity-increment field. The latter is not subject to any forcing term and
obeys the shear-free boundary condition at ỹ = 1. Therefore, there is no net momentum
transferred across any plane normal to the composite interface in the velocity-increment
problem and thus the mean velocity increment over the width of the domain is a constant,
i.e. 2ελ+ e.s.t. Thus, the outer solution is valid throughout the domain insofar as
computing the slip length and it follows from (2.25), (2.42) and (2.49) that

b̃ ∼ ελ+ e.s.t. (2.51)

2.1.5. Discussion
We utilized a matched asymptotic expansion to develop the preceding hydrodynamic
results, as done by Hodes et al. (2017), Kirk (2018) and Kirk et al. (2020), and they
facilitate the below solution of the thermal problem. Teo & Khoo (2009) obtained it by
taking the limit as ε → 0 of the dual-series equations satisfying the mixed boundary
condition and their numerical solutions of them accommodate arbitrary values of ε and
δ. Kirk et al. (2017) too showed that the error in our result is exponentially small. More
recently, Marshall (2017) obtained an exact formula for the slip length (expressed as
contour integrals) for arbitrary ε and δ and, additionally, weakly curved menisci, by
using conformal maps, loxodromic function theory and reciprocity arguments. Additional
effects have been considered by many investigators. For example, Kirk (2018) relaxed the
assumption of weakly curved menisci in the large solid fraction limit for ε � 1. Moreover,
in numerical studies, Game et al. (2017) captured edge and subphase effects and Game,
Hodes & Papageorgiou (2019) captured inertial effects due to slowly varying curvature
along a shear-free meniscus on account of the pressure difference across the meniscus
decreasing in the streamwise direction.

We note that, when the microchannel is textured on only one side, the same analysis
done by Hodes et al. (2017) yields the composite velocity profile as

w̃comp ∼ −ỹ2 + ε

1 + ελ
Im
{

2
π

cos−1
[

cos (π (x̃/ε + iỹ/ε) /2)

cos (πδ/2)

]}
+ e.s.t. (2.52)

Also, an exact solution based on a (cumbersome) conformal map is available for this case
(Philip 1972a,b) and comparison with it shows that the composite velocity profile and
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corresponding slip length are accurate to O(e−π/ε) (Hodes et al. 2017), confirming that
the error is exponentially small. In the symmetric microchannel case at hand, there are no
higher-order (O(ε3)) algebraic terms and hence the O(ε2) term could be expected in (2.43)
(although the fact that the next term is exponentially small is unexpected). If the channel
is not symmetric but textured only on one wall as in (2.52) (or instead has curved menisci
– see Kirk 2018), then an expansion for ε � 1 shows that all algebraic orders are present
in the hydrodynamics.

2.2. Thermal problem

2.2.1. Formulation
The dimensional form of the thermal energy equation is

w
∂T
∂z

= α

(
∂2T
∂x2 + ∂2T

∂y2

)
, (2.53)

where axial conduction is absent because the temperature field is fully developed and
α = k/(ρcp) is the thermal diffusivity of the liquid, where k is its thermal conductivity, ρ

is its density and cp is its specific heat at constant pressure. The boundary conditions on
(2.53) are

∂T
∂y

= 0 at y = 0 for 0 < x < a (2.54)

∂T
∂y

= −q′′
sl
k

at y = 0 for a < x < d (2.55)

∂T
∂y

= 0 at y = H for 0 < x < d (2.56)

∂T
∂x

= 0 at x = 0 and x = a for 0 < y < H, (2.57)

where q′′
sl is the (constant) heat flux prescribed along the solid–liquid interface. Moreover,

again, because of the thermally fully developed assumption, along with the constant heat
flux boundary condition, we have

∂T
∂z

= q′′
sl(d − a)

Qρcp
, (2.58)

where Q is the volumetric flow rate of liquid through a half-period.
Henceforth, we proceed with the non-dimensional form of the problem, where

temperature is non-dimensionalized (in a similar way as was done by Kirk et al. 2017)
by subtracting the (bulk) mean liquid temperature, Tm, and dividing by a characteristic
temperature scale of q′′

slH/k such that

T̃ = k (T − Tm)

q′′
slH

, (2.59)

where

Tm =

∫ H

0

∫ d

0
wT d x dy∫ H

0

∫ d

0
w d x dy

. (2.60)
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Asymptotic Nusselt numbers for flow in the Cassie state

The thermal energy equation becomes

εφ

Q̃
w̃ = ∂2T̃

∂ x̃2 + ∂2T̃
∂ ỹ2 , (2.61)

where φ = 1 − δ is the solid fraction of the ridges and Q̃ = 2μQ/[(−dp/dz)H4]. The
forcing term, εφw̃/Q̃, is known (to all algebraic orders) from the solution to the
hydrodynamic problem.

Noting that
Q̃ ∼ (2ελ+ 2/3) ε + e.s.t., ε → 0, (2.62)

the dimensionless thermal energy equation (written in terms of X such that the domain
boundaries are independent of ε) becomes

φ

2/3 + 2ελ
w̃ + e.s.t. = 1

ε2
∂2T̃
∂X2 + ∂2T̃

∂ ỹ2 , (2.63)

subject to

∂T̃
∂ ỹ

= 0 at ỹ = 0 for 0 < X < δ (2.64)

∂T
∂ ỹ

= −1 at ỹ = 0 for δ < X < 1 (2.65)

∂T̃
∂ ỹ

= 0 at ỹ = 1 for 0 < X < 1 (2.66)

∂T̃
∂X

= 0 at X = 0 and X = 1. (2.67)

2.2.2. Outer region
The forcing term in the above problem is O(1) and thus, by the same reasoning used to
justify that w̃ = w̃(ỹ) = O(1), we also have T̃ = T̃(ỹ) = O(1) to leading order. We thus
expand the temperature field as

T̃ =
∞∑

n=0

εnT̃n + e.s.t., ε → 0, (2.68)

where T̃n = O(1) for all n � 0.
Substituting (2.68) and the solution for the outer velocity profile as per (2.44) into (2.63),

we find that, at the various orders of ε,

O(ε−2) :
∂2T̃0

∂X2 = 0 (2.69)

O(ε−1) :
∂2T̃1

∂X2 = 0 (2.70)

O(ε0) :
∂2T̃2

∂X2 + ∂2T̃0

∂ ỹ2 = 3φ

2

(
−ỹ2 + 2ỹ

)
(2.71)

O(εn) :
∂2T̃n+2

∂X2 + ∂2T̃n

∂ ỹ2 = 3φ

2
[(−3λ)n(−ỹ2 + 2ỹ) + (−3λ)n−12λ], n � 1. (2.72)
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Following the same approach as in the outer hydrodynamic problem shows that T̃n = T̃n(ỹ)
for all n. The solution to the outer problem, which satisfies all 3 symmetry conditions,
follows as

T̃ = φ

2/3 + 2ελ

[
−(ỹ − 1)4

12
+
(

1
2

+ ελ

)
(ỹ − 1)2 + D (ε)

]
+ e.s.t., ε → 0, (2.73)

where

D(ε) =
∞∑

n=0

εnDn. (2.74)

2.2.3. Inner region
Denoting the inner temperature profile as T̃ = θ(X, Y), the thermal energy equation
becomes

∂2θ

∂X2 + ∂2θ

∂Y2 = φ

2/3 + 2ελ

(
−ε4Y2 + 2ε3Im

{
2
π

cos−1
[

cos (πZ/2)

cos (πδ/2)

]})
+ e.s.t.

(2.75)

The forcing is O(ε3); therefore, neglecting terms of this order, it reduces to Laplace’s
equation as per

∂2θ

∂X2 + ∂2θ

∂Y2 = O
(
ε3
)

, (2.76)

subject to

∂θ

∂Y
= 0 at Y = 0 for 0 < X < δ (2.77)

∂θ

∂Y
= −ε at Y = 0 for δ < X < 1 (2.78)

θ ∼ −εφY + φ

[
1
2

+ 1/12 + D(ε)

2/3 + 2ελ

]
+ O

(
ε3
)

as Y → ∞ (2.79)

∂θ

∂X
= 0 at X = 0 and X = 1 for Y > 0, (2.80)

where (2.79), which follows from (2.73) with ỹ = εY , is the matching condition. As per the
solution by Mikic (1957) to this problem in the context of (thermal) spreading resistance

θ = −εφY − 2ε

π2

∞∑
n=1

sin (nπδ) cos (nπX) e−nπY

n2 + φ

[
1
2

+ 1/12 + D(ε)

2/3 + 2ελ

]
+ O

(
ε3
)

.

(2.81)

We solve for D(ε) by enforcing that the dimensionless mean liquid temperature, as defined
by (2.59) and (2.60), is zero, i.e. using outer variables∫ 1

0

∫ ε

0
w̃T̃ d x̃ dỹ = 0. (2.82)

In Appendix B, we show that we can enforce this condition using the outer solutions only,
up to an error of O(ε3), and the final temperature along the composite interface is found
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Asymptotic Nusselt numbers for flow in the Cassie state

to be

θ (X, 0) = φD̂ (ελ) − 2ε

π2

∞∑
n=1

sin (nπδ) cos (nπX)

n2 + O
(
ε3
)

, (2.83)

where D̂(ελ) (which is related to D(ε)) is given by the explicit formula (B9).

2.2.4. Composite solution
The inner solution is not the composite one as in the hydrodynamic problem because (2.79)
is consistent with (2.73) only up to O(ε2). Rather

T̃comp = T̃out + T̃in − T̃overlap; (2.84)

consequently

T̃comp ∼ φ

2
3

+ 2ελ

[
−(ỹ − 1)4

12
+
(

1
2

+ ελ

)
(ỹ − 1)2 + D̆ (ε)

]

− 2ε

π2

∞∑
n=1

sin (nπδ) cos
(

nπ
x̃
ε

)
exp
(

−nπ
ỹ
ε

)
n2 + O

(
ε3
)

. (2.85)

2.2.5. Nusselt numbers
We define the local Nusselt number along the solid–liquid interface as

Nu(X) = 4h(X)H
k

, (2.86)

where h(X) is the (local) heat transfer coefficient, i.e. q′′
sl/(Tsl − Tm), which is finite along

the solid–liquid interface and zero along the meniscus. Then

Nu(X) =
⎧⎨⎩0 for 0 � X < δ

4
θ (X, 0)

for δ < X � 1.
(2.87)

The minimum local Nusselt number (Numin) occurs at the centre of a ridge, i.e. X = 1, as
per

Numin = 4
θ (1, 0)

. (2.88)

This is an important engineering parameter because the magnitude of the maximum
temperature difference between the ridge and bulk liquid follows from it. From (2.83),
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the minimum local Nusselt number (Numin) may be expressed as

Numin = 4

φ

[
D̂ (ελ) + 2ε

φ

∑∞
n=1

sin (nπφ)

(nπ)2

] + O
(
ε3
)

. (2.89)

More generally, the local Nusselt number anywhere along the ridge is

Nu(X) = 4

φ

(
D̂ (ελ) − 2ε

φ

∑∞
n=1

sin (nπδ) cos (nπX)

n2π2

) + O
(
ε3
)

, δ < X � 1.

(2.90)

This was derived in the limit of small ε, but the subsequent behaviour in the small solid
fraction limit, φ → 0, is also of interest. This limit is physically relevant, but care should
be taken when making further approximations in ε that the correct asymptotic behaviour
in the secondary limit φ → 0 is preserved. If it is not preserved, e.g. if one simply
expands (2.90) directly in powers of ε, the accuracy and validity of such an expression
is significantly reduced. This is elucidated in Appendix C, where we instead expand in
powers of E(ε) = ε/(D̂ + ελ), yielding

Nu(X) = 4

φ
[
D̂ (ελ) + ελ

] {1 + E(ε) [λ+ S(X)] + E(ε)2 [λ+ S(X)]2
}

+ O
(
ε3
)

for δ < X � 1. (2.91)

The quantity E remains bounded even if φ → 0, and hence the expansion stays well
ordered. The O(ε3) error term accounts for the O(E3) terms since E = O(ε). We note
that, by evaluating Nu in the limit when the solid fraction is 1, i.e. for a smooth channel
such that λ→ 0, we recover the well-known result that Nu = 140/17. (The O(ε3) error
term can be shown to vanish in this limit.)

The average Nusselt number for the composite interface is defined in the manner of
Maynes & Crockett (2014) and Kirk et al. (2017) as

Nu = 4h̄H
k

, (2.92)

where h̄ = ∫ d
a h d x/d. Thus

Nu =
∫ 1

δ

Nu(X) dX. (2.93)

Performing the integration on (2.91), and substituting the series S(X), we find that

Nu ∼ 4

D̂ (ελ) + ελ

{
1 +

[
λ−

∞∑
n=1

2 sin2 (nπδ)

φ2 (nπ)3

]
E(ε)

+
[
λ2 − 2λ

∞∑
n=1

2 sin2 (nπδ)

φ2 (nπ)3 +
∞∑

m=1

∞∑
n=1

Lm,n

]
E(ε)2

}
+ O

(
ε3
)

, (2.94)
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Asymptotic Nusselt numbers for flow in the Cassie state

where

Lmn = 4
φ3

sin (nπδ) sin (mπδ)

(nπ)2 (mπ)2

⎧⎪⎪⎨⎪⎪⎩
1
2

[
1 − δ − sin (2nπδ)

2nπ

]
for m = n

−sin [(m + n) πδ]
2π (m + n)

− sin [(m − n) πδ]
2π (m − n)

for m /= n.

(2.95)

Alternatively, a simpler expression valid for any solid fraction with no sums to evaluate,
but with an O(ε) error term, follows from the leading term of (2.94)

Nu ∼ 4

D̂ (ελ) + ελ
+ O (ε) . (2.96)

An average Nusselt number may also be defined in the manner of Enright et al. (2014)
as

Nu
′ = 4h̄′H

k
, (2.97)

by defining the average heat transfer coefficient as h̄′ = φq′′
sl/(Tsl − Tm) such that it is

based upon the mean heat flux over the composite interface (φq′′
sl) and the mean driving

force for heat transfer over the solid–liquid one (Tsl − Tm). Then, it is given by

Nu
′ = 4φ2∫ 1

δ

θ (X, 0) dX

. (2.98)

Performing the integration we find that

Nu
′ = 140 (1 + 3ελ)2

/{
17 +

[
84λ+ 70

φ2π3

∞∑
n=1

sin2 (nπδ)

n3

]
ε

+
[

105λ2 + 420λ
φ2π3

∞∑
n=1

sin2 (nπδ)

n3

]
ε2 +

[
630λ2

φ2π3

∞∑
n=1

sin2 (nπδ)

n3

]
ε3

}
+ O

(
ε3
)

.

(2.99)

There is no need to expand this result further in ε, and it also vanishes as expected when
λ→ ∞ (i.e. φ → 0). Also, the last term in the denominator is retained as, depending on
the relative values of λ and ε, it may contribute significantly to the result. Finally, we note
that, regardless of which definition of the mean Nusselt number is used, the local one is
given by (2.86). In Appendix D, we validate the asymptotic behaviour of this result against
the exact solution of Kirk et al. (2017).

2.2.6. Prior results
The prior studies by Maynes & Crockett (2014) and Kirk et al. (2017) provide the local
Nusselt number as per (2.86) and, by implication, the minimum one as per (2.88), as well
as the mean Nusselt Number Nu as per (2.92). The mean Nusselt number Nu

′
as per (2.97)

also follows from the temperature profiles developed in these studies. Moreover, the studies
by Enright et al. (2006) and Enright et al. (2014) provide Nu

′
and machinery that may be
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adopted to find the local Nusselt numbers. We proceed to discuss and contrast all of them
and our own results.

Maynes & Crockett (2014) used a Navier-slip velocity profile in the thermal energy
equation. An analytical solution for the temperature profile was found by representing the
discontinuous (Neumann) boundary condition along the composite interface as a Fourier
series and using separation of variables. Their temperature profile (in our notation) along
the composite interface is

θM (X, 0) = 17
35

φ − 2ε

π2

∞∑
n=1

sin (nπδ) coth (nπ/ε) cos (nπX)

n2 − 18
35

φελ

1 + 3ελ

+ 6
35

φε2λ2

(1 + 3ελ)2 , (2.100)

where the subscript ‘M’ denotes a result by Maynes & Crockett (2014). Closed-form
expressions for NuM and Numin,M follow and their behaviour is discussed by Maynes &
Crockett (2014). A closed-form expression for Nu

′
M also follows from integrating (2.100).

Numerical integration was used by Maynes & Crockett (2014) to compute NuM . Although
Maynes & Crockett (2014) did not quantify the error in their Nusselt number expressions
due to using a Navier-slip velocity profile, we have shown that it is O(ε3). Relatedly,
upon noting that coth(nπ/ε) ∼ 1 + e.s.t. as ε → 0, an expansion of (2.100) is consistent
with (2.83) and all of the Nusselt numbers become the same as in our analysis. We note,
however, that, since Maynes & Crockett (2014) did not do this, their results differ slightly
from ours.

Insofar as Nu
′
, Enright et al. (2006) were the first to compute it and, as here, solid–liquid

interfaces were isoflux. They too utilized a Navier-slip velocity profile as per (2.50),
or the corresponding expression when one side of the microchannel is textured, but
did not capture the discontinuous thermal boundary condition along the composite
interface. Consequently, the Nusselt number was solely dependent upon the slip length
non-dimensionalized by the channel height for the texture of interest (parallel or transverse
ridges, pillars, etc.). Enright et al. (2014) refined this approach by further imposing an
apparent temperature jump along the composite (c) interfaces on one or both sides of a
microchannel as per

T̄sl − T̄c = −bt
∂T̄
∂n

∣∣∣∣
c
, (2.101)

where bt is the apparent thermal slip length (also referred to as the temperature jump
length) and n the direction normal to a composite interface and pointing into the liquid.
Using the approach of Nield (2004, 2008) to accommodate asymmetrical boundary
conditions, closed-form expressions for the Nusselt number were developed as a function
of arbitrary values of b and bt imposed on each side of the microchannel and, additionally,
the ratio of heat fluxes averaged over the composite interfaces (φq′′

sl) bounding the
domain (liquid). In the case of a symmetric channel, as in this study, the results by
Enright et al. (2014) reduce to those developed by Inman (1964) 50 years earlier in the
context of molecular slip effects in gas flows, where the surface boundary conditions
are mathematically equivalent. Kane & Hodes (2019) extended the Enright et al. (2014)
analysis to a combined Poiseuille and Couette flow.

The (one-dimensional) temperature field provided by the foregoing studies in the case
of parallel ridges is that averaged over the width of the domain. Insofar as the definition
of dimensionless temperature adopted here as per (2.59), only the composite interface
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Asymptotic Nusselt numbers for flow in the Cassie state

temperature is relevant; consequently, the thermal slip length is irrelevant. The resulting
temperature profile, which we denote by T̃E, is

T̃E = φ

2/3 + 2ελ

(
− ỹ4

12
+ ỹ3

3
+ ελỹ2 − 2ελỹ − 2

3
ỹ + 2

105
17 + 84ελ+ 105ε2λ2

1 + 3ελ

)
.

(2.102)

This expression is identical to that given by (2.73) with D(ε) given by (B7). Terms of
O(ε3) were neglected in our derivation and thus, albeit not pointed out by Enright et al.
(2014), it is only accurate to O(ε3).

In the foregoing studies (except in Enright et al. 2006), the difference between the mean
temperatures of the solid–liquid and composite interfaces follows by imposing an apparent
thermal slip boundary condition as per (2.101). Enright et al. (2014) utilized the spreading
resistance solution by Mikic (1957) to evaluate bt such that

bt = 2d
π3φ2

∞∑
n=1

sin2 (nπφ)

n3 . (2.103)

The Nusselt number Nu
′
E, where the subscript ‘E’ indicates a result from Enright et al.

(2014), then follows from the definition of the bulk temperature and it does not capture the
error term as in the present analysis. Consequently, the relationship between the present
result and that by Enright et al. (2014) is

Nu
′ = Nu

′
E + O(ε3). (2.104)

Replacing bt in the Enright et al. (2014) analysis with its maximum value, bt,max,
to define the apparent temperature jump along the composite interface in terms of the
temperature of the centre of the ridge, (2.103) becomes

Tsl (x = d) − T̄c = −bt,max
∂T̄
∂n

∣∣∣∣
c
. (2.105)

It follows from the Mikic (1957) solution that

bt,max = 2d
π2φ

∞∑
n=1

sin (nπφ)

n2 . (2.106)

Then, the Enright et al. (2014) approach yields

Numin,E = 140 (1 + 3ελ)2

/{
17φ +

[
84λφ + 70

π2

∞∑
n=1

sin (nπφ)

n2

]
ε

+
[

105λ2φ + 420λ
π2

∞∑
n=1

sin (nπφ)

n2

]
ε2 +

[
630λ2

π2

∞∑
n=1

sin (nπφ)

n2

]
ε3

}
.

(2.107)

Upon rearrangement, this result may be shown to be identical to our own result as per
(2.89), except that it does not quantify the error. More generally, the thermal slip length in
the Enright et al. (2014) formulation may be based upon any location along the ridge and
thus the variation of the local Nusselt number along it determined. Then, the local Nusselt
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Nusselt number Description Expression Error

Nu local (2.90) O(ε3)

Numin minimum (2.89) O(ε3)

Nu mean of Nu (2.94) O(ε3)

Nu
′

based on h̄′ = φq′′
sl/(Tsl − Tm) (2.99) O(ε3)

Table 1. Nusselt number results for parallel ridges.
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Figure 3. Value of Numin vs φ for selected values of ε from present result (or, equivalently, that which follows
from the approach of Enright et al. 2014) per (2.89) shown by dashed curves, Maynes & Crockett (2014)
expression for composite interface temperature per (2.100) shown by dot-dashed curves and exact solution by
Kirk et al. (2017) shown by solid curves.

number Nu follows. We compare the value of Nu
′
E (or, equivalently, Nu

′
from this study)

with its exact value as per the Kirk et al. (2017) study in figure 6. Of course, the agreement
only breaks down at sufficiently large values of ε.

Only the aforementioned exact results by Kirk et al. (2017) are valid for arbitrary ε.
Also, by taking the limit of the dual-series equations as ε → 0, and the same limit in the
temperature problem, an expression for Nu with an error term of O(ε2) was found by Kirk
et al. (2017). It breaks down for sufficiently small solid fraction. We summarize the Nusselt
number developed in this study in table 1.

2.2.7. Comparisons
A plot of Numin vs φ for selected values of ε based on the present result and the
aforementioned studies is shown in figure 3. As expected, it asymptotes to ∞ and 140/17
as φ approaches 0 and 1, respectively. When ε gets sufficiently large, Numin no longer
monotonically decreases with φ. This is because there is essentially no flow over the
middle of the ridge such that Numin → 0; however, the aforementioned behaviour of it as
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Figure 4. Value of Numin vs φ for selected values of relatively large ε calculated using the (exact) method of
Kirk et al. (2017).

φ → 0, 1 remains valid. When the domain is square (ε = 1), our solution and the Maynes
& Crockett (2014) one overpredict Numin by maximum amounts of 21.6 % and 21.7 %,
respectively, at φ = 0.64. When ε = 2, a local minimum in Numin occurs at approximately
φ = 1/2, presumably because the flow velocity is rather low above the centre of the ridge
relative to above the triple contact line (and meniscus). Using only the exact solution from
Kirk et al. (2017), in figure 4, we show the same results up to ε = 16. The value of Numin
becomes very low as ε is sufficiently increased, except as φ → 0 or φ → 1, because most
of the flow in the domain is between opposing menisci rather than between opposing
ridges.

A semilog plot of Nu vs φ for selected values of ε based on our results and those from
the aforementioned studies is shown in figure 5. When ε = 0.5, a substantive value, the
maximum discrepancies between Nu from Maynes & Crockett (2014), the present result
with an error term of O(ε3), (2.94), and that with an error term of O(ε), (2.96), compared
with the exact solution are only 2.6 %, 1.2 % and 5.2 %, respectively. When ε is increased
to 2, they become 36.6 %, 38.7 % and 46.5 %, respectively, occurring near a solid fraction
of 0.4. An extensive discussion of the physics governing the behaviour of the curves in
figure 5, except that given by (2.94), is given by Kirk et al. (2017). The behaviour of the
latter is analogous to that of the asymptotic result in Kirk et al. (2017), except that the
error is O(ε3) rather than O(ε2) and it does not break down at small φ. Finally, figure 6
shows the comparison between the Enright et al. result (equivalently, (2.99)) and the exact
solution, which is rather good up to ε = 2.

2.2.8. Other relevant studies
Beyond the problem considered here, Kirk et al. (2017) accounted for meniscus curvature,
assuming a small deflection from flat, by using a boundary perturbation. Also, the
numerical results by Game et al. (2018) consider arbitrary meniscus curvature, so long
as it is a circular arc. Finally, Karamanis et al. (2018) solved the extended Graetz–Nusselt
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Figure 5. Semilog plot of Nu vs φ for selected values of ε from present result per (2.94) shown by purple
curves, simplified form of present result per (2.96) shown by cyan curves, numerically evaluated integral from
Maynes & Crockett (2014) shown by red curves, asymptotic expression by Kirk et al. (2017) shown by green
curves and exact solution by Kirk et al. (2017) shown by black curves.

10
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7

6

5Nu′

4

3

2

1

0
10–2 10–1 100

φ

ε = 1/20 ε = 0.1 ε = 0.5 ε = 2

Figure 6. Value of Nu
′

vs φ for ε = 1/20, 0.1, 0.5 and 2 from Enright et al. or, equivalently, the present study,
(2.99), shown by purple curves and exact solution by Kirk et al. (2017) shown by black curves.

problem in the presence of viscous dissipation and uniform volumetric heat generation for
a flat meniscus assuming isothermal, parallel ridges. Nusselt number results for transverse
ridges are provided below. Those for (square) pillars using the Enright et al. (2014)
approach are compared with numerical results in that study. Finally, very recently, Sharma
et al. (2020) provided numerical results for square, triangular and herringbone pillars in
regular and staggered arrays.
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Asymptotic Nusselt numbers for flow in the Cassie state

2.2.9. Alternate form of inner solution and corresponding spreading resistances
Since the heat flux is discontinuous along the composite interface (Y = 0), the series
in (2.81) converges non-uniformly in the domain (Y > 0) and requires many terms to
accurately represent the temperature and heat flux profiles near the composite interface.
Therefore, we ‘sum the series’ to obtain the exact solution in closed form. The
dimensionless temperature field is a harmonic function, which can be written in terms
of the imaginary part of a complex potential as per

θ = Im
[

f
(
Θ‖
)]

, (2.108)

where, recall, Θ‖ = X + iY . Judicious use of Euler’s formula (as in Bazant (2004), § V.G.)
shows that

f
(
Θ‖
) = −ε

{
φΘ‖ + Li2 (M+) − Li2 (M−)

π2

}
+ iφ

[
1
2

+ 1/12 + D(ε)

2/3 + 2ελ

]
+ O

(
ε3
)

,

(2.109)

where the polylogarithm (special) function is

Lis (M) =
∞∑

n=1

Mn

ns , |M| < 1, (2.110)

and
M± = exp

(
iπ
(
Θ‖ ± δ

))
. (2.111)

Appealingly, in that no special functions are required, the dimensionless heat flux vector
follows as

− ∇θ = −
(

∂θ

∂X
+ i

∂θ

∂Y

)
= 1

i
f ′ (Θ‖

)
, (2.112)

where, using the relation that dLi2(M±)/dM± = − ln(1 − M±)/M±,

f ′ (Θ‖
) = −εφ + iε

π

[
ln (1 − M+) − ln (1 − M−)

]
. (2.113)

The preceding result is also useful in the context of spreading resistance, Rsp, which we
define conventionally. Hence, it is the increase in the temperature difference driving heat
transfer, i.e. the mean heat source temperature minus the far-field temperature, beyond
that of the corresponding one-dimensional problem, divided by the heat rate. Thus, the
(dimensional) spreading resistance based upon the heat rate per unit depth of the domain,
i.e. in units of W (m K)−1, is

R′
sp =

∫ d

a
T (x, 0) d x/ (d − a) − limy→∞ T

q′′
sl (d − a)

− T1d (0) − limy→∞ T1d

q′′
sl (d − a)

, (2.114)

where T1d( y) is, to within an additive constant, −q′′
sl(d − a)y/(kd). Non-dimensionalizing

the spreading resistance by 1/k, the well-known result by Mikic (1957) is

R̃′
sp = 2

π3φ2

∞∑
n=1

sin2 (nπφ)

n3 , (2.115)
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or, albeit not previously realized, in closed form

R̃′
sp = 1

π3φ2 Re
[
Li3 (1) − Li3

(
ei2πφ

)]
. (2.116)

This result is an exact result as the spreading resistance problem is one of pure diffusion in
a semi-infinite domain. It is twice the value reported by Mikic (1957) because the width of
his domain corresponds to one ridge pitch (i.e. the full width of the heat source) and ours is
half of that. (The spreading resistance based on the far-field heat flux, R′′

sp, does not depend
on the domain width and, non-dimensionalizing it by (d − a)/k, it follows that R̃′′

sp = R̃′
sp.)

More conservatively, the corresponding dimensionless spreading resistance based on the
maximum source temperature, R̃′

sp,max (or, equivalently, R̃′′
sp,max), is

R̃′
sp,max = 2

π2φ

∞∑
n=1

sin (nπφ)

n2 , (2.117)

or, in closed form,

R̃′
sp,max = 2

π2φ
Im
[
Li2
(

eiπφ
)]

. (2.118)

In the context of the asymptotics performed here, if a constant heat flux is applied along
the top of a finite rather than infinite height domain, the error in the spreading resistance
is exponentially small as ε → 0. For example, (2.115) would become

R̃′
sp,a ∼ 2

π3φ2

∞∑
n=1

sin2 (nπφ)

n3 + e.s.t., ε → 0, (2.119)

where the subscript ‘sp,a’ signifies this is an asymptotic limit. Clearly, the foregoing results
may be used to eliminate some of the infinite summations in the results that we provided.
Finally, we note that Hodes, Kirk & Crowdy (2018) discusses analogies between the slip
length for a linear-shear flow and spreading and contact resistances.

3. Transverse ridges

A schematic of the (dimensional) geometry of the transverse-ridge problem is shown
in figure 7(a). The periodically fully developed, bidirectional flow in the streamwise
(z) and transverse (y) directions is driven by prescribing the linear component of the
streamwise-pressure gradient as a (negative) constant (β). The velocity field is periodic in
the z-direction, whereas the pressure and temperature fields have both linear and periodic
components. The ridge and channel geometries are described the same as in § 2 (figure 1),
but now with the ridges aligned with the x-axis rather than the z-axis. Restricting our
attention to the Stokes flow limit, the domain length reduces to d due to mirror symmetry
about the centre of the meniscus in the periodic components of the hydrodynamic problem.
The same holds in the low Péclet number limit for the thermal problem due to symmetry
about the centre of the meniscus.

3.1. Hydrodynamic problem
We decompose the pressure field into

p = βz + pp ( y, z) , (3.1)

where pp( y, z), its periodic component, repeats itself in the streamwise direction with a
period of one pitch (2d). We non-dimensionalize velocities by −βH2/(2μ), pp by βH
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Liquid
(f low in +z direction)
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solid‐liquid interfaces 
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boundary
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H

Figure 7. Schematic of transverse-ridge problem with the (planar) domain shown in grey. Imposition of a
(negative) linear component of the streamwise-pressure gradient (β) drives the flow in the z-direction.

and lengths as in § 2.1. Working in terms of Z = z̃/ε such that the extents of the domain
are independent of the small parameter, the dimensionless continuity, streamwise- and
transverse-momentum equations become

∂ṽ

∂ ỹ
+ 1

ε

∂w̃
∂Z

= 0 (3.2)

Re
(

ṽ
∂ṽ

∂ ỹ
+ w̃

ε

∂ṽ

∂Z

)
= 2

∂ p̃p

∂ ỹ
+
(

∂2ṽ

∂ ỹ2 + 1
ε2

∂2ṽ

∂Z2

)
(3.3)

Re
(

ṽ
∂w̃
∂ ỹ

+ w̃
ε

∂w̃
∂Z

)
= 2 + 2

ε

∂ p̃p

∂Z
+
(

∂2w̃
∂ ỹ2 + 1

ε2
∂2w̃
∂Z2

)
, (3.4)

respectively, where ṽ is the transverse velocity and the Reynolds number is

Re = −ρβH3

2μ2 . (3.5)

The impermeability and shear-free boundary conditions along the meniscus, impermea-
bility and no-slip ones along the solid–liquid interfaces and mirror symmetry one about
the centreline of the channel manifest themselves as

ṽ = ∂w̃
∂ ỹ

= 0 at ỹ = 0 for 0 < |Z| < δ (3.6)

ṽ = w̃ = 0 at ỹ = 0 for δ < |Z| < 1 (3.7)

ṽ = ∂w̃
∂ ỹ

= ∂pp/∂ ỹ = 0 at ỹ = 1 for 0 < |Z| < 1, (3.8)

respectively. The (streamwise) periodicity boundary condition is

χ(ỹ, −1) = χ(ỹ, 1), where χ = ṽ, w̃, p̃p,
∂ṽ

∂Z
,
∂w̃
∂Z

. (3.9)
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As an ansatz, we assume that ṽ, w̃ and p̃p are O(1) as ε → 0 and thus asymptotically
expand them as

ṽ ∼
∞∑

n=0

εnṽn + e.s.t. (3.10)

w̃ ∼
∞∑

n=0

εnw̃n + e.s.t. (3.11)

p̃p ∼
∞∑

n=0

εnp̃p,n + e.s.t., (3.12)

where ṽn, w̃n and p̃p,n are O(1) for n � 0.

3.1.1. Outer region
The outer region is where Z = O(1) and ỹ = ord(1) as ε → 0. Substituting (3.10)–(3.12)
into (3.2)–(3.4) yields, at the algebraic orders of ε,

O
(
ε−2
)

:
∂2ṽ0

∂Z2 = 0 (3.13)

∂2w̃0

∂Z2 = 0 (3.14)

O
(
ε−1
)

:
∂w̃0

∂Z
= 0 (3.15)

Re
(

w̃0
∂ṽ0

∂Z

)
= ∂2ṽ1

∂Z2 (3.16)

Re
(

w̃0
∂w̃0

∂Z

)
= 2

∂ p̃p,0

∂Z
+ ∂2w̃1

∂Z2 (3.17)

O
(
ε0
)

:
∂ṽ0

∂ ỹ
+ ∂w̃1

∂Z
= 0 (3.18)

Re
(

ṽ0
∂ṽ0

∂ ỹ
+ w̃0

∂ṽ1

∂Z
+ w̃1

∂ṽ0

∂Z

)
= 2

∂ p̃p,0

∂ ỹ
+ ∂2ṽ0

∂ ỹ2 + ∂2ṽ2

∂Z2 (3.19)

Re
(

ṽ0
∂w̃0

∂ ỹ
+ w̃0

∂w̃1

∂Z
+ w̃1

∂w̃0

∂Z

)
= 2 + 2

∂ p̃p,1

∂Z
+ ∂2w̃0

∂ ỹ2 + ∂2w̃2

∂Z2 (3.20)

O
(
εn) :

∂ṽn

∂ ỹ
+ ∂w̃n+1

∂Z
= 0 for n � 0 (3.21)

Re

( n∑
m=0

ṽm
∂ṽn−m

∂ ỹ
+

n+1∑
m=0

w̃m
∂ṽn+1−m

∂Z

)
= 2

∂ p̃p,n

∂ ỹ
+ ∂2ṽn

∂ ỹ2 + ∂2ṽn+2

∂Z2 for n � 1

(3.22)
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Asymptotic Nusselt numbers for flow in the Cassie state

Re

( n∑
m=0

ṽm
∂w̃n−m

∂ ỹ
+

n+1∑
m=0

w̃m
∂w̃n+1−m

∂Z

)
= 2

∂ p̃p,n+1

∂Z
+ ∂2w̃n

∂ ỹ2 + ∂2w̃n+2

∂Z2 for n � 1.

(3.23)

The boundary conditions as per (3.6)–(3.9) apply at all orders.
Integrating the leading-order momentum equations, i.e. (3.13) and (3.14), twice and

applying periodicity shows that ṽ0 = ṽ0(ỹ) and w̃0 = w̃0(ỹ). Then, the leading-order
continuity equation, (3.18), becomes ∂w̃1/∂Z = −dṽ0/dỹ. Integrating it with respect to
Z and applying periodicity on w̃1 shows that dṽ0/dỹ = 0 and thus, from the mirror
symmetry condition at ỹ = 1, that ṽ0 = 0, and w̃1 = w̃1(ỹ). Relatedly, (3.16) and (3.17)
collapse to ∂2ṽ1/∂Z2 = 0 and ∂ p̃p,0/∂Z = 0, respectively. By implication, ṽ1 = ṽ1(ỹ) and
p̃p,0 = p̃p,0(ỹ). In turn, (3.21) along with the boundary conditions implies that ṽ1 = 0
and w̃2 = w̃2(ỹ). Equations (3.19) and (3.20) then reduce to ∂2ṽ2/∂Z2 = −2 dp̃p,0/dỹ
and ∂ p̃p,1/∂Z = −d2w̃0/dỹ2/2 − 1, respectively. Integrating the former with respect to
Z and applying periodicity shows that dp̃p,0/dỹ = 0 and thus p̃p,0 is a constant (E0),
and doing so again that ṽ2 = ṽ2(ỹ). Integrating the latter with respect to Z and applying
periodicity shows that p̃p,1 = p̃p,1(ỹ) and d2w̃0/dỹ2 = −2. Therefore, per the mirror
symmetry condition,

w̃0 = −ỹ2 + 2ỹ + G0, (3.24)

where G0 is a constant. In turn, the O(ε2) continuity equation (not shown) along
with the boundary conditions implies that ṽ2 = 0 and w̃3 = w̃3(ỹ). Then, (3.22) and
(3.23) reduce to ∂2ṽ3/∂Z2 = −2 dp̃p,1/dỹ and ∂ p̃p,2/∂Z = −d2w̃1/dỹ2/2, respectively.
The former leads to p̃p,1 = E1 and ṽ3 = ṽ3(ỹ). The latter leads to p̃p,2 = p̃p,2(ỹ) and
w̃1 = G1. Generalizing the foregoing process for n � 2, the O(εn) continuity equation
leads to ṽn = 0 and, in turn, the O(εn−1) transverse- and streamwise-momentum equations
lead to p̃p,n−1 = En−1 and w̃n−1 = Gn−1, respectively. This leads to a unidirectional
velocity profile to all algebraic orders in the outer region as per

ṽ ∼ e.s.t., (3.25)

w̃ ∼ −ỹ2 + 2ỹ + G (ε) + e.s.t., (3.26)

where

G (ε) =
∞∑

n=0

Gnε
n. (3.27)

The corresponding periodic component of the pressure field is pp = E(ε), where E(ε) =∑∞
n=0 Enε

n, but it need not be resolved to find the slip length and Nusselt number.

3.1.2. Inner region
As in the case of parallel ridges, the inner region is where Y ∼ Z = O(1) as ε → 0, but,
unlike in the case of parallel ridges, the flow is bidirectional. Using notation such that
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ṽ = V(Y, Z), w̃ = W(Y, Z) and p̃p = Pp(Y, Z) in this region, the problem becomes

∂V
∂Y

+ ∂W
∂Z

= 0 (3.28)

Re
ε

(
V

∂V
∂Y

+ W
∂V
∂Z

)
= 2

ε

∂Pp

∂Y
+ 1

ε2

(
∂2V
∂Y2 + ∂2V

∂Z2

)
(3.29)

Re
ε

(
V

∂W
∂Y

+ W
∂W
∂Z

)
= 2 + 2

ε

∂Pp

∂Z
+ 1

ε2

(
∂2W
∂Y2 + ∂2W

∂Z2

)
, (3.30)

subject to

V = ∂W
∂Y

= 0 at Y = 0 for 0 < |Z| < δ (3.31)

V = W = 0 at Y = 0 for δ < |Z| < 1 (3.32)

V ∼ e.s.t., W ∼ −ε2Y2 + 2εY + G(ε) + e.s.t., Pp ∼ E (ε) + e.s.t.

as Y → ∞ for 0 < |Z| < 1 (3.33)

χ(Y, −1) = χ(Y, 1) where χ = V, W, Pp,
∂V
∂Z

,
∂W
∂Z

, (3.34)

where (3.33) is the Van Dyke matching condition. We expand our velocities and the
periodic component of the pressure field as

V ∼
∞∑

n=0

εnVn + e.s.t. (3.35)

W ∼
∞∑

n=0

εnWn + e.s.t. (3.36)

Pp ∼
∞∑

n=0

εnPp,n + e.s.t. (3.37)

Substituting the expansions into the momentum equations shows that, at leading
(algebraic) order, i.e. O(ε−2), ∇2V0 = 0 and ∇2W0 = 0. There is no shear rate at this
order as per the matching condition; consequently, V0 = W0 = 0 (and V and W are o(1))
and thus G0 = 0 (and G(ε) = o(1)). The momentum equations become

∇2V = −2ε
∂Pp

∂Y
+ O

(
ε3Re

)
(3.38)

∇2W = −2ε2 − 2ε
∂Pp

∂Z
+ O

(
ε3Re

)
, (3.39)

which shows that neglecting the inertial terms in them introduces an O(ε3Re) error.
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Asymptotic Nusselt numbers for flow in the Cassie state

Writing

V = 2εV̂ (3.40)

W = −ε2Y2 + 2εŴ, (3.41)

we find that V̂ and Ŵ satisfy

∂V̂
∂Y

+ ∂Ŵ
∂Z

= 0 (3.42)

∇2V̂ = −∂Pp

∂Y
+ O

(
ε2Re

)
(3.43)

∇2Ŵ = −∂Pp

∂Z
+ O

(
ε2Re

)
, (3.44)

subject to

V̂ = ∂Ŵ
∂Y

= 0 at Y = 0 for 0 < |Z| < δ (3.45)

V̂ = Ŵ = 0 at Y = 0 for δ < |Z| < 1 (3.46)

V̂ ∼ e.s.t, Ŵ ∼ Y + G(ε)

2ε
+ e.s.t., Pp ∼ E (ε) + e.s.t. as Y → ∞ (3.47)

χ(Y, −1) = χ(Y, 1) where χ = V̂, Ŵ, Pp,
∂V̂
∂Z

,
∂Ŵ
∂Z

. (3.48)

This problem has been solved by Philip (1972a) by using conformal maps to find the
streamfunction. The resulting velocity profile is

V̂ = − ∂

∂Z

(
Y Im

{
1
π

cos−1
[

cos (πΘ⊥/2)

cos (πδ/2)

]})
+ O

(
ε2Re

)
(3.49)

Ŵ =
(

Y
∂

∂Y
+ 1
)

Im
{

1
π

cos−1
[

cos (πΘ⊥/2)

cos (πδ/2)

]}
+ O

(
ε2Re

)
, (3.50)

where Θ⊥ = Z + iY . Moreover, it follows from the far-field behaviour documented by
Philip (1972a) for his result that

V̂ = O
(
ε2Re

)
, Ŵ = Y + λ

2
+ O

(
ε2Re

)
as Y → ∞, (3.51)

such that
G (ε) = ελ+ O

(
ε3Re

)
. (3.52)

The complete inner velocity profile becomes

V = −2ε
∂

∂Z

(
Y Im

{
1
π

cos−1
[

cos (πΘ⊥/2)

cos (πδ/2)

]})
+ O

(
ε3Re

)
(3.53)

W = −ε2Y2 + 2ε

(
Y

∂

∂Y
+ 1
)

Im
{

1
π

cos−1
[

cos (πΘ⊥/2)

cos (πδ/2)

]}
+ O

(
ε3Re

)
. (3.54)

The periodic component of the pressure field is not required to resolve the thermal problem
and is thus not developed here.
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3.1.3. Composite solution
As in the case of parallel ridges, the outer solution keeps its form in the overlap region.
Therefore, the inner solution is the composite one as per

ṽcomp = −2ε
∂

∂ z̃

[
ỹ Im

{
1
π

cos−1
[

cos (π (z̃/ε + iỹ/ε) /2)

cos (πδ/2)

]}]
+ O

(
ε3Re

)
(3.55)

w̃comp = −ỹ2 + 2ε

(
ỹ

∂

∂ ỹ
+ 1
)

Im

(
1
π

cos−1

{
cos
[
π (z̃/ε + iỹ/ε) /2

]
cos (πδ/2)

})
+ O

(
ε3Re

)
.

(3.56)

3.1.4. Slip length
The procedure for finding the slip length by equating w̃1d as per (2.49) and the outer
velocity profile in the case of parallel ridges also holds for transverse ones; consequently

b̃ = ελ/2 + O
(
ε3Re

)
; (3.57)

half of its value for parallel ridges. Teo & Khoo (2009) obtained this result by taking the
limit of the dual-series equations accommodating the mixed boundary condition along the
composite interface as ε → 0, but did not provide an error term of O(ε3Re). Davies et al.
(2006) numerically resolved the full problem, including the effect of viscous shear by the
gas phase on the liquid. Then, the dimensionless slip length (b̃) further depends on the
non-dimensional depth of the cavity, Reynolds number, etc. (ε need not be small in the
numerical study by Davies et al. (2006).).

3.2. Thermal problem

3.2.1. Formulation
The temperature field is decomposed into

T = γ z + Tp (y, z) , (3.58)

where γ z is the linear temperature gradient in the liquid when a uniform heat flux of φq′′
sl is

applied over the composite interface and Tp(y, z) is its periodic component, which repeats
itself over a period of 2d. It follows from an energy balance that

γ = q′′
slφ

ρQ′cp
, (3.59)

where Q′ is the volumetric flow rate of liquid per unit depth of the domain. The
dimensional form of the thermal energy equation is

v
∂Tp

∂y
+ w

(
γ + ∂Tp

∂z

)
= α

(
∂2Tp

∂y2 + ∂2Tp

∂z2

)
. (3.60)

Unlike in the case of parallel ridges, the axial conduction term is finite. Moreover, we must
retain it because, as shown below, it is essential in the inner region. Also, rather than being
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Asymptotic Nusselt numbers for flow in the Cassie state

constant in the domain, the bulk temperature varies along its streamwise direction per

Tm (z) =

∫ H

0
wT dy∫ H

0
w dy

. (3.61)

Consequently, the non-dimensional temperature is defined relative to the (bulk) mean
temperature at the domain inlet as per

T̃ = k [T − Tm (z = 0)]
q′′

slH
. (3.62)

We, again, work in terms of Z such that our domain boundaries are independent of ε. The
dimensionless form of the thermal energy equation governing the periodic component of
the temperature field is

Pe

(
ṽ
∂T̃p

∂ ỹ
+ w̃

ε

∂T̃p

∂Z

)
+ w̃φ

Q̃′ = ∂2T̃p

∂ ỹ2 + 1
ε2

∂2T̃p

∂Z2 , (3.63)

where the Péclet number Pe equals RePr, where the Prandtl number Pr equals cpμ/k, i.e.

Pe = −ρβH3cp

2μk
, (3.64)

and Q̃′ = 2μQ′/(−βH3). It is subject to the discontinuous (Neumann) boundary condition
along the composite interface, symmetry along the channel centreline and periodicity on
the upstream and downstream faces of the domain as per, respectively,

∂T̃p

∂ ỹ
= 0 at ỹ = 0 for |Z| < δ (3.65)

∂T̃p

∂ ỹ
= −1 at ỹ = 0 for |δ| < |Z| < 1 (3.66)

∂T̃p

∂ ỹ
= 0 at ỹ = 1 for |Z| < 1 (3.67)

χ(ỹ, −1) = χ(ỹ, 1), where χ = T̃p,
∂T̃p

∂ z̃
. (3.68)

3.2.2. Outer region
Recalling that, in the outer region, ṽ is exponentially small as per (3.25), the thermal
energy equation becomes

Pe
w̃
ε

∂T̃p

∂Z
+ w̃φ

Q̃′ = ∂2T̃p

∂ ỹ2 + 1
ε2

∂2T̃p

∂Z2 + e.s.t. (3.69)

Defining

T̂p = Q̃′T̃p, (3.70)
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and recalling that the outer (streamwise) velocity profile is w̃ = −ỹ2 + 2ỹ + G(ε) + e.s.t.,
it becomes

Pe
ε

[
−ỹ2 + 2ỹ + G (ε)

] ∂T̂p

∂Z
+ φ

[
−ỹ2 + 2ỹ + G (ε)

]
= ∂2T̂p

∂ ỹ2 + 1
ε2

∂2T̂p

∂Z2 + e.s.t.

(3.71)
The boundary conditions are given by (3.67) and, for ε � ỹ < 1, by (3.68), where T̃p is
replaced by T̂p.

We, as an ansatz, assume that the periodic component of the temperature field is O(1)

and thus asymptotically expand it as

T̂p ∼
∞∑

n=0

εnT̂p,n + e.s.t., (3.72)

where T̂p,n = O(1) for n � 0. Then, at the various orders of ε, the thermal energy equation
is

O
(
ε−2
)

:
∂2T̂p,0

∂Z2 = 0 (3.73)

O
(
ε−1
)

: Pe w̃0
∂T̂p,0

∂Z
= ∂2T̂p,1

∂Z2 (3.74)

O
(
εn) : Pe

n+1∑
m=0

w̃n+1−m
∂T̂p,m

∂Z
+ φw̃n = ∂2T̂p,n

∂ ỹ2 + ∂2T̂p,n+2

∂Z2 for n � 0, (3.75)

where the w̃n are independent of Z as per (3.26). The periodicity boundary condition
applied, in succession, to (3.73) and (3.74) shows that T̂p,n = T̂p,n(ỹ) for n = 0, 1.
Continuing this process for the thermal energy equation for O(εn), where n � 0, shows
that

∂2T̂p,n+2

∂Z2 = ∂2T̂p,n+2

∂Z2

(
Pe, φ, w̃0, . . . , w̃n+1, T̂p,0, . . . , T̂p,n+1

)
. (3.76)

Moreover, once the thermal energy equation for O(εn) has been reached, T̂p,i for i � n + 1
has been shown to be only a function of ỹ. Therefore, the periodicity boundary condition
implies that T̂p,n is independent of Z (and thus Pe) for all n. Making further use of (3.26),
the thermal energy equation becomes

O
(
ε0
)

:
d2T̂p,0

dỹ2 = φ
(
−ỹ2 + 2ỹ + G0

)
(3.77)

O
(
εn) :

d2T̂p,n

dỹ2 = φGn, n � 1. (3.78)

Integrating these equations, applying the symmetry boundary condition at ỹ = 1 and
integrating them again yields

O
(
ε0
)

: T̂p,0 = φ

[
−(ỹ − 1)4

12
+ (ỹ − 1)2

2
+ G0

(ỹ − 1)2

2

]
+ α0 (3.79)

O
(
εn) : T̂p,n = φGn

(ỹ − 1)2

2
+ αn, n � 1, (3.80)
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Asymptotic Nusselt numbers for flow in the Cassie state

where the αn are constants. Consequently

T̂p = φ

[
−(ỹ − 1)4

12
+ (ỹ − 1)2

2
+ G (ε)

(ỹ − 1)2

2

]
+

∞∑
n=0

αnε
n + e.s.t. (3.81)

Finally, it follows from the slip length given by (3.57) that Q̃′ = 2/3 + ελ+ O(ε3Re) and
thus

1

Q̃′ = 1
2/3 + ελ

+ O
(
ε3Re

)
, (3.82)

and, as per (3.52), G(ε) = ελ+ O(ε3Re). Therefore, reverting from T̂p back to T̃p, (3.81)
is expressed as

T̃p = φ

2/3 + ελ

[
−(ỹ − 1)4

12
+
(

1
2

+ ελ

2

)
(ỹ − 1)2 + H (ε) + e.s.t.

]
+ O

(
ε3Re

)
,

(3.83)
where Hn = αn/φ and

H (ε) =
∞∑

n=0

Hnε
n. (3.84)

This outer temperature profile is the same as that for parallel ridges as per (2.73), except
that the (asymptotic limit of the) slip length for transverse ridges (ελ/2) replaces that for
parallel ones (ελ) and the error is O(ε3Re) rather than exponentially small.

3.2.3. Inner region
Denoting T̃p by θp(Y, Z) in the inner region, the thermal energy equation is

Pe
ε

(
V

∂θp

∂Y
+ W

∂θp

∂Z

)
+ Wφ

Q̃′ = 1
ε2

(
∂2θp

∂Y2 + ∂2θp

∂Z2

)
, (3.85)

where V and W are given by (3.53) and (3.54), respectively, and are O(ε). The boundary
conditions are

∂θp

∂Y
= 0 at Y = 0 for 0 < Z < δ (3.86)

∂θp

∂Y
= −ε at Y = 0 for δ < Z < 1 (3.87)

θp ∼ −εφY + φ

[
1
2

+ 1/12 + H(ε)

2/3 + ελ

]
+ O

(
ε3, ε3Re

)
as Y → ∞ (3.88)

χ(ỹ, Z) = χ(ỹ, Z + 2), where χ = θp,
∂θp

∂ z̃
, (3.89)

where (3.88), which follows from the manipulation of (3.83), is the matching condition. As
an ansatz, we assume that the periodic component of the dimensionless, inner temperature
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field is O(1) and thus asymptotically expand it as

θp ∼
∞∑

n=0

εnθp,n + e.s.t. (3.90)

The thermal energy equation reduces to Laplace’s equation at leading order, i.e. O(ε−2);
therefore,

∂θp,0

∂Y
∼ ∂θp,0

∂Z
. (3.91)

These quantities do not exceed their values near the ridge and are thus O(ε) as per the
boundary condition along it as per (3.87) and V, W = O(ε); consequently, the thermal
energy equation reduces to

∂2θp

∂Y2 + ∂2θp

∂Z2 = O
(
ε3Pe, ε3

)
. (3.92)

Accepting an accuracy of O(ε2) for θp, the periodic boundary conditions along the
streamwise borders of the domain manifest themselves as symmetry conditions on a
diffusion problem such that (3.89) is replaced by

∂θp

∂Z
= 0 at |Z| = 1. (3.93)

Relatedly, since the outer problem has no dependence on Z, the temperature field and thus
local Nusselt number are symmetric about Z = 0 and we henceforth need only consider
our domain to extend from 0 to 1. The solution given by Mikic (1957) is again employed
such that the dimensionless, inner periodic temperature profile is given by

θp = −εφY − 2ε

π2

∞∑
n=1

sin (nπδ) cos (nπZ) e−nπY

n2 + φ

[
1
2

+ 1/12 + H(ε)

2/3 + ελ

]
+ O

(
ε3, ε3Re, ε3Pe

)
. (3.94)

Turning our attention to finding H(ε), the details are provided in Appendix E. The
temperature along the composite interface becomes

θ (X, 0) = φĤ (ελ) − 2ε

π2

∞∑
n=1

sin (nπδ) cos (nπZ)

n2

+ O
(

ε3

Pe
,
ε3

Pr
, ε3, ε3Re, ε5Pe, ε7Re Pe

)
, (3.95)

where Ĥ(ελ) = D̂(ελ/2).
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Asymptotic Nusselt numbers for flow in the Cassie state

3.2.4. Composite solution
The composite solution follows from (2.85) and includes the linear component of the
temperature field. It is

T̃comp = φ

2/3 + ελ

[
z̃

Pe
− (ỹ − 1)4

12
+
(

1
2

+ ελ

2

)
(ỹ − 1)2 + H̆ (ε)

]

− 2ε

π2

∞∑
n=1

sin (nπδ) cos (nπz̃/ε) e−nπỹ/ε

n2

+ O
(

ε3

Pe
,
ε3

Pr
, ε3, ε4Re, ε3Pe, ε7Re Pe

)
. (3.96)

3.2.5. Nusselt numbers
The Nusselt number along the ridge follows from (2.87) and (3.95) as

Nu = 4

φD̂ (ελ/2) − 2ε

π2

∑∞
n=1

sin (nπδ) cos (nπZ)

n2

+ O
(

ε3

Pe
,
ε3

Pr
, ε3, ε4Re, ε5Pe, ε7Re Pe

)
, (3.97)

and, as in the case of parallel ridges, approaches ∞ as solid fraction approaches 0.
Regularization of this expression and, subsequently, an expansion of it in terms of
ε/[D̂(ελ/2) + ελ] follows in the same manner as in the case of parallel ridges. The result
is that the mean Nusselt number Nu is given by (2.94) when D̂(ελ) is replaced by D̂(ελ/2)

and the error term is replaced by that in (3.97). For the alternate definition of the mean
Nusselt number, it follows, by replacing ελ with ελ/2 in (2.99) and adjusting the error
term, that

Nu
′ = 140

(
1 + 3ελ

2

)2
/{

17 +
[

42λ+ 70
φ2π3

∞∑
n=1

sin2 (nπδ)

n3

]
ε

+
[

105λ2

4
+ 210λ

φ2π3

∞∑
n=1

sin2 (nπδ)

n3

]
ε2 +

[
630λ2

4φ2π3

∞∑
n=1

sin2 (nπδ)

n3

]
ε3

}

+ O
(

ε3

Pe
,
ε3

Pr
, ε3, ε4Re, ε5Pe, ε7Re Pe

)
. (3.98)

In summary, table 1 applies transverse ridges when D̂(ελ) is replaced by D̂(ελ/2)

in the Nusselt number expressions and the O(ε3) error terms are replaced by
O(ε3/Pe, ε3/Pr, ε3, ε4Re, ε5Pe, ε7Re Pe).

3.2.6. Results
We plot Nu vs φ for parallel ridges (in green based on our asymptotic result, (2.99) and in
black based on the exact result by Kirk et al. 2017) and transverse ones (in red) based on
the present result in figure 8 for ε = 1/20, 0.1, 0.5 and 2. Even at the lowest value of ε (1/20)
and solid fraction (0.001), the reduction in Nu for transverse ridges relative to parallel ones
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Figure 8. Value of Nu vs φ for parallel ridges (in green based on our asymptotic result, (2.99) and in black
based on the exact result by Kirk et al. 2017) and transverse ones (in red) based on the present result for ε =
1/20, 0.1, 0.5 and 2.

(due to less hydrodynamic slip) is very small. The asymptotic solutions for parallel and
transverse ridges converge as ε exceeds 1 (because D̂(ελ) and D̂(ελ/2) asymptote to 1/3).

Maynes et al. (2013) analytically considered the Graetz–Nusselt form of the foregoing
problem, focusing on the (periodically) fully developed limit, as we do here. They utilized
a Navier-slip velocity profile in the form of a curve fit to a numerical solution of the actual
velocity profile (for ε < 2) by Woolford, Maynes & Webb (2009), which captures inertial
effects, and thus depends upon the Reynolds number of the flow. This expression was
substituted into the thermal energy equation, which did not include an axial conduction
term. Then, the temperature profile was resolved in a form containing an infinite series
for a constant heat flux along the ridges. This was utilized to compute the local Nusselt
number (also in a form containing an infinite series) as a function of the distance from the
inlet to the domain, i.e. where there is a step change in heat flux from zero to a constant
value. Eigenvalues and coefficients in the infinite series were evaluated numerically as
a function of the normalized slip velocity, i.e. the ratio of the Navier-slip velocity along
the composite interface to the mean velocity of the flow, which may be converted to a
dimensionless slip length. The first ten of each were tabulated and formulas with constant
parameters determined from a least-squares fit approach provide equations to calculate an
arbitrarily large number of them. Essentially, this portion of Maynes et al. (2013) extends
the Graetz–Nusselt problem resolved by Cess & Shaffer (1959) to one which exhibits
hydrodynamic, but not thermal, slip. Duhamel’s integral was then used to find the Nusselt
number for the problem at hand, where the periodically varying heat flux is constant over
the ridges and zero along menisci.

We proceed to contrast the approach by Maynes et al. (2013) to our own in order to
develop the error term which accompanies their mean Nusselt number (denoted by NuM)
in the Stokes flow limit. With regard to the (periodically fully developed) hydrodynamic
problem, Maynes et al. (2013) use the outer solution for the streamwise velocity as per
(3.26) with G(ε) given by (3.52), except that the Woolford et al. (2009) result alters it as
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Asymptotic Nusselt numbers for flow in the Cassie state

the Reynolds number increases. Turning to the form of the thermal energy equation used
by Maynes et al. (2013), the axial conduction term, i.e. the last term on the right-hand side
of (3.63), is neglected (cf. an extended Graetz–Nusselt problem). With regard to the outer
problem, resolved in § 3.2.2, it does not change the O(ε3Re) error term in the final result
for the temperature profile, (3.84). Turning to the inner problem treated in § 3.2.3, we both
ignore the first term on the left-hand side of (3.85), introducing an O(ε3Pe) error term in
(3.92). However, we proceed to neglect the second and third terms on the left-hand side
of (3.85) and thus introduce an O(ε3) error term in (3.92), whereas Maynes et al. (2013)
retain these terms, but ignore the axial conduction one and thus introduce an O(ε) error
term. By implication, using the Maynes et al. (2013) approach, the error term in the inner
temperature profile prior to resolving H(ε) is O(ε, ε3Re). This shows the importance of
capturing axial conduction in the inner region.

4. Conclusions and recommendations

We considered laminar, fully developed, Poiseuille flows of liquid in the Cassie state
through diabatic, parallel-plate microchannels symmetrically textured with parallel or
transverse isoflux ridges using matched asymptotic expansions. Our small parameter was
the ridge pitch divided by the microchannel height. Our slip length result for parallel
ridges, (2.51), is well known, but we formally developed it using matched asymptotics
as distinct from previous approaches. In the case of the standardly defined mean Nusselt
number, we quantified the error in existing expressions and provided a new one, (2.94),
which supersedes those in the literature because the error term is O(ε3) rather than O(ε2)
and it does not breakdown in the important limit as the solid fraction tends to zero.

We showed that our results for parallel ridges may be directly transformed to those for
transverse ones by changing the slip length from ελ to ελ/2. However, the error term in
the slip length increases from an exponentially small one in ε to O(ε3Re). Moreover, the
error term in the Nusselt number, in addition to an O(ε3) term, has terms that also depend
on Re and Pr as per the error term in (3.96). Under the assumptions invoked, the results
for parallel ridges are valid for any (stable) laminar flow for sufficiently small ε, whereas
this is not the case for transverse ones as per their Re and Pe dependence.

We have neglected thermocapillary stresses along menisci, but, as per the study by
Hodes et al. (2017), they can be substantial in the limiting case of a flat meniscus.
Moreover, Kirk et al. (2020) have shown that, to properly resolve them, meniscus curvature
needs to be simultaneously considered. The aformentioned studies only quantified the
effects on the Poiseuille number but a very recent (numerical) one by us Tomlinson et al.
(2024) addressed those on Nu as well. Also, in the case of water, evaporation near the triple
contact line and condensation elsewhere along the meniscus will enhance heat transfer
(Hodes et al. 2015), an effect not captured by Lam et al. (2015) in their predicting that
water-based microchannel cooling is degraded by flowing the water in the Cassie state and
one where more careful analysis of high (vapour phase) Knudsen number effects may need
to be considered – see relevant study on nanoporous evaporation by De Fraja et al. (2022).
Indeed, thermal energy will conduct from the solid–liquid interface into the portion of
it near the triple contact line to drive evaporation and then condense elsewhere along
the meniscus. Phase change effects also invalidate the impermeability condition along
the meniscus. Until such secondary effects are resolved, it is not clear whether or not
water-based microchannel cooling may be enhanced by using superhydrophobic surfaces.
It is fairly clear that microchannel cooling using a liquid metal, such as Galinstan, may
be enhanced by using superhydrophobic surfaces (Lam et al. 2015). (Phase change effects
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are not relevant for Galinstan due to its negligible vapour pressure, although it more easily
transitions to turbulence on account of its relatively high density.) Our results enable more
accurate prediction of such enhancement.

In closing, it is clear that experiments are needed to validate the analyses presented here
and elsewhere on diabatic, SH microchannels. In the case of water, care must be ensured
that it is pristine and the surface does not leach surfactants into it as per recent work on this
subject – see, e.g. Peaudecerf et al. (2017). Ideally, thermocouples are sputtered on to the
tops of the ridges of the SH surfaces for direct measurements of the Nusselt number. We
note that there has been an experimental study of the flow of Galinstan through diabatic,
smooth microchannels as per Zhang et al. (2015). The results were extremely encouraging,
accommodating over 1500 W cm−2, approximately 1/5 the heat flux on the surface of the
Sun.
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Appendix A. Comment on resolution of C(ε)

To further clarify what (2.31) means and that it is consistent with the usual principles, we
can restate it formally as follows. The infinite asymptotic series in the outer region, (2.25)
with C(ε) =∑∞

n=0 Cnε
n, can be defined by the existence, for any N � 1, of an N-term

asymptotic series

w̃ ∼ −ỹ2 + 2ỹ +
N∑

n=0

Cnε
n, ε → 0. (A1)

Likewise, there is an N-term inner expansion

W(X, Y) ∼
N∑

n=0

Wn(X, Y)εn, ε → 0. (A2)

Thus, substituting the inner variable ỹ = εY into the outer expansion (A1), expanding and
keeping only N terms, we find the (N, N) inner limit of the outer expansion (powers not
collected here)

w̃ ∼ −ε2Y2 + 2εY +
N∑

n=0

Cnε
n, ε → 0. (A3)

Then, one can apply Van Dyke’s matching principle: the corresponding (N, N) outer limit
of the inner expansion (substituting Y = ỹ/ε and expanding, keeping N terms), should
agree with (A3). Since the matching can be done for any choice of N, and the pattern with
N is clear (it only modifies the constant term), the solution in the inner region can be easily
constructed order by order – but we bypass this algebra by considering several orders at
once, and it has been checked to give the same result.
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Appendix B. Resolution of D(ε)

We express (2.82) as∫ η

0

∫ ε

0
w̃inT̃in d x̃ dỹ +

∫ 1

0

∫ ε

0
w̃outT̃out d x̃ dỹ −

∫ η

0

∫ ε

0
w̃outT̃out d x̃ dỹ = 0, (B1)

where η is a value of ỹ in the overlap region and non-dimensional velocity and temperature
have been subscripted for clarity. Denoting the (uniformly valid) composite hydrodynamic
solution from (2.45) in outer variables as w̃in and the inner thermal solution from (2.81) in
them by T̃in, we write the first term in this equation as∫ η

0

∫ ε

0
w̃inT̃in d x̃ dỹ = φ

[
1
2

+ 1/12 + D(ε)

2/3 + 2ελ

] ∫ η

0

∫ ε

0
w̃in d x̃ dỹ − φ

∫ η

0

∫ ε

0
ỹw̃in dỹ

+ O
(
ε3η
)

. (B2)

Next, we observe that the solution to the Ŵ problem is that for a one-dimensional (Couette
flow) problem, i.e. Y + C(ε)/(2ε), plus that to a perturbation problem with a mean
velocity of zero along any plane spanning the width of the domain. It then follows from
(2.25) and (2.33) that we can replace

∫ ε

0 w̃in d x̃ with
∫ ε

0 w̃out d x̃ in (B2). Then, none of the
integrands in (B1) depend on x̃; consequently, it becomes

φ

[
1
2

+ 1/12 + D(ε)

2/3 + 2ελ

] ∫ η

0
w̃out dỹ − φ

∫ η

0
ỹw̃out dỹ

+
∫ 1

0
w̃outT̃out dỹ −

∫ η

0
w̃outT̃out dỹ + O

(
ε2η
)

= 0. (B3)

Moreover, the first, second and fourth terms in (B3) sum to error terms that are negligible
compared with O(ε2η) such that it simplifies to∫ 1

0
w̃outT̃out dỹ = O

(
ε2η
)

. (B4)

The error estimate applies for any choice of η = εα in the overlap region; therefore, it is
smaller than ε2+α for 0 < α < 1, implying that

∫ 1
0 w̃outT̃out dỹ = O(ε3), i.e.∫ 1

0

(
−ỹ2 + 2ỹ + 2λε

) φ

2/3 + 2ελ

[
−(ỹ − 1)4

12
+
(

1
2

+ ελ

)
(ỹ − 1)2 + D (ε)

]
dỹ

= O
(
ε3
)

. (B5)

Evaluating the integral, we find that

D (ε) = D̆ (ε) + O
(
ε3
)

, (B6)

where

D̆ (ε) = − 1
140

13 + 91ελ+ 140 (ελ)2

1 + 3ελ
, (B7)

which resolves the inner temperature profile as per (2.109).
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We do not expand the right-hand side of (B7) for small ελ because, if we take a
secondary limit where the solid fraction of the ridges approaches zero (a relevant limit in
practice to maximize lubrication), λ→ ∞; therefore, expansion for small ελ will clearly
break down. However, the penultimate term on the right-hand side of (2.81) is well behaved
in this limit and it follows from (B7) that

1
2

+ 1/12 + D(ε)

2/3 + 2ελ
= D̂ (ελ) + O

(
ε3
)

, (B8)

where

D̂ (ελ) = 17 + 84ελ+ 105 (ελ)2

35 (1 + 3ελ)2 , (B9)

which varies between 1/3 and 17/35 for arbitrary values of ελ. Equation (2.83) then follows
from (2.81).

Appendix C. Preserving the small solid fraction limit: φ → 0

In this appendix, we discuss the small solid fraction limit of expression (2.90) and how the
correct asymptotic behaviour can be preserved in any further approximations. First, note
that the sum in (2.90) which we denote by S(X), can be written

S(X) = 2
φ

∞∑
n=1

sin (nπδ) cos (nπX)

n2π2 = −2
∞∑

n=1

cos(nπ(1 − X))

nπ
+ o(1), φ → 0

= 2
π

ln
∣∣∣∣2 sin

(
π(1 − X)

2

)∣∣∣∣+ o(1), (C1)

where the last equality follows from the complex representation of cosine (i.e. cos θ =
(eiθ + e−iθ )/2), and the Taylor series of − log(1 − k) around k = 0. As X is restricted to
the ridge, substituting X = 1 − φt where 0 � t < 1, and expanding for φ → 0, we find

S(X) = 2
π

ln φ + 2
π

ln(πt) + o(1), φ → 0, 0 � t < 1. (C2)

Therefore, S has a (constant in X or t) logarithmic singularity as φ → 0. Additionally,
λ ∼ −(2/π) ln φ has a similar logarithmic singularity. Therefore, substituting into (2.90)
and using that D̂ → 1/3 as φ → 0

Nu ∼ − 2π

εφ ln φ
, φ → 0, (C3)

anywhere on the ridge, δ < X � 1. In particular, Numin → ∞ which is expected physically
as the ridge centre and ridge corner approach one another.

If we had expanded (2.90) in a regular power series in ε, without the knowledge of S
and λ for small φ, we would have

Nu(X) = 140
17φ

(
1 − 18

17
ελ− 35

17
εS(X) + O(ε2)

)
, δ < X � 1, (C4)

and, although valid for fixed φ, as φ → 0 the logarithmic singularities mean ελ and εS →
∞, and the expansion breaks down. Thus, the expansion (C4) should be avoided. The
unexpanded expression (2.90) is already explicit, but to facilitate averaging, an expansion
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Asymptotic Nusselt numbers for flow in the Cassie state

which does not break down in the small φ limit is desirable. To achieve this, we factor
out this logarithmic behaviour. First, add and subtract ελ from the denominator of (2.90),
giving

Nu(X) = 4

φ
[
D̂ (ελ) + ελ− ε(λ+ S(X))

] + O
(
ε3
)

, δ < X � 1. (C5)

Then, factor out D̂(ελ) + ελ and define E(ε) = ε/(D̂ + ελ)

Nu(X) = 4

φ
[
D̂ (ελ) + ελ

]
[1 − E(ε)(λ+ S(X))]

+ O
(
ε3
)

, δ < X � 1. (C6)

Now, it can be shown that 0 < E(ε) < 35ε/17 for any φ, and hence it remains O(ε) as
ε → 0, even if φ → 0 simultaneously. Additionally, λ+ S(X) remains bounded in the
limit φ → 0. Taylor expanding the denominator results in a well-ordered series as per
(2.91).

Appendix D. Validation

Kirk et al. (2017) solved the parallel-ridge problem exactly using eigenfunction
expansions, whereby the dual-series equations resulting from the mixed boundary
condition on the hydrodynamic problem are numerically resolved. We validate our
result for Nu as per (2.94) via the log–log plot of its error relative to the exact result
(i.e. |Nu − NuK |, where the subscript ‘K’ denotes the exact result by Kirk et al. 2017)
vs ε when φ = 1/20, 1/5 and 1/2 in figure 9. The parameters used to generate this plot
were as follows. For the present study, all (four) sums required to compute Nu from (2.94)
were truncated at 50 000. To compute NuK for the Kirk et al. (2017) study, the following
parameters were used. First, to resolve the velocity field, we truncated the sums in the
dual-series equations resulting from the mixed boundary condition at 800. (See (4.10) and
(4.11) in Kirk et al. (2017) and the discussion below them.) Secondly, in the expression
corresponding to the surface temperature along the composite interface as per (5.15) in
Kirk et al. (2017), we, by necessity, truncated the sums dependent upon the perturbation
to the velocity field of a smooth channel at 800 and the remaining sum at 1.5 × 106. (The
latter sum equals 0 in the limit as a smooth channel is approached, i.e. φ → 1.) We used
800 points along the ridge to evaluate its surface temperature as required to compute NuK .
Observe that, as ε is decreased, all 3 curves in figure 3 approach a slope of 3, indicating
that |Nu − NuK | = O(ε3), as expected. When ε is sufficiently small (ε � 10−3), the slopes
transition from 3 to 1. This is due to the unavoidable error introduced by truncation of the
sums appearing at lower orders in ε in (2.94) and in the series solution of Kirk et al. Hence,
the slope of 1 is due to truncation error in sums at O(ε) in both the asymptotic and exact
solutions, and this transition to a slope of 1 can be moved to arbitrarily small values of ε

by increasing the number of terms in all sums.

Appendix E. Resolution of H(ε)

To resolve H(ε), we first observe, as per a (dimensional) energy balance on a control
volume bounded by z = 0 and some arbitrary z in the streamwise direction and spanning
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Figure 9. Log–log plot of error in Nu as per (2.94) relative to exact result (NuK) from Kirk et al. (2017) vs ε

for φ = 1/20, 1/5 and 1/2.

the height of the domain, that

Tm (z) − Tm (0) = 1
ρQ′cp

[∫ z

0
q′′

c,l (z) dz − k
∫ H

0

∂T
∂z

( y, 0) dy + k
∫ H

0

∂T
∂z

( y, z) dy
]

,

(E1)
where q′′

c,l(z) is the (local) heat flux along the composite interface, i.e. q′′
sl along the

ridge and 0 along the meniscus. The linear components of Tm on the left-hand side of
this equation sum to γ z and those in the axial diffusion terms on the right one cancel;
consequently

Tm,p (z) − Tm,p (0) = 1
ρQ′cp

[∫ z

0
q′′

c,l (z) dz − k
∫ H

0

∂Tp

∂z
( y, 0) dy

+k
∫ H

0

∂Tp

∂z
( y, z) dy − q′′

slφz
]

, (E2)

or, noting that Tm(0) = Tm,p(0) and the axial diffusion terms are e.s.t. in the outer region,
in terms of dimensionless inner variables,

T̃m,p (Z) = 1

Q̃′Pe

[
ε

∫ Z

0
q̂′′

c,l (Z) dZ − φεZ −
∫ η/ε

0

∂θp

∂Z
(Y, 0) dY +

∫ η/ε

0

∂θp

∂Z
(Y, Z) dY

]
+ e.s.t., (E3)

where q̂′′
c,l(z̃) = q′′

c,l/q′′
sl, i.e. 0 along the meniscus and 1 along the ridge, and, as above, η

is a value of ỹ in the overlap region. We note that the O(ε3Re) error term in the (periodic
component of the) outer temperature profile (applicable in the overlap region) given by
(3.83) relates to that in the volumetric flow rate per unit depth through the domain and
thus is independent of Z. Hence, the axial conduction terms need not be integrated beyond
an upper limit η/ε of in (E3).
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To simplify (E3), we consider a thermal energy balance on a control volume bounded by
Z = 0 and some arbitrary Z in the streamwise direction and by the base of the domain and
a value of ỹ in the overlap region. Noting the error introduced by assuming pure diffusion
as per (3.92) and integrating over the control volume yields

−
∫ η

ε

0

∂θp

∂Z
(Y, 0) dY +

∫ η
ε

0

∂θp

∂Z
(Y, Z) dY + ε

∫ Z

0
q̂′′

c,l (Z) dZ +
∫ Z

0

∂θp

∂Y

(η

ε
, Z
)

dY

= O
(η

ε
ε3Pe,

η

ε
ε3
)

. (E4)

Moreover, manipulation of (3.83) and, subsequently, integration yields

∫ Z

0

∂θp

∂Y

(η

ε
, Z
)

dZ = −εφZ + O
(
ε3 η

ε
, ε3Re

)
. (E5)

Substituting this result into (E4), it follows that (E3) becomes

T̃m,p (Z) = 1

Q̃′Pe

[
O
(η

ε
ε3Pe,

η

ε
ε3, ε3Re

)]
. (E6)

This result is independent of η, where ε � η � 1; therefore, minimizing it,

T̃m,p (Z) = O
(

ε3,
ε3

Pe
,
ε3

Pr

)
. (E7)

That is ∫ 1

0
w̃T̃p dỹ = O

(
ε3,

ε3

Pe
,
ε3

Pr

)
. (E8)

Integrating across the domain yields

∫ 1

0

∫ ε

0
w̃T̃p dz̃ dỹ = O

(
ε4,

ε4

Pe
,
ε4

Pr

)
, (E9)

or

∫ ξ

0

∫ ε

0
w̃inT̃p,in dz̃ dỹ +

∫ 1

0

∫ ε

0
w̃outT̃p,out dz̃ dỹ −

∫ ξ

0

∫ ε

0
w̃outT̃p,out dz̃ dỹ

= O
(

ε4,
ε4

Pe
,
ε4

Pr

)
, (E10)

where ξ is a value of ỹ in the overlap region.
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The first term in the preceding equation may be written as∫ ξ

0

∫ ε

0
w̃inT̃p,in dz̃ dỹ

=
∫ ξ

0

∫ ε

0

⎡⎢⎢⎣−ỹ2 + ε

(
ỹ

∂

∂ ỹ
+ 1
)

Im

⎛⎜⎜⎝ 2
π

cos−1

⎧⎪⎪⎨⎪⎪⎩
cos
[
π

2

(
z̃
ε

+ i ỹ
ε

)]
cos
(

πδ

2

)
⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

+ O
(
ε3Re

)⎤⎥⎥⎦
{

−φỹ − 2ε

π2

∞∑
n=1

sin (nπδ) cos (nπz̃/ε) exp(−nπỹ/ε)
n2

+ φ

[
1
2

+ 1/12 + H(ε)

2/3 + ελ

]
+ O

(
ε3, ε3Re, ε3Pe

)}
dz̃ dỹ. (E11)

We proceed to expanding products in the integrand on the right side and quantifying the
error for some of the terms upon integration. Not yet making any assumptions about ξ ,
other than it is less than unity, the Reynolds number and Péclet number, we proceed
by removing several error terms that are small relative to those we keep. Subsequently,
distributing the O(ε3, ε3Re, ε3Pe) term, we find that∫ ξ

0

∫ ε

0
w̃inT̃p,in dz̃ dỹ

=
∫ ξ

0

{
−φỹ + φ

[
1
2

+ 1/12 + H(ε)

2/3 + ελ

]}

×

⎡⎢⎢⎣−ỹ2
∫ ε

0
dz̃ + ε

(
ỹ

∂

∂ ỹ
+ 1
)∫ ε

0
Im

⎛⎜⎜⎝ 2
π

cos−1

⎧⎪⎪⎨⎪⎪⎩
cos
[
π

2

(
z̃
ε

+ i
ỹ
ε

)]
cos
(

πδ

2

)
⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ dz̃

⎤⎥⎥⎦ dỹ

+ O
(
ε4ξ2Re

)
+ O

(
ε4ξ Re

)
+ O

(
ε7ξ Re2, ε7ξ Re Pe

)
+ O

(
ε2ξ3

)
+ O

(
ε3ξ
)

+ O
(
ε4ξ3, ε4ξ3Re, ε4ξ3Pe

)
+ O

(
ε5ξ, ε5ξ Re, ε5ξ Pe

)
. (E12)

The imaginary function in the preceding equation equals Ŵ in the parallel-ridge problem
as per (2.39) when x̃ is replaced by z̃. Consequently, when it is integrated across the width
of the domain, it becomes ỹ + ελ. After deleting relatively small error terms, it follows that∫ ξ

0

∫ ε

0
w̃inT̃p,in dz̃ dỹ

=
∫ ξ

0

∫ ε

0

(
−ỹ2 + 2ỹ + ελ

){
−φỹ + φ

[
1
2

+ 1/12 + H(ε)

2/3 + ελ

]}
dz̃ dỹ

+ O
(
ε4ξ2Re

)
+ O

(
ε4ξ Re

)
+ O

(
ε7ξ Re2, ε7ξ Re Pe

)
+ O

(
ε2ξ3

)
+ O

(
ε3ξ
)

+ O
(
ε4ξ3, ε4ξ3Re, ε4ξ3Pe

)
+ O

(
ε5ξ Pe

)
. (E13)
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Asymptotic Nusselt numbers for flow in the Cassie state

Setting ξ = ε∫ ξ

0

∫ ε

0
w̃inT̃p,in dz̃ dỹ

=
∫ ξ

0

∫ ε

0

(
−ỹ2 + 2ỹ + ελ

){
−φỹ + φ

[
1
2

+ 1/12 + H(ε)

2/3 + ελ

]}
dz̃ dỹO

(
ε5Re

)
+ O

(
ε8Re2, ε8Re Pe

)
+ O

(
ε4
)

+ O
(
ε6Pe

)
. (E14)

Turning our attention to the (negative of the) third term on the left-hand side of (E10),
it follows from (3.26), (3.52) and (3.88) that∫ ξ

0

∫ ε

0
w̃outT̃p,out dz̃ dỹ

=
∫ ξ

0

∫ ε

0

(
−ỹ2 + 2ỹ + ελ

){
−φỹ + φ

[
1
2

+ 1/12 + H(ε)

2/3 + ελ

]}
dz̃ dỹ

+ O
(
ε4ξ2Re

)
+ O

(
ε4ξ Re

)
+ O

(
ε7ξ Re, ε7ξ Re2

)
+ O

(
ε4ξ3, ε4ξ3Re

)
+ O

(
ε4ξ2, ε4ξ2Re

)
+ O

(
ε5ξ, ε5ξ Re

)
. (E15)

Substituting the results given by (E14) and (E15) (after removing small enough error
terms and setting ξ equal to ε) into (E10), it becomes∫ 1

0

∫ ε

0
w̃outT̃p,out dỹ dz̃ = O

(
ε4

Pe
,
ε4

Pr
, ε4, ε5Re, ε6Pe, ε8Re2, ε8Re Pe

)
. (E16)

Moreover, it follows from our results for w̃ and T̃ that∫ 1

0

∫ ε

0
w̃outT̃p,out dz̃ dỹ =

∫ 1

0

∫ ε

0

(
−ỹ2 + 2ỹ + ελ

) φ

2/3 + ελ

[
−(ỹ − 1)4

12

+
(

1
2

+ ελ

2

)
(ỹ − 1)2 + H (ε)

]
dz̃ dỹ + O

(
ε4Re

)
. (E17)

This result may be expressed as∫ 1

0

(
−ỹ2 + 2ỹ + ελ

) φ

2/3 + ελ

[
−(ỹ − 1)4

12
+
(

1
2

+ ελ

2

)
(ỹ − 1)2 + H (ε)

]
dỹ

= O
(

ε3

Pe
,
ε3

Pr
, ε3, ε4Re, ε5Pe, ε7Re Pe

)
. (E18)

Referring back to the corresponding result for parallel ridges, i.e. (B5), it is apparent
that

H (ε) = H̆ + O
(

ε3

Pe
,
ε3

Pr
, ε3, ε4Re, ε5Pe, ε7Re Pe,

)
, (E19)

where

H̆ (ε) = − 1
140

13 + 91ελ/2 + 35 (ελ)2

1 + 3ελ/2
, (E20)

i.e. it is the same as D(ε), except that the leading-order slip length for parallel ridges (ελ)
is replaced by that for transverse ones (ελ/2) and inertial and transverse advection effects
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may increase the error. By further analogy with the parallel-ridge problem, we define

1
2

+ 1/12 + H(ε)

2/3 + ελ
= Ĥ (ελ) + O

(
ε3

Pe
,
ε3

Pr
, ε3, ε4Re, ε5Pe, ε7Re Pe

)
, (E21)

where

Ĥ (ελ) = 17 + 42ελ+ 105 (ελ)2 /4

35 (1 + 3ελ/2)2 , (E22)

i.e. Ĥ(ελ) = D̂(ελ/2) from the parallel-ridge problem and too varies between 1/3 and
17/35.
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